Beam Propagation Method Calculating Attenuated Total Reflection Spectra to Excite Hybridized Surface Plasmon Polaritons
Abstract
:1. Introduction
2. Theoretical Section
2.1. Reflectivity Expressions of the Kretschmann Configuration
2.2. Verification of the Reflectivity Expressions
- (1)
- The substrate dielectric constant is = 12;
- (2)
- The dielectric constant of Au at the wavelength 1.0 μm is i, and the thickness of the Au film is d = 50 nm;
- (3)
- The principal dielectric constants of the uniaxial dielectric are and ;
- (4)
- Considering the conditions for excitation of HSPPs, choose the azimuth angle of the optical axis , , , respectively, and change the incident angle from 0 to 90.
- (1)
- The dielectric constant of ZF7 as the substrate is at = 650 nm.
- (2)
- The dielectric constants of silver at the wavelength from 620 to 730 nm are from the experimental data [14], and the thickness of the Ag film is d = 57 nm.
- (3)
- The azobenzene polymer is used as the cladding. When a pump laser irradiates the cladding, its principal dielectric constants are and . While, the dielectric constant without the pump light is , standing for an isotropic medium.
- (4)
- As the same as the conditions of the paper [2], we also set the condition that no pump, , , and , respectively, and keep the incident angle at a fixed value of .
3. Results and Discussion
3.1. Field Distribution and Polarization of the HSPPs
3.2. HSPPs Excited in the Kretschmann with Strongly Anisotropic Dielectric Claddings
3.3. HSPPs Excited in the Kretschmann with Weakly Anisotropic Dielectric Claddings
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- John, A.; Polo, J.R.; Akhlesh, L. Surface electromagnetic waves: A review. Laser Photonics Rev. 2011, 5, 234–246. [Google Scholar]
- Wang, X.L.; Wang, P.; Chen, J.X.; Lu, Y.H.; Ming, H.; Zhan, Q.W. Theoretical and experimental studies of surface plasmons excited at metal-uniaxial dielectric interface. Appl. Phys. Lett. 2011, 98. [Google Scholar] [CrossRef]
- Luo, R.; Gu, Y.; Li, X.K.; Wang, L.J.; Khoo, I.M.; Gong, Q.H. Mode recombination and alternation of surface plasmons in anisotropic mediums. Appl. Phys. Lett. 2013, 102. [Google Scholar] [CrossRef]
- Mihalache, D.; Baboiu, D.M.; Ciumac, M.; Torner, L. Hybrid surface plasmon polaritons guided by ultrathin metal films. Opt. Quantum Electron. 1994, 26, 875–863. [Google Scholar] [CrossRef]
- Li, X.K.; Gu, Y.; Luo, R.; Wang, L.J.; Gong, Q.H. Effects of Dielectric Anisotropy on Surface Plasmon Polaritons in Three-Layer Plasmonic Nanostructures. Plasmonics 2013, 8, 1043–1049. [Google Scholar] [CrossRef]
- Li, R.; Cheng, C.; Ren, F.F.; Chen, J.; Fan, Y.X.; Ding, J.P.; Wang, H.T. Hybridized surface plasmon polaritons at an interface between a metal and a uniaxial crystal. Appl. Phys. Lett. 2008, 92. [Google Scholar] [CrossRef]
- Liscidini, M.; Sipe, J.E. Quasiguided surface plasmon excitations in anisotropic materials. Phys. Rev. B 2010, 81. [Google Scholar] [CrossRef]
- Mackay, T.G.; Lakhtakia, A. Electromagnetic fields in linear bianisotropic mediums. Prog. Opt. 2008, 51, 121–209. [Google Scholar]
- Chen, H.C. Theory of Electromagnetic Waves: A Coordinate-free Approach, 1st ed.; McGraw-Hill: New York, NY, USA, 1983; pp. 143–156. [Google Scholar]
- Kretschmann, E.; Raether, H. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforsch. A 1968, 23, 2135–2136. [Google Scholar] [CrossRef]
- Ignatovich, F.V.; Ignatovich, V.K. Optics of anisotropic media. Phys. USP 2012, 55, 709–720. [Google Scholar] [CrossRef]
- Liscidini, M.; Gerace, D.; Andreani, L.C.; Sipe, J.E. Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media. Phys. Rev. B 2008, 77. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 395–397. [Google Scholar]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Goldstein, D.H. Polarized Light, 3rd ed.; Taylor Francis Group: New York, NY, USA, 2011; pp. 59–77. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Zhang, X.; Wang, Y.; Song, Y. Beam Propagation Method Calculating Attenuated Total Reflection Spectra to Excite Hybridized Surface Plasmon Polaritons. Materials 2015, 8, 5048-5059. https://doi.org/10.3390/ma8085048
Zhou H, Zhang X, Wang Y, Song Y. Beam Propagation Method Calculating Attenuated Total Reflection Spectra to Excite Hybridized Surface Plasmon Polaritons. Materials. 2015; 8(8):5048-5059. https://doi.org/10.3390/ma8085048
Chicago/Turabian StyleZhou, Hongli, Xueru Zhang, Yuxiao Wang, and Yinglin Song. 2015. "Beam Propagation Method Calculating Attenuated Total Reflection Spectra to Excite Hybridized Surface Plasmon Polaritons" Materials 8, no. 8: 5048-5059. https://doi.org/10.3390/ma8085048
APA StyleZhou, H., Zhang, X., Wang, Y., & Song, Y. (2015). Beam Propagation Method Calculating Attenuated Total Reflection Spectra to Excite Hybridized Surface Plasmon Polaritons. Materials, 8(8), 5048-5059. https://doi.org/10.3390/ma8085048