
Materials 2015, 8, 4857-4875; doi:10.3390/ma8084857 
 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Environmental and Geotechnical Assessment of the Steel Slags as 
a Material for Road Structure  

Wojciech Sas 1,*, Andrzej Głuchowski 2, Maja Radziemska 3, Justyna Dzięcioł 1 and  

Alojzy Szymański 2 

1 Water Centre Laboratory, Faculty of Civil and Environmental Engineering,  

Warsaw University of Life Sciences, 02-787 Warsaw, Poland; E-Mail: justyna_dzieciol@sggw.pl 
2 Department of Geotechnical Engineering, Faculty of Civil and Environmental Engineering,  

Warsaw University of Life Sciences, 02-787 Warsaw, Poland;  

E-Mails: andrzej_gluchowski@sggw.pl (A.G.); alojzy_szymanski@sggw.pl (A.S.) 
3 Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, 

Warsaw University of Life Sciences, 02-787 Warsaw, Poland; E-Mail: maja_radziemska@sggw.pl 

* Author to whom correspondence should be addressed; E-Mail: wojciech_sas@sggw.pl;  

Tel.: +48-22-593-5400; Fax: +48-22-593-5401. 

Academic Editor: Rafael Luque 

Received: 5 May 2015 / Accepted: 6 July 2015 / Published: 30 July 2015 

 

Abstract: Slags are the final solid wastes from the steel industry. Their production from 

waste and associated materials is a proper implementation of the basic objectives and principles 

of the waste management. This study aims to investigate the chemical and selected significant 

geotechnical parameters of steel slag as the alternative materials used in road construction. These 

investigations are strongly desired for successful application in engineering. Young’s modules E, 

and resilient modules Mr showed that their values corresponding with requirements for 

subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were 

conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high 

content of chromium and zinc are strongly associated with the internal crystal structure of 

steel slag. The results do not lead to threats when they are applied in roads’ structures. 

Mechanical characterization was obtained by performing California bearing ratio (CBR) 

tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic 

loading of steel slag was conducted with the application of cyclic California bearing ratio 

(cCBR) apparatus to characterization of this material as a controlled low-strength material. 

Finally, field studies that consist of static load plate VSS tests were presented. 
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1. Introduction 

Construction engineering, as well as the building materials industry, makes a significant contribution 

to the production of industrial wastes and environmental pollution. On the flip side, this industry utilizes 

a large amount of waste, using the industrial waste as raw materials or ingredients of building materials, 

an example of which can be steel slags [1]. These are the final waste products from the steel industry 

and make up a proportion of approximately 15% by mass of the steel output [2]. Steel slag is produced 

from Basic Oxygen Furnace and Electric Arc Furnace in steel making and the main chemical 

compositions include CaO, SiO2, Al2O3, Fe2O3, MgO and FeO [3–5].  

Huawei [6] reports that the production of each of these three tons of stainless steel will create one 

tonne of waste. According to European Slag Association (EUROSLAG), in Europe, a production of 

steelmaking slag is 21.8 Mt in 2010 [7]. The refining process of the so-called secondary steel making 

operation produces stainless steel reducing slag (SSRS). SSRS includes argon oxygen decarburization 

and ladle metallurgy slag [8]. When SSRS compares with ground granulated blast furnace slag (GGBFS) 

from iron making, steel slag contains toxic ingredients such as nickel, cadmium, chromium and 

strontium. These compounds could be harmful not only for environment but also for human health [9,10]. 

Steel slag recycling issues have gained importance in research areas and environmentally  

friendly processes. 

Artificial and recycled aggregates are alternative building materials [11,12]. Their production from 

waste and associated materials is a proper implementation of the basic objectives and principles of waste 

management such as: reduction of the amount of waste and its negative impact on the environment, 

recovery of materials, disposal of waste and production of artificial aggregates. The application of such 

materials requires preliminary strength property estimation. These properties depend on many variants, 

which were summarized in ACI 229R-99 [13]. Many materials, such as plastic-soil elements and slurry 

material, were proposed as controlled-low strength materials (CLSM). CLSM could consist of many 

various materials—for example, recycled concrete aggregates that could be deposited on construction site 

in unbound or bound form, with addition of lime in the last case [14–17]. Many low strength clayey soils 

could also be a base for CLSM [18,19]. CLSM can compound from various chemically active substances 

but also can contain another materials which improve physical properties as rubber waste from tires to 

decrease the weight of CLSM [20]. 

In the case of steel slag, this material could be deposited in its raw state as a subgrade or subbase 

material. The application of steel slag in asphalt concrete also gives good performance [21,22]; however, 

the use of steel slag as a construction material has been a problem, because free CaO abundant in steel 

slag in contact with water transforms into Ca(OH)2 [23]. Moreover, steel slag could be subjected to 

various treatments. The activation of hydraulic properties during crushing is one of them [24]. A large 

amount of steel slag is employed, as was mentioned above, to road construction as an aggregate in 

concrete production or fertilizer production [25] and after relevant treatments as a hydraulic binder [26,27], 
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to replace river sand for preparing the waterproof mortar [28]. Steel slag could be used as a source of 

reactive elements for the purpose of CO2 isolation [5]. 

CLSMs under their own weight consolidate themselves. This property allows the replacement of 

natural soil by those materials [13]. An important feature of CLSM as opposed to virgin soils, is that, 

after the compaction and hardening process, CLSMs do not stop to settle. Hardening obtained by 

controlled-low strength materials (CLMS) is greatly dependent on the quantity of cementitious material 

which it contains. Hardening time can be as short as one hour but usually takes three to five hours to 

reach proper bearing capacity conditions. Requirements for such materials as CLSM are to achieve low 

compressive strength of 0.5–2.0 MPa for possible re-excavation in the future [29]. ACI-229R 

requirements for compressive strength are of 8.3 MPa or less, for steel slags (7.23 MPa), this requirement 

is fulfilled [30]. During CBR tests, steel slag also exhibited the abovementioned properties and is 

discussed in this paper.  

The utilization method of steel slag is closely related to the chemical and physical characteristics and 

should be given a priority from environmental considerations. Nowadays, almost 100% of steel slag is 

utilised in many areas, such as cement production, raw material for brick production, landfill daily cover, 

road construction, civil engineering work, filtering media for waste water treatment and fertilizer 

production [31,32].  

Nevertheless, for road construction, the possibility of using unbound material with the potential to a 

self-cementing feature in time after the mechanical stabilization is desired. Possible settlement due to 

consolidation and repeated loading could be limited by a volume expansion of steel slag when it reacts 

with free lime or another alkali compounds [33]. Steel slag could be also milled to powder form which 

exhibits cementitious properties [9,34,35] and after compaction of unbound material could be filled with 

slag powder to create a mortar. 

In recent years, there has been a significant increase of the usage of these aggregates in road 

construction in Poland. Very good quality of road surface, together with the pro-environmental and 

economic reasons, support their wider utilization. The technical requirements for unbound aggregates in 

the road construction in Poland for natural aggregates are presented in the appropriate document [36].  

Mechanical characterization of materials such as steel slag are indicated in road engineering by 

performing the CBR test. The CBR values are key factors of estimating the roadbed thickness. The 

evaluated strength of subgrade filling give the indices of different highway grade and different road base 

requirements. This procedure is an element of empirical road design. The right choice of materials, which 

was characterized by this value, ensure the quality of road construction which nowadays play huge role [37]. 

The aim of this study was to determine the chemical and selected significant geotechnical parameters 

of steel slag as the alternative materials used in roads construction, as well as to confirm their 

environmental and technical quality. 

2. Materials and Methods 

2.1. Material and Sample Preparation  

In order to evaluate the chemical composition and obtain geotechnical parameters, the steel slag 

samples were collected from a metallurgical landfill, which provided the examined aggregate to improve 
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the municipal low frequented village road. The test site was a real proving ground, the municipal road 

with the asphalt surface. It was the main road of the L class, traffic categories KR5 in polish standards 

and by the ARRB AR354 [38] is represented by class 50, which is the local throughout route. The 

subbase of this road was constructed from steel slag. Steel slag was cut off by construction of the drainage 

layer under the subbase to prevent capillary actions. Over the subbase, an impermeable asphalt layer was 

structured. Such construction leads to averting any outflows and inflows of water in a subbase layer.  

The commercial aggregate samples had the size fraction of: 0–10 mm; 0–31 mm, and 0–63 mm. After 

compaction of a steel slag layer, field tests were performed. Four static load plate VSS tests in distant 

points were conducted until the first loading caused 0.8 mm of surface displacement. During these tests, 

stress and displacement were noted. 

2.2. Laboratory and Chemical Analysis 

Based on averaging collected material, melted below 80 μm by using a centrifugal mill  

(Retsch ZM100, Haan, Germany) and powdered samples were prepared. The chemical composition was 

determined by wavelength dispersive X-ray fluorescence (XRF) spectrometry analysis on Philips PW 

2400 (Eindhoven, The Netherlands), quantified using the Super Q software. The heavy metal content 

was analyzed with inductively coupled plasma optical emission spectrometry (ICP-OES, Varian 720-ES, 

Mulgrave, Australia). The operating conditions were: argon gas used as plasma gas flow at the rate of  

15.0 L·min−1, auxiliary gas flow rate 1.50 L·min−1, nebulizer gas flow rate 0.75 L·min−1. The room 

temperature was fixed at 25 °C for the analyses. Analyses were performed three times. Samples were 

digested with nitric acid (Merck, Darmstadt, Germany, 69% m/v) on a microwave oven (Milestone, Italy). 

All reagents were of analytical reagent grade unless otherwise stated. Stock solutions of metals (1000 mg/L) 

were prepared from their nitrate salts. Ultra-pure (UP) water (Millipore System, Bedford, MA, USA) 

0.055 μS·cm−1 resistivity was used for preparing the solutions and dilutions for all dilutions.  

2.3. Geotechnical Laboratory Analysis 

Geotechnical laboratory analysis consisted of a number of bearing capacity tests according to  

PN-S02205: 1988 [39] so-called CBR tests [40]. The test relates the bearing capacity of the material in 

CBR test conditions to that of a standard crushed gravel represented as % of standard material bearing 

capacity. Representative specimens were prepared from large samples of slag material, with respect to 

Proctor’s method, preliminary tests lead to estimate optimal moisture content equal 14.9% at dry density 

equal 2.02 g/cm3 . Four special mixture aggregates: 2–10 mm; 2–25 mm; 2–10 mm and 2–25 mm with 30% 

addition fraction 1–2 mm were tested. The reason of the addition of 1–2 mm fractions was to simulate 

real field conditions connected with the seal of surface subgrade and to prevent them from loose contact 

between plungers and specimens in laboratory tests. Each compound was studied ten times. 

2.4. Cyclic Loading Tests 

Repeated loading on soil samples prepared in CBR mould was performed with the use of cyclic CBR 

test (cCBR) procedure. cCBR method was based on a common CBR test. The main idea behind using 
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this equipment came from its popularity. The long existence of the CBR method and its usefulness in 

road design, resulted in its worldwide spread.  

By using CBR, mould and repeated loading apparatus, the cCBR test method was established.  

The main principle of this test approach is to use standard CBR test procedures as a reference in order to 

study the later cyclic loading stage.  

As was mentioned above, the first step is standard CBR test loading to 2.54 mm. After reaching the 

desired displacement with the use of a plunger, the unloading procedure was attempted, with the use of 

up to 10% of force obtained at 2.54 mm. Loading and unloading is treated as the first cycle of the cCBR 

test. The next cycles are determined by the maximal and minimal force from the first loading. The test 

was carried out with standard 1.27 mm/min. velocity. The number of cycles is determined by the 

percentage of plastic strain in one cycle. cCBR method assumes that the test can be stopped, when 1% 

or less of plastic displacement in one cycle will occur. The amount of the cycles to obtain this condition 

usually oscillates around 50 [41,42]. 

3. Results and Discussion 

3.1. Chemical and Mineralogical Characterisation of the Slag 

The chemical composition of steel slag varies with the furnace type, steel grades and pre-treatment 

method. The chemical composition, by XRF, of the steel slag is given in Table 1.  

Table 1. Chemical composition of steel slag samples, mass percent (%). 

CaO free SiO2 TiO2 Al2O3 Fe2O3 MnO MgO free Na2O K2O P2O5 SO3 Cl F 

27.46 16.69 0.43 6.64 33.82 3.87 6.68 0.68 0.10 0.30 0.45 0.003 2.89

The composition of steel slag is variable and may depend on, among others, the size of fraction.  

The main primary solid phases consist of a Fe2O3. The main mineral compounds are metallic iron 

(dicalciumsilicate, dicalciumferrite) [4]. The two major mineral phases present in the steel slag samples 

were hematite Fe2O3 and lime (CaO), content of ~34 wt % and ~27 wt %, respectively. Other minor 

phases identified were quartz (SiO2) and Al2O3. The content of CaO, MgO, SiO2 and Al2O3 that may 

principally substitute raw materials for cement production [43,44]. Because of the disintegration process, 

the residue values of free lime (CaO), are most harmful for unbound steel slag composition. 

Concentrations of lime (CaO) are dominant in steel slag [45]. The content of free CaO and free MgO is 

the most important factor for the disposal of slag and their use in the building industry because of their 

durability volume. Steel slag with CaO content above 50% can be used as sinter ore fluxing agent, 

partially replacing the commercial lime.  

In contact with water, these minerals react with hydroxide, depending on the level of free lime and 

free MgO reaction causes an increase in the volume of slag, which is mainly linked to the breakdown of 

the particles and a decrease in the strength. The stability of the volume is a key criterion by using slag 

as a construction material. The analyzed material was characterized by a relatively low content of free 

CaO and MgO, so that significant changes in its volume as well as a decrease of its strength in time can 

be excluded. Experience in Germany has found that steel slags with a free lime content up to 4% in 

asphaltic layers and up to 7% may be used in unbound layers [4]. Some steel slags contain a higher 
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amount of P2O5; this may affect the direct recycling of the steel slags to the iron and steel making process. 

Steel slag was identified as a material which causes 10% higher P retention capacity in columns for 

phosphorus removal than columns without steel slag [46]. This component might lead to decomposition 

of C3S, which reduced activity of steel slag. The silica (SiO2) content in slag samples was 16.69%, the Al2O3 

and MnO contents are in 6.64% and 3.87%, respectively. The silicate glass at the level 42.38–78.23 wt % 

SiO2 and 7.48–38.87 wt % Al2O3 were found in slag from the former Hegeler Zn-smelting facility in 

Illinois (USA) [47]. Puziewicz et al. [48] reported for a Zn-smelter waste dump in Upper Silesia (Poland) 

having 12.43–41.27 wt % SiO2, 3.38–20.69 wt % Al2O3, 9.86–29.68 wt % Fe2O3 and 4.97–23.53 wt % CaO. 

Heavy metal toxicity and mobility in the natural environment depends on their chemical speciation. 

In steel, slags are present in relatively high values [49].  

Steel slag contains trace amounts of elements potentially mobile and toxic to the environment [50]. 

To get information about the effect on the soil and ground water, it is interesting to know that the 

concentrations of those environmentally relevant components can be leached out. Some steel slags 

contain higher amounts of toxic metals, such as chromium, nickel, manganese, vanadium and 

molybdenum [51]. Lottermoser [52] identified in slag from Río Tinto (Spain) contain elevated 

concentrations of potentially toxic trace elements such as As, Cd, Co, Pb, Sb and Zn. 

Steel slag from analysing samples also consists of several different types of heavy metals in various 

concentrations. The heavy metal composition of the steel slag samples is given in Table 2. Results of the 

analysis of samples confirm a high content of chromium and zinc. The analysis of the chemical 

composition of steel slag shows the content of Cr at the level of 2 915 mg·kg−1. Chromium exists in slags 

as magnesiochromite (MgO·Cr2O3) or solid chromium oxide (Cr2O3). In contact with water the tri- and 

hexavalent chromium (highly soluble in water) can be released from the slag by means of a leaching 

process [53]. The hexavalent cation can be produced by oxidation with atmospheric oxygen and contact 

with CaO. Leaching of Cr increases as soon as the iron (Fe2+) is oxidized into Fe3+. Zinc has a high 

affinity for mineral colloids, characterized by a high mobility in the soil and the high bioavailability of 

the plants due to the rate of dissolution of the compounds in which they occur, in particular in an acidic 

environment [54,55]. In the tested sample of slag, zinc was the second in terms of the content of the 

element (1 084 mg·kg−1). This value is similar in composition to Zn-rich slags from Poland with  

2600–27,200 mg·kg−1 [45] and 212 to 14,900 mg·kg−1 in slag from the former Hegeler Zn-smelting 

facility in Illinois (USA) [47]. In sandy soils, zinc can be toxic at concentrations of 6.9–12.8 g·kg−1 of 

soil, in clay soils it is revealed at the higher concentrations of 16.2–21.5 g·kg−1 soil. In the presented 

study, concentrations of the barium in steel slag samples were 380 mg·kg−1. According to Piatak and 

Seal [47], the content of Ba in slag was between 788 and 1170 mg·kg−1. The tested steel slags were 

characterized by less than half as much Cu as niobum, lead, and nickel. Studies of authors [47] examined 

the As contained in slags from Hegeler and the value of As was 1–45 mg·kg−1; in samples presented in this 

study, the concentration of arsenium value was 10 mg·kg−1. Other elements that may pose a potential 

risk of soil degradation occur in samples of slag at levels exceeding the limit values for soil category A: 

cobalt (Co) and nickel (Ni); exceeding the limit values for soil category A, but allowing free use of the 

soil category B and C: molibdenium (Mo), lead (Pb) and cadmium (Cd). To limit the effects of toxic 

elements, leaching from slag should be minimized to reduce long term leaching and minimized contact 

with water e.g., cut of water inflow and outflow in layers constructed with use of steel slag to prevent 

toxic effects of chromium from slag to environment. 
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In the tested sample of slag, zinc was second in terms of the content of the element. Other elements 

that may pose a potential risk of soil degradation, occur in samples of slag at levels exceeding the limit 

values for soil category A: arsenium (As), cobalt (Co) and nickel (Ni); exceeding the limit values for 

soil category A, but allowing free use of the soils category B and C: cupper (Cu), molibdenium (Mo), 

lead (Pb) and cadmium (Cd).  

Table 2. Total composition of the steel slag samples, mg·kg−1. 

Element Value Element Value

Chromium (Cr) 2915 Rubidium (Rb) 11 
Zinc (Zn) 1084 Arsenium (As) 10 

Barium (Ba) 380 Cadmium (Cd) 8 
Strontium (Sr) 266 Uranium (U) 4 
Cupper (Cu) 175 Bromine (Br) 5 
Circonio (Zr) 109 Cerium (Ce) <5 
Vanadium (V) 92 Cobalt (Co) <5 
Niobum (Nb) 62 Lanthanum (La) <5 

Lead (Pb) 59 Yttirum (Y) <3 
Nickel (Ni) 26 Thorium (Th) <3 

Tin (Sn) 15 Bismuth (Bi) <3 
Molybdenum (Mo) 11 Gallium (Ga) <3 

3.2. Bearing Capacity Tests 

Laboratory experimentation of the bearing capacity of steel slag is one of basic tests for classification 

of unbound material for road structure such as subbase (principal or auxiliary) and subgrade (compacted 

or natural). For each of those layers, the minimum value of bearing capacity ratio (CBR) is required [36]. 

It is also a very important parameter used for the design of roads. The results of the tests done on mixture 

aggregates with grain size range 1–25 mm and 2–25 mm (Figure 1) show that obtained results of CBR 

are in a range of 35%–42%. 

 

Figure 1. Grain size distribution for steel slag. 

The addition of 1–2 mm fractions to both of the aforementioned mixtures and located in the upper 

part of samples, allows the obtaining of the bearing capacity ratio on higher levels of more than 60%. 
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The addition was performed by mixing the top layer of the CBR sample with a fraction, whose size was 

equal to 1–2 mm. Curve 3 (Figure 1) represents sieve analysis results for the top layer. Curve 2 presents 

the result of sieve analysis for all samples consisting of a mixed top layer. Steel slag was sieved and a 

gradation curve was estimated. For both mixes, the coefficient of uniformity (Cu) and coefficient of 

curvature (Cc) was calculated. Fractions with the size of 2–25 mm was taken to studies due to possibility 

of the lack of proper material or the quality control process on the construction area. 

The received values of CBR allows for the conclusion that the tested material meets the requirements [36] 

for the subgrade layer of the road (for traffic category KR1-KR6) where the minimum was specified on 

35%. Improved by 1–2 mm grain size fraction samples achieved requirements for auxilary subbase  

(for traffic category KR1-KR6) were 60% CBR values are needed. The quality of CBR results predispose 

this steel slag material as unbound riding surface where there is no recommendation of minimum value 

for traffic category KR1-KR2 [36]. Using the analogy with other artificial and recycled (anthropogenic) 

materials with well-graded curves of grain size distribution in the range of 0–31.5 mm or 0–61 mm,  

it can be said that slag material is sufficient for principal subbase. Results are presented on Figure 2 

where CBR test results are detailed for each test. Figures 3 and 4, present detailed views of CBR values 

dependence with density and void ratio. Figure 3 presents impact of dry density on CBR value, rise of 

density has a bigger impact on the mix presented on Curve 3 (Figure 1). In the case of soaked-unsoaked 

conditions, the difference is also clear. The change of CBR value corresponds with material size grain 

composition rather than with saturation state. Nevertheless, in both cases, unsoaked samples perform 

better during the CBR test. Figure 4 presents the impact of void ratio on CBR value. On this plot,  

the same phenomena can be observed. An increase of CBR value depends on grain size composition.  

On Figures 3 and 4, the trend of closing interpolated function is also worth noting. This occurrence is 

caused by the fact that void volume decreasese in the soil skeleton and, because of that, a smaller impact 

of saturation and bigger contact between particles. 

After compaction of this layer, the proposition of adding well graded material (Curve 3) was conducted 

in studies. These conditions, when two layers of the same material but with other grading would be part 

of road construction as subbases, for example, were taken into consideration in further studies. Curve 1 

(1–25 mm top) is characterized by Cu 2.00 and Cc 1.13, which means poor graded material. Curve 3  

(2–25 mm) is characterized by Cu 4.73 and Cc 1.90, which is stated for well graded material [15].  

The compaction of gravely materials is problematic and the occurrence of poorly graded material in 

construction layers could be present. Curve 3 was created on the basis of Curve 1 by adding to 2–25 mm 

fraction 20% of its weight fraction 1–2 mm. Curve 2 represents average grain size distribution after CBR 

tests as a control of properly designing the layers in CBR mould (Curve 1 was placed in 1/3 of CBR 

mould at the top). 

Statistical analysis of obtained test results (Figure 5) was conducted in order to find correlation 

between physical properties and CBR value of steel slag. Table 3 presents those results. The average 

error of the presented equation in comparison to test results was between 2% and 5%.  

Nevertheless, physical properties calculated with CBR values which have their engineering 

applications should be extended to more sophisticated relationships. Therefore, the dependence 

estimation of CBR values and density of samples to degree of saturation during the tests was conducted. 

This method connects the soaked and unsoaked state of material and clearly, on Figures 6 and 7,  

presents the decrease of CBR bearing capacity when saturated conditions occur.  
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In other words, Figures 6 and 7 concern the impact of saturation. Soaked samples assumed to have 

100% moisture and representing the results for soaked and un-soaked specimens with various moisture 

content were used to find formulas describing this phenomena.  

 

Figure 2. Bearing capacity tests for steel slag mixture aggregate with various grain size and 

curing conditions. 

 

Figure 3. Plot of California bearing ratio (CBR) test results against density of tested samples. 

 

Figure 4. Plot of void ratio diversity for obtained CBR values tested samples. 
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 5. Plot of estimated equations for CBR values and test results for unsoaked test 

conditions, fraction 2–25 mm. (a) CBR unsoaked calculated on the base density. (b) CBR 

unsoaked calculated on the base void ratio. (c) CBR unsoaked calculated on the base degree 

of compaction. (d) CBR unsoaked calculated on the base moisture content. (e) CBR soaked 

calculated on the base density. (f) CBR soaked calculated on the base void ratio. (g) CBR 

soaked calculated on the base degree of compaction. (h) CBR soaked calculated on the base 

moisture content. 
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Table 3. Results of statistical correlation estimation from California bearing ratio (CBR)  

test results. ρd: dry density; e: void ratio; w: moisture Is: relative compaction. 

CBR Test Condition 2–25 mm Fraction (1–2) + 2–25 mm Fraction 

CBR unsoaked 

240.4 + 148.3·ρd 330.7 + 139.2·ρd 

171.0 − 176.7·e 227.3 − 245.5·e 

52.0 + 5.1·w 74.3 + 36.8·w 

240.4 + 299.5·Is 330.7 + 402.4·Is 

CBR soaked 

369.7 + 207.1·ρd 429.4 + 241.5·ρd 

204.8 − 207.1·e 46.8 − 2297.3·e 

35.3 + 31.2·w 63.6 − 58.6·w 

369.7 + 418.4·Is 429.4 + 487.8·Is 

 

Figure 6. Three-dimensional (3D) view of CBR value dependence from density and 

saturation ratio (Sr), fraction (1–2) + 2–25 mm. 

 

Figure 7. 3D view of CBR value dependence from density and saturation ratio, fraction 2–25 mm. 

Equation (1) presents a formula for calculating the compressive CBR value (%) of steel slag (z) with 

varying degrees of saturation (-) (y) and density (x), expressed in g/cm3. For fraction (1–2) + 2–25 mm: 

 2
2

b d
a c e f

x
z y y

x x y
       (1)

where letters from a to f are constants: a = 560.1161825; b = −2308.7165; c = 738.5252195;  

d = 2144.540662; e = −225.272043; f = −803.121929. For this equation the R2 value is 0.999. 

Equation (2) presents a formula for calculating the compressive CBR value of steel slag (%) with 

varying degree of saturation (-) and density (g/cm3), expressed in g/cm3. For fraction 2–25 mm: 

 2
2

b d
a c e f

x
z y y

x x y
       (2)
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where letters from a to f are constants: a = 124.4164903; b = −880.826622; c = 788.1567559;  

d = 1064.132286; e = −188.72681; f = −1009.85394. For this equation, the R2 value is 0.999. 

Saturation ratio clearly impacted the results of the CBR tests and the decreasing of bearing capacity 

from CBR tests although both gradations have the same surface form represented by Equations (1) and (2). 

Further studies could lead to useful results for engineers’ correlations between soaked and unsoaked 

conditions. Moreover, when this dependence characterizes the saturation ratio, adding to fraction 2–25 mm, 

the fraction 1–2 mm, increases the CBR bearing capacity in soaked and unsoaked test conditions. 

3.3. Cyclic Loading Tests 

Tests were performed on steel slag that contains 2–25 mm grains and density equal 2.02 g/cm3. 

Results are presented on Figures 8–12. Figures 8 and 9 presents a detailed view of displacement variation 

during loading and unloading phases (soaked and unsoaked conditions, respectively). Figure 10 presents 

a detailed view of stress variation during the loading and unloading phases. Total displacement after 50 

repetitions was equal to 3.57 mm and consists of a 96% elastic response of material to repeated loads. 

The material was subjected to a stress equal to 3.84 MPa and unloaded to about 10% of maximal stress. 

The detailed view of this process is presented in Figure 10. Figures 11 and 12 presents views of cCBR 

tests in axial stress-displacement configuration.  

The resilient modulus cannot be calculated directly from stress-displacement plots and needs to be 

calculated in another manner. In literature, such recalculation was presented by Arraya [56]. Resilient 

modulus Mr from repeated loading CBR can be obtained as follows:  

 1.104
p

r 1.012

1.513 1 υ σ r
M

u

   



 (3)

where: ν—Poisson’s ratio (-) (in this study 0.35 for granular materials), Δσp—change between maximum 

and minimum axial stress in 50th cycle (MPa), r—radius of plunger (mm), Δu—recoverable 

displacement in one cycle (mm). 

Resilient modulus for steel slag calculated in this manner is equal to Mr = 331 MPa which is 

reasonable result [57]. 

Figures 8 and 11 presents cCBR tests for fraction 2–25 mm in soaked conditions. Axial stress reached  

3.05 MPa and total displacement was 4.26 mm. Important to note is the fact that a huge plastic 

displacement occurred in the first 3 cycles. It could be explained by delayed pore pressure distribution 

over the sample and no negative pore pressure in pores which additionally increases the strength of soil mass. 

 

Figure 8. Plot of displacement over time from cCBR tests (soaked conditions). 
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Figure 9. Plot of displacement over time from cCBR tests (unsoaked conditions). 

 

Figure 10. Plot of axial stress over time from cCBR tests (unsoaked conditions). 

 

Figure 11. Plot of cCBR test results for steel slag after 50 cycles of loading (soaked conditions). 

 

Figure 12. Plot of cCBR test results for steel slag after 50 cycles of loading  

(unsoaked conditions). 
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3.4. Field Tests 

In situ static load plate tests (VSS) performed on roads improved by steel slag showed that Young’s 

modulus (modus of elasticity) E1 (determined from the first loading of subbase) reached values of  

54–72 MPa. The values of Young’s modus (modus of elasticity) E2 (determined from the second loading 

of subbase) were 103–126 MPa. The associate soil deformability ratio I0 reached 1.8–2.0 and fulfilled the 

requirements I0 < 2.2. These results show that the tested layer of steel slag fulfilled the requirements for 

auxiliary subbase (E1 > 50 MPa). 

Static plate load testing done on layers from the second section of road proved that the steel slag 

mixture fulfilled the requirements for principal subbase ((E1 > 100 MPa, E2 > 140–170 MPa) and riding 

surface. Young’s moduli E1 were 103–126 MPa and E2 reached 158–209 MPa. The associate soil 

deformability ratio I0 reached 1.5–1.7 and fulfilled the requirements I0 < 2.2 as well. The value of soil 

deformability ratio I0 (I0 < 2.2) can be also recognized as the compaction ratio IS with value equal to 1.0. 

It also means that steel slag layers have been well compacted. 

Young modulus plot and Deformability ratio I0 for each test are presented in Figure 13. 

Results of cCBR were compared with VSS test data and plotted on a stress-displacement chart  

(Figure 14). The first loading on a cCBR test overlaps with the VSS test results. Lower displacement 

obtained during the VSS test leads to greater resilient strain occurrence during the unloading phase. This 

phenomenon can be utilised to support field studies in laboratories by performing numerous cyclic 

loading tests and evaluating more reliable parameters for road designers.  

(a) (b) 

Figure 13. Results of Young’s moduli E2 and deformability ratio I0 for ground road 

improved by steel slag. (a) Young’s moduli versus number of static plate VSS tests.  

(b) Deformability ratio values versus number of static plate VSS tests. 

 

Figure 14. Plot of stress-displacement tests results for cCBR and static load plate VSS on 

steel slag in duplicate conditions. 
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4. Conclusions 

Aggregates of steel slag have chemical and mechanical properties comparable to similar natural 

aggregates. An important fact is that varying results are common to virgin soils, so there is no uncertainty 

regarding performance under working stress. However, due to their heterogeneity, it is important to 

verify them before using.  

Their parameters fill requests for road construction independently from their origin. The designated 

high content of chromium and zinc are strongly associated with the internal crystal structure of steel 

slag. Consequently, they can be safely applied in roads’ structure.  

The aforementioned results suggest a possibility to recycle steel slag as a material for subbases. Test 

results concerning lack of fines and soaked conditions were mixed. Those circumstances are negative 

and mostly affect the performance of subgrade constructed from steel slag. CBR tests show a drop of 

bearing capacity of this material when the aforementioned phenomena occur. Therefore, the constructed 

subbase is cut off from any water inflows or outflows. This treatment makes obtaining steady conditions 

possible. Well-graded steel slag reached the CBR value exceeding 60% in each of the 25 repetitions.  

On the other hand, poorly graded soaked samples mostly did not cross 40% of CBR value. Upon comparing 

the impact of the previously mentioned properties on bearing capacity gradation and saturation 

conditions, steel slag is more sensitive to poor gradations or simply to a lack of fine graded grains.  

Saturation ratio decreases bearing capacity from CBR tests. Equations (1) and (2) could in further 

studies lead to the estimation of a new equation, which can take into account change in gradation.  

This is made possible by the fact that for steel slag with varying gradation, a change of CBR value with 

density and saturation ratios has the same surface represented by Equations (1) and (2).  

Moreover, cyclic loading shows good performance of steel slag and plastic displacement was 1 mm 

greater after the 50th load repetition than after the first loading. Eurocode 7 EN 13286-7:2004 [58] 

classifies steel slag by its mechanical performance by the resilient modulus Mr parameter, and this 

material reached the C2 class.  

Field tests including the static plate load test have proved that steel slag mixture fulfilled the 

requirements for principal subbase ((E1 > 100 MPa, E2 > 140–170 MPa) and riding surface. It is 

interesting to note that VSS tests and cCBR tests seem to be interrelated. This would be important for 

supporting field tests with laboratory studies. Mechanistic-empirical pavement design states that,  

for every layer designed, the resilient modulus Mr should be taken in the calculation. The cCBR, 

therefore, could be a response to the lack of simple methods for estimating such a parameter.  

Taking into consideration the above test results, it can be concluded that steel slag can be used in base 

courses in road structures for motorways and roads with medium traffic loads. The most important 

selected geotechnical parameters, bearing capacity ratio (obtained from laboratory tests) and resilient 

modulus Mr showed that their values correspond with requirements for subbase (principal or auxiliary) 

and riding surface as well. The use of steel slag in road structure courses would be desired from both the 

economic and environmental point of view: great quantities of waste material would thus be used, 

reducing the amount of slag deposited in landfills. 
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