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Abstract: Successful gene delivery to skeletal muscle is a desirable goal, not only for 

treating muscle diseases, but also for immunization, treatment of metabolic disorders, and/or 

delivering gene expression that can treat systemic conditions, such as bone metastatic cancer, 

for example. Although naked DNA uptake into skeletal muscle is possible, it is largely 

inefficient in the absence of additional chemical or physical delivery methods. We describe 

a system for delivery of non-viral or plasmid DNA to skeletal muscle using ultrasound-assisted 

sonoporation of a nanoplex combining plasmid DNA and a branched polymer based on 

poly(cyclooctene-graft-oligopeptide). The materials and methods described herein promise 

to advance the field of sonodelivery and of gene delivery to muscle for therapeutic 

applications since a simple system is presented that enables long-term gene expression in vivo 

with the promise of a minimal inflammatory gene expression profile. 
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1. Introduction 

Successful gene delivery to skeletal muscle is a desirable goal, not only for treating muscle diseases, 

but also for immunization, and/or delivering gene expression for treating systemic conditions such as 

bone metastatic cancer or metabolic disorders. Although naked DNA uptake into skeletal muscle is 

possible, it is largely inefficient in the absence of additional chemical or physical delivery methods. We 

have recently described a system for delivering plasmid DNA to skeletal muscle using ultrasound-assisted 

sonoporation (sonodelivery) of a nanoplex which combines plasmid DNA and a branched polymer, 

poly(cyclooctene-graft-oligopeptide) [1,2].  

In the present report, our main objective was to examine the potential for long-term expression of an 

episomal vector in skeletal muscle following sonodelivery. We utilized a plasmid that is capable of  

long-term maintenance within cells as an episomal vector. Episomal vectors are extra chromosomal 

eukaryotic vectors that represent a promising alternative to traditional viral gene therapy vectors, which 

typically require integration into the host genome to provide long-term gene expression. Episomes avoid 

insertional mutations that may be caused by integration events into the host genome. The precursor to 

the vector utilized in our study was first described as pEPI-1, a nonviral and episomally-replicating 

vector [3]. pEPI-1 was maintained episomally due to an active transcription unit which was linked to a 

scaffold/matrix attachment region, also known as S/MAR or MARS. MARS regions take part in forming 

chromatin domains and function as an origin of replication support. MARS can aid in the efficient 

retention of episomes and also transgene expression in mammalian cells. pEPI replicates autonomously 

in various cell lines, even in the absence of selective pressure. However, it has a limited use in gene 

therapy due to its low efficiency establishing itself as a replicating episomal entity soon after delivery 

into the targeted cells—nearly all plasmids are lost during ensuing cell division, and therefore few of  

the originally transfected vector molecules are capable of replicating episomally in a stable manner.  

One successful example of a modified pEPI is the vector pEPI-eGFP. Studies have shown that changes 

in chromatin state of the host, as well as of the vector, cause changes in episomal gene activity and 

influences the episome’s distributions into nuclear compartments. Therefore, episomal genes are subject 

to control systems of the host, as is shown for their equivalents in the host genome. The vector we utilized 

in the present report has been shown to be a very effective version of pEPI. This is the pEPIto, a vector 

with several modifiable regions, providing flexibility in experimental design and therapeutic gene 

expression profile. The prolonged transgene expression profiles of pEPito-based vectors in vivo appears 

to result from a combination of reduced epigenetic silencing due to the modified bacterial vector 

backbone, and the MARS region, which might either trigger the translocation of vector molecules to 

sites of active chromatin, or enhance overall transcription levels [4].  

Episomal vectors based on pEPI are continuously being refined and we envision that episomally 

replicating vectors will have applications for replicating in a tissue specific manner. For example, the 

human AFP-promoter, combined with the hCMV enhancer element, has demonstrated to be a valid 

tissue-specific promoter targeting certain carcinomas, and tissue-specific replication was demonstrated 

in vitro with the muscle-specific SM22 promoter. Combining a tissue specific pEPIto vector system with 

appropriate delivery systems will lead to higher tissue-specificity, diminishing undesired consequences 

and proving to be suitable for long term transgene expression in vivo within gene therapy. 
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2. Results and Discussion 

2.1. An Episomal Plasmid Can Be Complexed with a Polymer and Delivery Is Enhanced by 

Ultrasound in Skeletal Muscle Cells  

An episomal plasmid was used for gene delivery that contains the CMV enhancer and an elongation 

factor 1 alpha promoter (CMV/EF1a), as well as a reporter gene fusion of enhanced green fluorescent 

protein and firefly luciferase (EGFP:Luc), followed by a scaffold/matrix attachment region (MARS) 

(Figure 1A). Surprisingly to us and others, the MARS region appears to play a role in long term gene 

expression in muscle. Another group has reported long-term expression from an earlier version of the 

episome vector (pEPI1-luc) in muscle. They showed data for persistent luciferase expression for 

~84 days from the episome and no expression for a traditional vector [5]. It is possible that the advantage 

of the MARS element in muscle is not the replication ability per se, as it is a post-mitotic structure, but 

rather that the pEPI is less toxic and/or modulates less immune modulation, enabling preservation in 

muscle fibers for a significantly longer time than a traditional plasmid.  

We utilized a polymer with a comb architecture, which efficiently complexes plasmid DNA for gene 

delivery. This type of polymer, has PKKKRKV heptapeptide nuclear localization signal (NLS) 

sequences to provide a branched poly(cyclooctene-graft-oligopeptide) or NLS2, which enhances gene 

delivery in the presence of ultrasound [2] (Figure 1B). We have found that ultrasound stimuli can help 

enhance gene delivery of this nanoplex (pDNA:NLS2) to muscle cells in the presence of microbubbles 

that induce cavitation (Figure 1C). In this study, we have examined the efficiency of transfection of the 

NLS2 in skeletal muscle cells, C2C12 (Figure 1D), and observed that although ultrasound (US) greatly 

augments the efficiency of commercial transfection reagents lipofectamine 2000 (L2K) or naked DNA, 

the effect of US on NLS2 transfection efficiency is enhanced by a further two-fold compared to L2K  

(*, p < 0.05 compared to no ultrasound controls for each group). These results suggested that ultrasound, 

combined with the NLS2 polyplex can be a very useful method of gene delivery for plasmid DNA in 

muscle cells. 

2.2. Sonodelivery of pEPIto-Luc in Vivo Yields Long-Term Gene Expression in Skeletal Muscle 

We next examined ultrasound-assisted or sonodelivery of the NLS2:pDNA nanoplexes in vivo by 

using either pCpGF or pEPIto vectors expressing the reporter gene luciferase. Ultrasound stimuli (+US) 

enhanced the transfection efficiency to hind thigh skeletal muscle for both vectors by day 6 (Figure 2A), 

although pEPIto was able to enable luciferase expression at higher absolute levels compared to pCpGF 

(p/sec/cm2/sr; *, p < 0.05) (Figure 2B). We also were able to examine expression over time, from day 6 

to past 12 months of age. While pEPIto supported expression of luciferase up do day 285 (~9.5 months), 

the pCpGF vector only supported detectable reporter gene expression up to ~day 21 (Figure 2B). These 

results indicated that pEPIto can support long-term expression of a reporter gene, which should enable 

sustained gene therapy efforts for controlling systemic conditions such as metabolic defects or  

bone-metastatic cancers. 
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Figure 1. (A) pEPIto-Luc, containing a cytomegalovirus (CMV) enhancer and an elongation 

factor 1 alpha (EF1a) promoter driving expression of an enhanced green fluorescent protein 

andfirefly luciferase fusion gene (EGFP:Luc). The plasmid is maintained as an episome due 

to the presence of a scaffold/matrix attachment region (MARS) which follows the Luc 

coding region in the absence of a termination signal. (B) The NLS2 polymer used for gene 

delivery in vivo. The polymer is composed of a poly(cyclooctene-graft-oligopeptide) comb 

or branched structure which enhances DNA complexation and release once inside cells.  

(C) The sonodelivery system. A nanoplex is delivered to skeletal muscle via complexation 

of the NLS2 polymer with the pEPIto-Luc plasmid, then delivered through microbubble-assisted 

sonoporation via ultrasound stimulation. The nanoplexes enter the muscle and are 

transported to the nucleus through the NLS moiety in the polymer. (D) Transfection of 

C2C12 skeletal muscle cells is significantly enhanced by ultrasound (+US) compared to each 

-US control for naked, lipofectamine 2000 (L2K) and NLS2 reagents, but not PEI (*, p < 0.05).  
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Figure 2. (A) Sonodelivery of pEPIto-Luc in vivo; (B) Quantification of pEPIto-Luc 

sonodelivery in vivo over time. Signals detected using IVIS Xenogen and presented in 

p/sec/cm2/sr. *, p < 0.05 relative to pCpGF control values at each time point measured. 

2.3. pEPIto Does Not Promote an Inflammatory Response in Muscle Following Sonodelivery 

As assessed by gene expression and histology analyses, pEPIto administration does not appear to 

promote an inflammatory response in skeletal muscle in vivo. These observations compared pEPIto with 

phosphate-buffered saline control (PBS), polymer (NLS), or pCpGF. We selected genes that encode 

signaling molecules previously linked with potential inflammatory responses to plasmid DNA [6], including 

interferon (IFN) response factor (IRF) transcription factors that orchestrate the innate immune response 

as well as other genes related to the upregulation of other immune system elements such as chemokines. 

Quantitative real-time PCR (qPCR) showed that compared to PBS control, the NLS2 polymer mostly 

down regulated the expression of genes associated with an inflammatory response in skeletal muscle. 

For example, polymer alone down regulated genes associated with innate immune signaling (IRF7), IFN 

response (LigP), and chemokines (CXCL9 and 10) (Figure 3A). However, polymer upregulated 

Asc/PYCARD, a gene of the innate immune system responsible for assembly of large signaling 

complexes in inflammatory pathways. Surprisingly, pEPIto had a more favorable profile concerning 

inflammatory gene expression signature than a traditional, pCpG-free (pCpGF) vector (Figure 3A). 

pCpGF upregulated all inflammation-related genes examined with the exception of PYCARD. pEPIto, 

on the other hand, down regulated CXCL9, PYCARD, and LigP genes, while the expression of IRF7 

and CXCL10 remained unchanged relative to PBS control. These results would suggest that the pEPIto 

might be preferable to pCpG free vectors, which appear to induce a variety of pathways related to an 

inflammatory response. 
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The morphology of skeletal muscle was assessed at day 7, 23, and at endpoint, i.e., ~12 months  

post-sonodelivery (Figure 4A,B). Analyses of percentage of H&E stained muscle fibers displaying 

atypical central nuclei show no significant differences (p > 0.3) for either plasmid group for all time 

points (Figure 4C). Neither pCpGF nor pEPIto produced any local or systemic signs of prior or existing 

damage. This data would suggest that this vector and mode of delivery might be relatively safe and 

potentially translatable to clinical studies that require long-term gene expression. Additionally, the pEPIto 

vector may be a viable alternative to viral vectors, which have the disadvantages of requiring integration 

into the genome for sustained gene expression, and may promote inflammation within muscle [7]. 

(A) (B) 

Figure 3. In vivo delivery of pEPIto in skeletal muscle promotes gene expression changes 

but these are consistent with a reduced inflammatory response by day 7 and day 23  

post-delivery as compared to pCpGF control. (A) p < 0.05 relative to all other groups;  

(B) p < 0.05 relative to phosphate-buffered saline control (PBS) (ANOVA).  

3. Experimental Section  

3.1. Vectors 

Plasmid DNA vectors included pEPIto (PlasmidFactory, Bielefeld, Germany) or pCpGFree-mcs 

(pCpGF) (Invivogen, San Diego, CA, USA) backbones expressing firefly luciferase and green 

fluorescent protein genes (Luc, GFP). The Luc-GFP cassette was cloned by PCR cloning into pCpGF 

using NheI and BglII ends in order to produce the same expression cassette (CMV enhancer and EF1 

promoter) in pCpGF. Vectors were prepared for all experiments using Endofree kits (Qiagen, Valencia, 

CA, USA). For efficient complexation with polymer, vectors were first precipitated and resuspended in 

water. Briefly, precipitation used 1:10 volume 3M NaOAc and 2 volumes of cold 100% Ethanol, 

followed by a 30 min incubation at −80 °C and centrifugation at 12,000 rpm for 15 min at 4 °C, and a 

wash using 2 volumes of 70% Ethanol with a 5 min spin at room temp. The pellet was allowed to dry 

and was resuspended in sterile nuclease free water. 
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3.2. In Vivo Studies 

Animal care and procedures were performed in accordance with the UTMB institutional review board 

guidelines. For gene delivery, we used a polymer containing the Simian Virus SV40 nuclear localization 

signal (NLS) NLS2, a comb shaped polymer with a polycyclooctene backbone and tetralysine and NLS 

oligopeptide pendent groups (~50 mol% of each oligopeptide). The synthesis of NLS2 is described in [1]. 

We prepared polymers in low retention Eppendorf tubes, dissolved in nuclease-free water, and sterilized 

by filtration. The stock solution of NLS2 was diluted to enable complexation with pLuc plasmid DNA 

at an N/P ratio = 6. The ratio of protonatable nitrogens in the polymer, N, to DNA phosphates, P). The 

protonatable nitrogens are the amines in the polymer pendent chains, distinct from the amide nitrogens 

of the polypeptide chain that are not protonatable under these conditions. DNA (12.5 μg) was added to 

nuclease-free water 1:1 to polymer solution and allowed to equilibrate for a minimum of 35 min under 

sterile conditions. Following polyplex formation, 5.5% sterile Micromarker microbubbles 

(VisualSonics, Toronto, ON, Canada) were added per tube and injected intramuscularly in 50 μL to the 

hind legs of anesthetized C57/BL6 8-week-old male mice (5 per group). After applying ultrasound gel, 

we irradiated the muscle to mediate sonoporation and thus gene delivery of Luc plasmids using a 

Sonigene sonoporator (VisualSonics) using settings of 1 MHz, 20% duty cycle, 3 W/cm2, 60 s. In vivo 

imaging for luciferase expression in muscle was performed starting on day 6 following sonoporation 

using previously published procedures by intravenous luciferin substrate administration and collection 

of images within 10–20 min [8,9]. 

3.3. Real-Time Quantitative RT-PCR (qPCR) Analyses 

Total RNA from 10–30 mg muscle isolated from the mouse hind thigh was extracted using polytron 

homogenization in Trizol as described [10], followed by purification using a SurePrep kit (FisherSci). 

One microgram of RNA was reverse-transcribed using amfiRivert Platinum cDNA Synthesis Master 

Mix (GenDEPOT, Barker, TX, USA). Real-time qPCR reactions contained 1 µL cDNA template,  

2× SYBR Green Master Mix (Applied Biosystems, Foster City, CA, USA), and 10 µM forward and 

reverse primers for both experimental and β-actin controls. qRT-PCR was performed on an Eppendorf 

Realplex 2S (Eppendorf, Hauppauge, NY, USA), using: 40× 95 °C for 3 min; 95 °C for 3 s; 60 °C 30 s; 

72 °C 8 s and analyzed using EP Realplex software (Ver. 2.2).  

3.4. Histology 

Hind thigh muscles were fixed overnight in 10% buffered formalin (Fishersci), then embedded in 

paraffin and sectioned (5 μm). Sections were stained with hematoxylin and eosin and imaging was 

performed using a photomicroscope at the Research Histopathology Core.  

3.5. Statistical Analysis 

Quadruplicate wells were used in real time PCR analyses and experiment repeated twice, with values 

provided as mean ± SEM or 95% confidence interval. Comparisons for transfection data were performed 

using an unpaired t-test, and p < 0.05 was considered to indicate a significant difference. Comparisons 
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for the real-time PCR gene expression data used one-way ANOVA analyses with α = 0.05, with a Tukey’s 

test for pairwise comparison of group means. 

 

Figure 4. Histological analyses at day 7, 23, and 12 months indicate neither pCpGF (A) nor 

pEPIto (B) produce any significant signs of damage, as shown by H&E staining and 

visualization of skeletal muscle at 200x magnification. Inset, selected areas at higher 

magnification to show nuclear positioning in muscle fibers. Scale bar, 50 μm. Arrows, 

normal positioning of nuclei at the periphery of muscle fibers (F); arrowheads, occasional 

atypical nuclei positioned centrally within fibers. (C) Analyses of percentage of muscle 

fibers displaying atypical central nuclei show no significant differences (p > 0.3) for either 

plasmid group for all three time points. 
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4. Conclusions  

Most recently, a tissue-specific episomal version of pEPI has been described [11] that has high 

promise for extending the applications of present vectors towards more efficient gene therapy and gene 

delivery applications. The delivery system and vector described herein promise to advance the field of 

sonodelivery and of muscle gene delivery for therapeutic applications. A simple approach is shown 

which can achieve long-term gene expression in vivo with the promise of a minimal profile of 

inflammatory gene expression. Episomal vectors based on pEPI have continued to be refined and we 

envision that episomal vectors will have applications for replicating in a tissue specific manner. 

Combining a tissue specific pEPIto vector system with appropriate delivery systems will lead to higher 

tissue-specificity, diminishing undesired consequences and proving to be suitable for long term 

transgene expression in vivo within gene therapy. 
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