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Abstract: Many of the photovoltaic (PV) systems on buildings are of sufficiently high 

voltages, with potential to cause or promote fires. However, research about photovoltaic 

fires is insufficient. This paper focuses on the flammability and fire hazards of photovoltaic 

modules. Bench-scale experiments based on polycrystalline silicon PV modules have been 

conducted using a cone calorimeter. Several parameters including ignition time (tig), mass loss, 

heat release rate (HRR), carbon monoxide (CO) and carbon dioxide (CO2) concentration, 

were investigated. The fire behaviours, fire hazards and toxicity of gases released by PV 

modules are assessed based on experimental results. The results show that PV modules 

under tests are inflammable with the critical heat flux of 26 kW/m2. This work will lead to 

better understanding on photovoltaic fires and how to help authorities determine the 

appropriate fire safety provisions for controlling photovoltaic fires. 
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1. Introduction 

Solar energy is one of the most promising renewable energy resources. The United States advanced 

project of “one million solar roofs” in June 1997, which planned to install solar energy systems on one 

million roofs or other possible sites of buildings. Similar projects were also carried out in other countries 

such as Germany, Japan and China. Meanwhile, building integrated photovoltaic (BIPV) is in rapid 

development. The scale of BIPV in 2009 was $ 1.8 × 109, and is expected to grow to $ 8.7 × 109 in  

2016 [1].  

As an emerging technology installed on residential and commercial buildings, the security of BIPV is 

a prime concern. Therefore, it should be ensured that photovoltaic modules will not cause any damage to 

the buildings nor harm to the residents. However, fires in residential and commercial buildings are 

relatively common. Photovoltaic arrays mounted on buildings might worsen the pre-existing level of  

fire hazards. This is because photovoltaic (PV) modules could modify the propagation of fire outside  

or through the building. It might interfere with the smoke and venting system, which will hamper  

the fire extinction operations as well as induce a further hazard through electrical shock for  

firefighters. Moreover, many of the PV systems on buildings are of sufficiently high voltages  

(300 to 1000 Volts DC) [2,3], which means that they may start a fire themselves. 

PV modules are closely related to lives and properties. Consequently, there have been lots of efforts 

to establish rigorous safety standards to mitigate the potential risks. PV modules are tested to either  

IEC 61730-2 [4] or UL 1703 [5] or both. These two standards have similar requirements, including 

fire-resistant, hot spot, and temperature tests. They both have effectively restricted designs that 

minimize the spread of fires. As a special roof deck, PV modules may also be tested to UL 1256 [6] 

which requires a direct fire heating at 760 °C, for 30 min. Italian National Fire Services Guidelines 

provide a procedure to assess and alleviate fire risks caused by PV arrays located on buildings [7]. 

Article 690.11 of the 2014 National Electrical Code [8] requires detection of series arc faults in either or 

both of the dc source circuits, or the dc output circuits [3]. These standards or guidelines are still being 

improved by many researchers. For example, the causes of PV fires have been investigated by 

Wohlgemuth et al. [2]. They found that hot spots, high series resistance and arcing are three typical ways 

that a module can be overheated to start a sustainable fire within the module. Thus, they modified  

IEC 61730-2 [4] to improve the way of testing a module’s potential to cause a fire.  

Even with all these efforts, severe building fires involving PV arrays have been reported in the past 

few years, such as the fire in LaFarge (WI, America) in May 2013, of which the big fire began with a 

small fire from the rooftop PV system. As a result, it is still worthwhile to study the flammability and 

fire hazards of PV modules in depth, which is the motivation of the current study. 

2. Analysis of the Flammability of PV Modules 

When PV modules are on fire, foam and powder are not preferred options. As PV arrays are often 

sloped, foam or powder could simply slide off. Moreover, many PV systems are of high voltages (300 to 

1000 Volts DC), which are rather life-threatening. During a fire event, it is not possible to turn off the 

whole photovoltaic power system in order to guarantee that all the components are de-energized. In fact, 

these systems are alive as long as there is light. Thus water jets are also of limited usage in such 
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situations because of their conductibility. Fortunately, there is research demonstrating that water jets can 

still be used in PV fires by respecting a specific safety distance [9]. However, the safety distance strongly 

depends on the type of nozzle, on the water pressure and on the water flow rate, which should be 

determined based on specific conditions. International guidelines for firefighters to cope with the 

photovoltaic fires are not well established for now. Thus, more attention should be paid to relative 

research. The encapsulant of PV modules, i.e., ethylene-vinyl acetate copolymer (EVA), is the main 

combustible component. There have already been lots of studies about combustion characteristics and 

flame retardancy of EVA. Bonnet et al. [10] developed a new EVA-based hybrid material containing 

silicon and phosphorus to improve fire retardancy of EVA. Ohuchi et al. [11] conducted experiments 

using a cone calorimeter and found that the fluoroplastic has more advantages as a fire-proofing cell 

encapsulation material than EVA.  

When it comes to fire hazard assessment by taking a PV module as a whole, only a little research has 

been done. Fthenakis et al. [12] have conducted experimental investigations on both emissions and 

redistribution of elements in CdTe PV modules during fires. They found that the actual Cd loss during 

fires would be insignificant. Other research mainly focuses on fire resistance testing and fire preventing 

of PV modules [2,13,14]. On the other hand, heat intensity properties and toxic gases (CO, CO2) emitted 

by PV modules have not been investigated yet. The current work tries to assess the hazards of heat 

released by combustion of PV modules and toxicity of gases emitted through bench-scale experiments. 

As reported in the literature [15,16], tests with a cone calorimeter would be useful in understanding 

the fire behaviour of materials. The results of both heat and smoke aspects can be applied to fire 

assessment with fire models to complement full-scale burning tests. In this paper, photovoltaic fire 

behaviors are evaluated with a cone calorimeter. Fire behaviour, thermal hazards and toxicity of gases 

released by PV modules are investigated. 

3. Experimental Section 

3.1. Materials 

This study is based on small typical polycrystalline silicon PV modules, 11.2 cm × 11.2 cm × 0.39 cm 

in size, which are shown in Figure 1. The specimens, fabricated in 2014 and bought on the market, have 

been certificated by IEC 61730-2 [4] and UL 1703 [5]. The initial mass of a sample is equal to 135 ± 2 g. 

The PV module has a five-layer structure, as shown in Figure 2. A layer of low-iron glass is typically 

used as the top layer of a PV module, which provides mechanical strength. It protects the PV module 

from physical damage and allows light to transmit into the solar cells. EVA film is used to encapsulate 

the PV module, which is also the main combustible component. The third-layer solar cell converts 

sunlight to electricity. And the back-sheet protects the PV module from ultraviolet and moisture, which 

is also flammable. In this investigation, the PV module is considered as a whole unit. The test specimens 

were placed in a constant temperature and humidity incubator at 65% relative humidity (a typical 

ambient relative humidity) and 23 °C (a common air temperature) and weighed at regular intervals until 

equilibrium was reached (about 24 h in this experiment). This job ensures that all samples have the same 

initial conditions. 
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Figure 1. PV modules used in the tests. 

 

Figure 2. Schematic view of a PV module. 

3.2. Test Method 

The cone calorimeter is one of the most effective bench-scale methods for studying flammability 

properties of materials. Its results have been found to correlate well with those obtained from large-scale 

fire tests and can be used to predict the behaviour of materials in real fires [17]. A cone calorimeter,  

as shown in Figure 3, is used in tests to provide external radiation. The details about standard test 

procedure for the cone calorimeter are discussed in [18]. 

 

Figure 3. Experimental device schematic layout [16]. 
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Bench-scale experiments show that flame heat flux is in the range of 20–70 kW/m2 [19–21]. 

Babrauskas et al. [22] discussed the heat flux for bench-scale tests. He found that the heat flux of  

25–50 kW/m2 is proper for most research purposes. In the preliminary experiments of this work,  

45 kW/m2 was the biggest controllable radiative heat flux and 25 kW/m2 was not high enough to ignite 

samples. Therefore, 28, 30, 35, 40 and 45 kW/m2 are chosen in the experiments. That is, there are five 

tests on the same kind of specimens with five different heat fluxes. Tests were repeated at least two times 

for each condition to ensure reproducibility. The uncertainty on heat flux is about 5% [23]. The end of 

test time for calculation purposes is based on the mass loss rate criterion, i.e., the time that the average 

mass loss rate drops to lower than 1 g/m2s in one-minute period. During tests, the following parameters 

are measured: ignition time (tig), mass loss, heat release rate (HRR), carbon monoxide (CO) and carbon 

dioxide (CO2) concentration. Some parameters of PV modules are calculated: critical heat flux,  

mass loss rate, total heat release rate and fractional effective dose (FED). Fire behaviour, fire hazards, 

and the toxicity of gases released by PV modules are assessed based on these parameters. 

4. Results and Analysis  

4.1. Experimental Phenomena 

Some interesting phenomena have been observed during tests. Exposed to the conical radiation source 

for a period of time, the back-sheet of the PV module is heated in order to melt and vapors rise around the 

PV module. Then, vapors are ignited and flames appear as shown in Figure 4A. That is, the PV fire is a 

kind of multiple fire burning in the beginning stage. As burning accelerates, flames merge into a single 

one as shown in Figure 4B. It is important to note that a cluster of bubbles appears in the combustion 

process showing in Figure 4C, illustrating the combustion is rather intense. Cover glass in the PV module 

breaks into pieces after the burning as shown in Figure 4D, which makes PV fires harder to deal with, having 

a great possibility to injure firefighters. Moreover, when EVA melts under external heat fluxes,  

there will be dripping behavior during real photovoltaic fires, which will facilitate fire propagation.  

 

Figure 4. Combustion process of PV modules. (A) incipient stage; (B) development stage 

(C) fully burning stage (D) decline stage. 
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4.2. Fire Behaviour 

Ignition time (tig) is one of the critical parameters for reaction of materials to fire. The higher the 

ignition time, the longer it takes to heat up and ignite a fire. The ignition time (tig) of a PV module is 

experimentally determined as the delay from the test start to the appearance of a sustainable flame on the 

sample surface. 

Figure 5 presents the evolution of ignition time (tig) as a function of heat flux. It can be seen in Figure 5 

that the increase in heat flux induces a rapid decrease in ignition time. For example, the ignition time of 

the samples decreases from 913 to 83 s when the heat flux increases from 28 to 45 kW/m2. The ignition 

time curve approaches the vertical asymptote which intercepts the x-axis at 26 kW/m2, corresponding to 

the critical heat flux (CHF). CHF is defined as the minimum value of heat flux below which no flame 

occurs. In addition, CHF is another parameter to assess fire behaviour. In residential fires, the typical 

flame temperature for roof fires is in the range of 800–900 °C. While in fires involving the whole house, 

flame temperature is in the range of 900–1000 °C as measured in [24]. With CHF of 26 kW/m2,  

which can be easily reached by flame heat flux, the PV modules used in this test are flammable. 

Theoretically, the ignition time is calculated by Equation (1) [25] or Equation (2) [23] for thermally thin 

materials and thermally thick materials respectively: 
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Figure 5. Evolution of ignition time versus heat flux. 

Figures 6 and 7 (square) display 1
igt  and 0.5

igt versus external heat flux, respectively. The curve of 
1

igt  as function of the external heat flux is not linear as shown in Figure 6. Conversely, 0.5
igt plots (square 

in Figure 7) versus external heat flux can be fitted by a straight line with the fitting degree of 0.995. 
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These observations allow us to conclude that the PV module is thermally thick. Indeed, while a 

thermally thick solid material is heated up, a temperature gradient is observed inside the sample.  

On the other hand, the temperature inside the sample is uniform in a thermally thin material. 

 

Figure 6. Ignition times plotted assuming thermally thin conditions. 

 

Figure 7. Ignition times plotted assuming thermally thick conditions. 

In order to verify the thermally thick property of PV modules, some tests were conducted to find if 

there are temperature gradients in them. Two thermocouples (type K, 1 mm in diameter) were mounted to 

measure the temperature profiles. One of thermocouples (T1) is located at the centre of the surface exposed 

to the heat flux, and the other one (T2) is 1.5 cm apart from the centre of the bottom of the sample as 

shown in Figure 8. Experiments were conducted under 25 kW/m2 to eliminate the interference of flames. 

Figure 9 shows a typical profile of T1 and T2 under external heat flux of 25 kW/m2. A maximum 

difference of about 100 °C inside a given sample is observed in Figure 9. This gradient of temperature 

inside the material confirms the thermally thick property of the PV module. The temperature 

measurements were repeated twice, within the maximum deviation of ±20 °C. 
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Figure 8. Thermocouples setup. 

 

Figure 9. Temperature profiles of T1 and T2 under external heat flux of 25 kW/m2. 

Considering surface radiation thermal losses ( 4 4
sσε( )T T ) and convection thermal losses ( s( )h T T ), 

Janssens [26] modified the relation between ignition time and external heat flux as 0.55 ''
igt q    for 

thermally thick materials, which is also shown in Figure 7 (circle). The fitted lines of 0.5
igt and 0.55

igt  

reach intersection points with the x-axis of approximately 20.8 kW/m2 and 22.02 kW/m2 respectively, 

which represent the theoretical CHF of PV modules. By contrasting with the experimental critical heat 

flux of 26 kW/m2 represented by a vertical dashed line in Figure 7, a conclusion can be made that the 
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modification of Janssens is reasonable. It makes the theoretical calculation closer to the experimental 

one. The difference between the experimental and theoretical CHF can be due to the non-linearity of the 

ignition time for external heat flux near the experimental CHF (where the solid material is thermally thin 

compared to the time of thermal transfer). 

4.3. Fire Hazards 

The heat release rate (HRR) is the most significant parameter for materials’ fire hazards evaluations. 

The HRR represents the rate of thermal energy generated by combustion, which controls the growth rate 

of fire as well as the amount of smoke and gaseous effluents generated. Heat released from a single 

burning item might be strong enough to ignite adjacent items, causing fire propagation. Moreover, the 

peak heat release rate (pkHRR) is the parameter that best expresses the maximum intensity of a HRR curve. 

This parameter (with a relative uncertainty of ±5%) is calculated by using the oxygen consumption 

calorimeter technique based on the ISO5660-1 standard [27] with equations described in detail in [18]. 

Petrella [28] mentioned that a combination of parameter x (an indication of propensity to flashover) 

and total heat release (THR) would give reasonable indications of fire thermal hazards of the material. 

The rating system presented by Petrella is shown in Table 1. The shortcoming of Petrella’s method is 

that two separate classifications are presented by using two parameters (x parameter and THR, 

separately). That is, consistent fire hazards rank might not be gained with this method. 

Chow [15,29] used Petrella’s method for the assessment of fire hazards of video compact disc (VCD) 

materials and sandwich panels. Bakhtiyari et al. [17,30] used the same method to investigate fire hazards 

of expanded polystyrene and polyurethane foams with cone calorimeter. All those studies show that 

Petrella’s method for fire hazard assessment is sensible and effective. Moreover, these research 

achievements can complement the incapability of this method in calculating consistent fire hazards rank 

with more references. 

Figure 10 shows the transient evolutions of the HRR at five irradiance levels (28, 30, 35, 40 and  

45 kW/m2). Transient evolution of HRR depends strongly on the irradiation level. Globally, pkHRR 

increases from 85 to 402 kW/m2 with external heat flux increasing from 28 to 45 kW/m2. 

 

Figure 10. Heat release rate (HRR) of PV modules as a function of time. 
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Table 1. Evaluation system proposed by Petrella. 

Values x parameter Total Heat Release (THR) 

0.1–1.0 Low risk to flashover Very low risk to heat contribution 
1.0–10 Intermediate risk to flashover Low risk to heat contribution 
10–100 High risk to flashover Intermediate low risk to heat contribution 

100–1000 - High risk to heat contribution 

As discussed by Petrella [28], parameter x is introduced as an indication of propensity to flashover, 

which can be calculated by the ratio of the peak of heat release rate (pkHRR) to time to ignition (TTI): 

ݔ ൌ
pkHRR
TTI

 (3)

THR (in MJ/m2) is calculated by integrating the curve of the HRR over time as shown in Equation (4): 

THR ൌ න ሺHRRሻdt
∞

଴
 (4)

x parameter and THR of PV modules are shown in Table 2. With the x parameter in the range of  

0.09–4.84, PV modules have a low risk to flashover under external heat fluxes lower than 30 kW/m2 and 

an intermediate risk to flashover under external heat fluxes between 35–45 kW/m2. In addition, it is 

obvious that PV modules used in tests will give intermediate risk with the THR in the range of 38–57 MJ/m2. 

Actually, the thicknesses of large-scale PV modules used in building roof are about 5–10 times thicker 

than the experimental small ones, whose THR can be high enough to reach high risk. 

Table 2. Test results and thermal hazard classification. 

Heat flux (kW/m2) 
Derived data 

TTI (s) pk HRR (kW/m2) x parameter (kW/m2s) THR (MJ/m2) 

28 913 85 0.093 38.270 (Intermediate risk)
30 636 116 0.182 (low risk) 56.736 (Intermediate risk)
35 218 226 1.037 (Intermediate risk) 50.069 (Intermediate risk)
40 133 272 2.045 (Intermediate risk) 48.524 (Intermediate risk)
45 83 402 4.843 (Intermediate risk) 45.481 (Intermediate risk)

4.4. Toxicity of Gases 

Results of CO and CO2 concentration, detected by the cone calorimeter [31], are shown in  

Figures 11 and 12. The standard uncertainties of both gases are ±8%. Taking the test under external heat 

flux of 45 kW/m2 for instance, CO emitted from samples increases significantly after the ignition time of  

83 s, because the CO and smoke increase as flames appear on materials. It is observed that the maximum 

concentration of CO increased from 101 to 522 ppm when the heat flux increases from 28 to 45 kW/m2. 

Meanwhile, the maximum concentration of CO2 varies from 0.159% to 0.436%. Both parameters have 

same curve shapes with HRR for a given external heat flux. 
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Figure 11. Carbon monoxide concentration as a function of experimental time. 

 

Figure 12. Carbon dioxide concentration as a function of experimental time. 

Since only CO and CO2 are measured, the peak fractional effective dose (FED) is calculated from the 

peak concentration of CO and CO2 denoted by [CO], [CO2] and their toxic potency LCCO, LCCO2 as 

shown in Equation (5): 

FED ൌ
ሾCOሿ
େ୓ܥܮ

൅
ሾCOሿ
େ୓మܥܮ

 (5)

In the above equation, the LCCO value is the reference concentration of CO, which causes death when 
inhaled for a specific amount of time, typically 30 min. The same is true for ܥܮେ୓మ. FED is a parameter 

for toxic gas evaluation. The higher the value of FED, the stronger the toxicity becomes. Toxic gases can 
cause death when FED value is about 1. Since ܥܮେ୓మ is very large, FED is calculated only from [CO] by 

taking LCCO as 5000 ppm [15] as shown in Equation (6):  

FED ൌ
ሾCOሿ
5000

 (6)
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As shown in Table 3, values of FED for tests under five external heat fluxes are low, within the range 

of 0.02–0.108. It means that CO emitted by PV modules is negligible. 

Table 3. Test results of gases. 

Heat flux (kW/m2) Peak CO (ppm) FED = [CO]/5000 

28 101 0.0202 
30 128 0.0256 
35 274 0.0548 
40 356 0.0712 
45 542 0.108 

4.5. Mass Loss and Mass Loss Rate 

The mass and mass loss rate (MLR) evolution as functions of time under different external heat fluxes 

are represented in Figures 13 and 14, respectively, during the cone calorimeter experiments. The standard 

uncertainties of the measured mass loss are ±10%. As shown in Figure 13, samples have shown an 

obvious weight increase during the inception phase, possibly due to oxidation. In addition, the PV 

module under lower heat flux experienced a longer weight-increasing period. That is because oxidized 

products which are relatively heavier begin to decompose when temperature grows to a certain level. 

The remaining of the PV module under higher heat flux is less, indicating a more complete burning. 

MLR is calculated from Equation (7) by the difference approach. The widths and the intensities of the 

MLR curve depend strongly on external heat flux. In fact, an irradiation level increase moves curve 

shapes towards shorter experimental time (e.g., around 1800 s at 28 kW/m2 against 600 s at 45 kW/m2); 

also increases the maximal intensity of the MLR peak (e.g., around 0.18 g/s at 45 kW/m2 compared to 

0.04 g/s at 28 kW/m2). These observations show that the increasing heat flux decreases the resistance of 

PV modules and accelerates their combustion. 

MLR ൌ
݉௧ െ ݉௧ି∆௧

ݐ∆
 (7)

 

Figure 13. Mass versus experimental time. 
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Figure 14. Mass loss rate versus experimental time. 

5. Conclusions 

Aiming to get a better understanding of PV fire behavior and hazards, five tests on the same kind of 

specimen with different heat fluxes have been conducted using a cone calorimeter. Several parameters of 

PV modules such as ignition time, critical heat flux, mass loss rate, heat release rate and toxicity of gases 

were systematically measured and calculated. 

It is observed that exposing the materials to high heat fluxes would be very dangerous. The PV 

modules under tests could be ignited by heat fluxes greater than 26 kW/m2, which can be easily reached 

by flame heat fluxes in real fires. Furthermore, a temperature gradient is observed inside the sample, 

showing the thermally thick property of PV modules. CO and CO2 emitted by PV modules are 

negligible. With the THR in the range of 38–57 MJ/m2, PV modules used in tests are at intermediate risk. 

However, in residential fires, the typical flame temperature is in the range of 800–900 °C for roof fires 

and in the range of 900–1000 °C for fires involving the whole house. Furthermore, the thickness of 

big-size PV modules used in building roof is about 5–10 times thicker than small experimental ones. 

That is, PV modules mounted on buildings can be much more dangerous when exposed to real fires than 

these experimental ones. 

Special care must be taken in designing fire safety provisions for buildings with photovoltaic 

systems. Parameters deduced from the cone calorimeter might be useful for setting up regulations to 

assess photovoltaic fires. Moreover, full-scale burning tests and tests for photovoltaic fire propagation 

will be carried out in the future studies to give more references. 
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Nomenclature 

tig  ignition delay, s 

ρ density, kg/m3 

Cp  thermal capacity, kJ/(g K) 

d  thickness of samples, m 

T∞  ambient temperature, K 
''q   external heat flux, kW/m2 

λ  thermal conductivity, kW/(mK) 

[CO]  carbon monoxide concentration, ppm 

[CO2]  carbon dioxide concentration, ppm 

Tig  ignition temperature, K 
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