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Abstract: Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams 

which is directly affected by the bond-slip property of steel bar and concrete interfaces.  

A beam strengthened with a near-surface mounted (NSM) technique would be even more 

affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. 

Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC 

beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a 

strain-based moment-curvature analysis. As such, the tension stiffening is typically 

incorporated through various empirical formulations, which can require a great deal of 

testing and calibrations to be done. In this paper a relatively new method, which can be called 

the mechanics-based segmental approach, is used to directly simulate the tension stiffening 

effect of NSM reinforcements on RC beams, without the need for empirical formulations to 

indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM 

fiber reinforced polymer (FRP) contributes a significant portion to the stiffness and strength 

of the strengthened RC beam not only during serviceability, but at all load levels.  

Keywords: reinforced concrete; tension stiffening; partial interaction; near-surface mounted 

(NSM); fiber reinforced polymer (FRP) 
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1. Introduction 

In recent years, the focus of research on strengthening of reinforced concrete (RC) beams using fiber 

reinforced polymers (FRP) has changed slightly from externally bonded (EB) techniques [1–3] to  

near-surface mounted (NSM) technique [4–6]. NSM FRP has a number of advantages compared to EB 

FRP in practical applications, such as no surface preparation being required apart from the grooving 

process and easier accommodation of irregularities on the concrete surface. NSM FRP is also easier to 

anchor to prevent premature debonding, which makes it particularly attractive, as premature debonding 

is always a problem in any FRP strengthened structure. Due to being embedded in the concrete, the FRP 

bars in NSM strengthening has been known to exhibit tension stiffening behavior, prompting several 

studies on the bond-slip relationship of NSM FRP reinforcements [7–9]. 

Tension stiffening has been known to cause increased flexural rigidity in cracked RC beams.  

While progress has been made on understanding the tension stiffening of NSM FRP, directly implementing 

the tension-stiffening effect in simulations had proven difficult. The moment-curvature approach, as a  

strain-based method, cannot directly incorporate the interface slips that are necessary to simulate tension 

stiffening. Due of this, empirically derived values or factors are usually introduced to indirectly simulate 

tension stiffening, such as effective flexural rigidities [10] and hinge lengths [11,12]. These empirical 

formulations have been noted to be inaccurate when applied to situations outside of the testing regimes 

that formed them [13].  

The limitations imposed by empirically derived values prompted a new analysis approach to be 

introduced [13–19]. This new analysis approach aims to simulate the mechanics of RC beams, as seen 

in practice, such as concrete cracking, crack widening and formation of concrete wedges. This is done 

through the application of numerical analysis based on the partial interaction theory [14,17–19], which 

enables this new analysis approach to directly incorporate any bond-slip relationship, thereby removing 

the dependency on the empirical factors to indirectly simulate the mechanics of RC beams as seen in 

practice. However, it should be noted that while no portion of the mechanics is based on empiricisms, 

empiricisms are still required in terms of material properties, such as stress-strain relationships and  

bond-slip relationships.  

In this paper, it will be shown how the segmental moment-rotation approach can be used to simulate 

the behavior of NSM FRP reinforcements. This is done by applying the partial interaction theory to 

create a numerical analysis that is used to simulate the tension stiffening load-slip relationship between 

FRP bars, epoxy adhesive and the adjacent concrete area. The moment-rotation approach is then 

validated against the experimental results by the authors and also against previous published results.  

The contribution of tension stiffening of NSM FRP reinforcements on the behavior of RC beams at all 

levels of load up to failure is also verified using a comparison study.  

2. Segmental Moment-Rotation Approach 

Consider a NSM FRP strengthened RC beam segment as shown in Figure 1. If a constant moment 

(M) is applied to the segment in Figure 1, the beam ends will rotate (θ) and this rotation is accommodated 

by an Euler-Bernoulli deformation from section A-A to section B-B, such that plane sections remain 
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planes. The total deformation from A-A to B-B must be accommodated by a combination of both material 

strains within the segment and more importantly by the partial-interaction mechanisms.  

For NSM FRP strengthened beams, in the tension region, slip between the steel and FRP 

reinforcement relative to the adjacent concrete will accumulate along the reinforcement, causing the slips 

rb and rf as shown. In the compression zone, slip across a concrete-concrete sliding plane forms a 

wedge and accumulates along the sliding plane as shown. The method used to account for these  

partial-interaction mechanisms will be discussed in the following sections. 

 

Figure 1. Beam segment of NSM FRP strengthened RC beam. 

2.1. Partial-Interaction Tension Stiffening Analysis  

The partial interaction theory has been used by several researchers to perform a numerical analysis 

using bond-slip properties [16–19], which removes the need for empirically derived formulations for 

simulating the tension stiffening effect. In this paper it will be shown how the analysis can be adjusted 

for use in NSM FRP strengthened beams.  

Prior to cracking of the RC beam, both steel and carbon fiber reinforced polymer (CFRP) 

reinforcement are in full interaction with adjacent concrete, where due to a perfect bond, both the bars 

and adjacent concrete are uniformly extended as load is applied to the RC beam. Following the formation 

of the flexural crack, the steel and CFRP bars are in partial interaction as the bars slip relative to the 

concrete, resulting in the half crack opening Δr as shown in Figure 2a,b.  

To begin analyzing the effect of slip between the steel and CFRP bars with their adjacent concrete, 

consider the prism shown in Figure 2. The prism consists of either steel or FRP reinforcement bars of 

area Ar and modulus Er and the adjacent concrete of area Ac and modulus Ec. The prism is discretized 

into very short sections of length dx, and at the crack face (the first section) there is no force acting on 

the concrete as the concrete-concrete interfaces are not touching each other due to the flexural crack. 

Due to the load Pr, the reinforcement bars slips along the length of the prism as in Figure 2d. This slip is 

a function of the local bond stress slip (τ/δ) properties. From the distribution of bond stress and knowing 

the load acting at the crack face, the variation of reinforcement bar and concrete strain can be determined. 

Hence the slip-strain (dδ/dx), which is the difference between the strain in the reinforcement and the 

concrete, is also known.  
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Figure 2. Partial interaction analyses. (a) Primary crack spacing; (b) Equilibrium;  

(c) Bond stress distribution; (d) Slip distribution; (e) Slip-strain distribution; (f) Concrete 

strain distribution; (g) Tension stiffening analysis; (h) Equilibrium; (i) Slip distribution;  

(j) Slip-strain distribution. 

Applying the boundary condition that full-interaction is achieved where the interfacial slip and the 

slip-strain reach zero at the same point, the primary crack spacing Scr can be determined as it is known 

that cracks will form when the strain in the concrete reaches the tensile cracking strain εct as shown in 

Figure 2f [17]. The crack spacing Scr represents the minimum crack spacing, as a subsequent crack can 

form anywhere in the full interaction region to the right of the region Scr in Figure 2f. However,  

if a moment gradient is applied to the beam, which is the usual case, then it is most likely and more 

conservative to take the primary crack spacing as Scr [17].  

Once primary cracks have formed along the prism as in Figure 2g, the loading of each prism becomes 

symmetric. Furthermore, within each primary crack prism, the forces are also symmetric, hence only 

half the length of a single prism (Ldef) as in Figure 2h needs to be considered. The load-slip (Pr/Δr) 

relationship in this case can be determined following the same mechanism as for the infinitely long prism 

in Figure 2a.  

The partial interaction analysis presented above is used to simulate the tension stiffening of steel and 

also FRP reinforcements between primary cracks. It should be noted that several assumptions were made 

with respect to NSM FRP strengthening. Firstly, slip is allowed between epoxy-CFRP interfaces, but 

perfect bonding is assumed between epoxy-concrete interfaces. Secondly, in order to apply the partial 

interaction theory, the CFRP bar must be located in the center of the prism, such that no moment is induced 

when the prism is loaded. Hence, it is assumed that the size of the prism for NSM-strengthened beams is as 

shown in Figure 3, where the smaller concrete area surrounding FRP reinforcement correlates with the 
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lower bond strength of FRP bars compared with steel bars. For the steel reinforcement, the area of 

concrete should be assumed to be as deep as the bar plus twice the height of the concrete cover, and be 

as wide as the width of the beam divided evenly between the numbers of steel reinforcement bars.  

For the FRP reinforcement, when there is more than one FRP reinforcement as in Figure 3a, it is 

suggested that the depth of the concrete area be taken as the depth of the NSM groove and the width be 

taken as the width of the beam divided evenly between the numbers of FRP reinforcement bars. When 

there is only one FRP reinforcement bar, as in Figure 3b, the width is taken as half the beam width. 

(a) (b) 

Figure 3. Assumed prism size. (a) Concrete size for two FRP reinforcement; (b) Concrete 

size for one FRP reinforcement. 

The partial-interaction analysis is also able to capture the reduced crack spacing that occur due to the 

application of strengthening as seen in practice. As shown in Figure 3, the application of NSM FRP bar 

would reduce the available area of concrete around the steel bar. Due to the reduced concrete area,  

the load transferred from steel bar to concrete would cause a greater strain, meaning the concrete would 

reach tensile cracking strain faster than it would with a larger available concrete area. This translates to 

a much smaller primary crack spacing, Scr.  

2.2. Size-Dependent Stress-Strain of Concrete 

Concrete softening can be captured using any empirically derived stress-strain relationship that takes into 

account the falling branch of concrete stress-strain. An example of this is the stress-strain model by 

Popovics [20]. However simply applying the empirical stress-strain relationship to the beam would result in 

an inaccurate stress-strain curve, as the size of the concrete affects the angle of the concrete wedge that forms 

during concrete softening [14,15,21], hence affecting the resulting stress-strain curve as well.  

The method proposed by Chen et al. [15] can be used to adjust the empirical stress-strain curve.  

In this method, the height of the concrete cylinders used in forming the empirical stress-strain 

relationship is designated as 2Ltest. The size of the concrete in a beam’s hinge section is taken as 2Ldef, 

as shown in Figure 4. For stress σa/Ec in the empirical stress-strain relationship for concrete, the strain 

of concrete that has been adjusted for size is: 

ε ε
σ σ

 (1)
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where εtest is the corresponding strain for stress σa in the empirical stress-strain relationship and Ec is the 

elastic modulus of the concrete. The size-dependent strain should still have the same concrete strength (fc) 

while having a different shape compared to the empirical stress-strain relationship, as shown in Figure 5. 

 

Figure 4. Compression of concrete in hinges. 

 

Figure 5. Empirical and size dependent stress-strain curves. 

2.3. Hinge Analysis 

The method for obtaining the moment-rotation (M/θ) relationship of the beam will now be established. 

The rotation θ at the end of the hinge in Figure 6a causes an Euler-Bernoulli deformation from A-A to 

B-B, where plane sections remain plane. In the tension region, a slip between both the steel and NSM 

reinforcement and the concrete takes place, shown as Δrb and ΔNSM in Figure 6a. In the compression 

region, the formation and sliding of concrete wedges takes place. 

The rotation causes a deformation profile from A-A to B-B. From this deformation profile, the strain 

profile (Figure 6b) can be obtained by dividing the deformation profile by Ldef. Prior to the formation of 

flexural cracks, no slip occurs between the concrete and the reinforcement. As such, the stress profile of 

the beam (Figure 6c) can be determined using the material stress-strain relationship. Note that to 

determine the forces acting on concrete in the compression region, the size-dependent stress-strain 

relationship for concrete should be used. The depth of neutral axis dNA is then adjusted until, for a given 

rotation θ, the equilibrium of forces is achieved, as shown in Figure 6d. The moment, M, resulting from 
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the rotation, θ, is then determined. It can be seen that prior to cracking, the procedure is identical to 

analysis using the moment-curvature approach. 

Flexural cracking is considered to have occurred if the rotation causes the strain in the concrete layer 

around the steel reinforcement to reach the concrete cracking strain. After cracking, the loads developed 

in the steel bar (Prb) and the NSM reinforcement (PFRP) are no longer functions of the strain profile due 

to the partial interaction that occurs due to the bond with the adjacent concrete. Therefore, the Prb and 

PFRP, as shown in Figure 6d, are determined by using the deformation profile to obtain the slip values of 

Δrb and ΔFRP, and using the load-slip relationship obtained using the numerical partial interaction 

analysis. Note that this requires two separate load-slip relationships, one for the steel reinforcement and 

the other for the FRP reinforcement. The depth of the neutral axis, dNA, is then adjusted until equilibrium 

of the forces is achieved. The moment is then calculated and the analysis is repeated until the required 

moment-rotation relationship is obtained. To change the rotation to curvature is simply a matter of 

dividing the rotation, θ by Ldef. Using the moment-curvature relationship, the load-deflection of the beam 

can be determined using the commonly used double integration method.  

 

Figure 6. Hinge analysis procedure. (a) Beam section; (b) Strain profile; (c) Stress profile; 

(d) Forces acting on beam section. 

3. Experimental Program 

In order to validate the segmental moment-rotation approach, a simple experimental programme was 

carried out on NSM strengthened RC specimens. One RC beam was prepared without any strengthening 

material and was tested as the control specimen. Two RC specimens were strengthened using a NSM 

CFRP bar with variable bond length (1800 and 1900 mm). To complement this experimental programme, 

the data for other specimens were also taken from the published results of various researchers [22–24]. 

The testing matrix is shown in Table 1. 
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Table 1. Specimens List. 

Specimen name & 
details 

Bonded 
length  
(mm) 

Beam 
length  
(mm) 

Shape of  
NSM CFRP 

reinforcement 

Number of  
NSM FRP 

reinforcements 

CB (Control beam) - 2000 - - 
A1 (Strengthened beam) 1800 2000 bar 1 
A2 (Strengthened beam) 1900 2000 bar 1 

Jung-1 [22] 2700 3000 bar 1 
Capozucca-1 [23] 1300 1500 bar 2 

Teng-1 [24] 1800 3000 strip 1 
Teng-2 [24] 2900 3000 strip 1 

Materials and Samples  

Rectangular 2.3 m long RC beams with 125 mm × 250 mm cross-sectional dimensions were selected 

for the experimental study. The dimensions and material properties for the other researchers’ work can be 

found elsewhere [22–24]. The beams were designed to be under-reinforced (ρ = As/bd = 0.0085, where 

b is beam width and d is depth of beam) with two 12 mm diameter deformed bars as tensile 

reinforcement. Two 10 mm diameter deformed bars were used as hanger bars to hold the stirrups. 

Double-legged closed 8 mm diameter steel stirrups were used as shear reinforcement with a spacing of 

90 mm centre-to-centre to ensure that a flexure failure would occur. Figure 7 exhibits the features of the 

beam arrangement.  

 

Figure 7. Specimen details. 

The concrete cube compressive strength, concrete cylinder compressive strength and flexural  

 strength of the concrete were determined according to BS EN 12390-3:22009, ASTM C39 and  

BS EN 12390-5:22009 [25–27] respectively. The material properties of concrete are described in Table 2. 

The mechanical properties of the deformed steel bars supplied by the manufacturer were checked in the 

laboratory to determine whether they conformed to the ASTM A615 [28] specification. Lamaco System 

(Alor Setar, Malaysia) supplied the 12 mm diameter sand coated carbon-epoxy pultruded FRP (CFRP) 
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bars with a density of 1.65 g/mm3 for NSM strengthening. These CFRP bars showed linear elastic 

response up to ultimate failure. To adhere the NSM bar to the concrete substrate, Sikadur® 30 (Sika Malaysia, 

Kuala Lumpur, Malaysia) was used as epoxy adhesive. The details of the concrete, steel and CFRP 

material properties are described in Table 2 and the Sikadur® 30 properties [29] at temperatures of 15 °C and 

35 °C are mentioned in Table 3. The values provided in Table 2 are the average values from three samples. 

Each of the strengthened beam specimens had a single groove (24 mm × 24 mm) made using a 

diamond-bladed concrete saw along the beam length to accommodate the CFRP bar. A hammer and hand 

chisel were used to remove the remaining concrete lugs from the groove and all the debris was then removed 

from the groove using airbrushing pressure. An epoxy adhesive (Sikadur® 30) was applied into the groove 

to fill around two-thirds of the groove depth. The CFRP bar was then gently inserted into the groove, 

and pressed lightly to ensure proper epoxy covering surrounding the bar. The groove’s outer surface was 

then levelled and left for one week to achieve proper epoxy strength. The beams were then tested under static 

loading using the four-point loading test. The setup of the four-point loading test is shown in Figure 8. 

Table 2. Properties of Concrete, Internal Steel Reinforcement and CFRP Bar. Φ = diameter. 

Material 
Compressive 

strength (MPa)

Flexure strength 

(MPa) 

Yield stress 

(MPa) 

Ultimate strength 

(MPa) 

Elastic modulus  

(GPa) 

Strain at failure 

(%) 

Concrete 
43.24 (cube)  

35.63 (Cylinder)
5.01 - - 30.1 - 

Steel- Φ 12 mm - - 520 587 200 20 

Steel- Φ 10 mm - - 529 578 200 21 

Steel- Φ 8 mm - - 380 450 200 29 

CFRP- Φ 12 mm - - - 2400 165 - 

Table 3. Properties of Sikadur® 30 [29]. 

Temperature 15 °C 35 °C 

Compressive strength 70–80 MPa 85–95 MPa 
Tensile strength 14–17 MPa 16–19 MPa 
Shear strength 24–27 MPa 26–31 MPa 

 

Figure 8. Experimental setup. 
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4. Results and discussion 

4.1. Experimental Results  

The load versus mid-span deflection curves for the beams tested by the authors are shown in Figure 9. 

The curves can be approximately divided into three distinct phases. The first segment of the curve shows 

the pre-cracking phase, where the curve linearly varies with very negligible deflection up to the 

occurrence of first flexural cracking. Strengthening using NSM CFRP was found to increase the load 

level at which the first flexural crack occurred for all the strengthened beams.  

The second phase is from the first flexural cracking to yielding of the internal reinforcement of the 

beams, where a loss of stiffness can be observed. The strengthened beams were found to show higher 

stiffness compared to the control beam due to the CFRP bars in this phase. The third portion of the  

load-deflection behaviour is from yielding until failure. The strengthened beams show improved strength 

and stiffness compared to the control beam. While the control beam failed by concrete crushing after 

steel yielding, both the strengthened beams failed by concrete cover separation. A summary of the 

experimental test results is given in Table 4, while the failure modes of the beams are shown in Figure 10. 

 

Figure 9. Load-deflection result for beams CB, A1 and A2. 

Table 4. Summary of Experimental Test Results. Pcr = first crack load; Py = yield load;  

Pu = ultimate load; ∆y = deflection at yield of steel; ∆u = mid-span deflection at failure load. 

Specimen 
name 

Pcr 
(kN) 

Py 
(kN) 

Δy 
(mm) 

Pu 
(kN) 

Δu 
(mm) 

Failure mode 

CB 10.6 61.0 7.7 64.4 24.7 Flexure failure (Concrete crushing after steel yielding) 
A1 14.0 110.6 13.0 130.8 18.6 Debonding (Concrete cover separation) 
A2 15.0 104.5 10.7 133.2 19.2 Debonding (Concrete cover separation) 
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(a) (b) 

(c) 

Figure 10. Failure modes of beam CB, A1 and A2. (a) Beam CB (concrete crushing failure); 

(b) Beam A1 (concrete cover separation); (c) Beam A2 (concrete cover separation). 

4.2. Validation of Segmental Moment-Rotation Approach  

The experimental results from the authors, and also from previously published works, were simulated 

using the segmental moment-rotation approach. Several generic material models were used to obtain the 

simulated results. For the partial interaction analysis, the material models used are the local bond strength 

for FRP bar by Hassan and Rizkalla [30], local bond strength for FRP strip by Zhang et al. [31], bond 

stress-slip relationship for FRP bar by Lorenzis [32], and bond stress-slip relationship for FRP strip by 

Zhang et al. [31]. For concrete softening, the size dependent stress-strain is obtained from the empirical 

concrete stress-strain relationship by Popovics [20]. As the segmental moment-rotation approach is 

generic, any other material model can be used if it is believed that it can provide a better result compared 

to the ones used in this paper.  

Comparisons between simulated and experimental load-deflection are shown in Figures 11 and 12.  

It can be seen that the analysis provides good agreement with the experimental results as the peak points 

and the shape of the load-deflection curves were captured reasonably well. The analysis is also able to 

capture the effect of the different CFRP-bonded lengths of the beam specimens and is proven to work 

on both bar-shaped CFRP reinforcement and strip CFRP reinforcement. Currently, the segmental 

approach presented in this paper is unable to predict premature debonding failures, such as the concrete 

cover separation failure mode. 
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To determine the contribution of the tension-stiffening effect of NSM FRP reinforcements to the 

behaviour of RC beams, a comparison is made in Figure 13. It is emphasized here that the  

tension-stiffening effect that is simulated using the partial interaction analysis in this study refers to the 

tension stiffening seen at all levels of load up to failure, rather than simply at the serviceability load 

level. From Figure 13, it can also be seen that the tension-stiffening effect in beams strengthened using 

NSM CFRP strips (Teng-1, Teng-2) is greater than in beams strengthened using NSM CFRP bars  

(A1, A2, Jung-1 Capozucca-1). This can be attributed to the better bonding that NSM CFRP strips 

generally has compared to NSM CFRP bars [33]. 

 
(a) (b) (c) 

Figure 11. Comparison of experimental and simulated load-deflection of beams CB, A1 and 

A2. (a) CB; (b) A1; (c) A2. 

 

Figure 12. Comparison of experimental and simulated load-deflection of beams (a) Jung-1;  

(b) Capozucca-1; (c) Teng-1; and (d) Teng-2. 
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Figure 13. Effect of tension stiffening of NSM reinforcement. (a) A1; (b) A2; (c) Jung-1; 

(d) Capozucca-1; (e) Teng-1; (f) Teng-2. 

5. Conclusions 

In this study, the segmental moment-rotation approach was used to predict the load-deflection 

behaviour of NSM FRP-strengthened beams. Through the application of partial interaction theory, the 

bond properties of the NSM FRP can be directly simulated, thereby allowing the tension-stiffening 

behaviour to be simulated for all level of loads of the strengthened RC beam. The model is generic, 

allowing it to cope with any type of bond and material properties for the NSM FRP reinforcement used. 

The results from the model have shown to be in good agreement with experimental results. It was also 

shown that the tension-stiffening behaviour of NSM FRP plays an important role in the behaviour of 

strengthened RC beams for all load levels. 
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