Supplementary Materials

Catalysts	Ru (%) ^a	C (%) ^b	N (%) ^b
Ru-C	0.86	98.4	0
Ru-N-C	0.97	84.8	14.2
Notes: ^a : determin	ned by ICP; ^b : m	easured by S	SEM-EDX

Table S1. The Ru, N, and C contents of Ru-N-C and Ru-C.

Table S2. The NH ₃ co	onversions at the	GHSV (of 7448 mL	$\cdot g^{-1} \cdot h^{-1}$	¹ as a	function	of tem	perature
	Jiiversions at the	OID V		5 11	usu	runenon	or tom	perature

Temperature (°C)	C-N	Ru-C	Ru-N-C
475	0	0	24
500	0	20	56
550	0	68	95

Figure S1. The EDX spectrum of Ru-N-C.

Figure S2. EDS spectra: (a) Ru-N-C and (b) Ru-C.

Figure S3. XPS Ru 3d Ru-C (a); and Ru-N-C (b) respectively.

Figure S4. Long term stability for NH₃ dehydrogenation over Ru-N-C at 550 °C with a GHSV of 7448 mL \cdot g⁻¹·h⁻¹.

Figure S5. The EDX spectrum of the spent Ru-C catalyst after the long-term stability test (80 h).