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Abstract: Low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) 

and density functional theory (DFT) calculations have been used to investigate the atomic 

and electronic structure of gold deposited (between 0.8 and 1.0 monolayer) on the Pt(111) 

face in ultrahigh vacuum at room temperature. The analysis of LEED and STM 

measurements indicates two-dimensional growth of the first Au monolayer. Change of the 

measured surface lattice constant equal to 2.80 Å after Au adsorption was not observed. 

Based on DFT, the distance between the nearest atoms in the case of bare Pt(111) and 

Au/Pt(111) surface is equal to 2.83 Å, which gives 1% difference in comparison with STM 

values. The first and second interlayer spacing of the clean Pt(111) surface are expanded by 

+0.87% and contracted by −0.43%, respectively. The adsorption energy of the Au atom on 

the Pt(111) surface is dependent on the adsorption position, and there is a preference for a 

hollow fcc site. For the Au/Pt(111) surface, the top interlayer spacing is expanded by +2.16% 

with respect to the ideal bulk value. Changes in the electronic properties of the Au/Pt(111) 
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system below the Fermi level connected to the interaction of Au atoms with Pt(111) surface 

are observed. 

Keywords: density functional theory calculations; scanning tunneling microscopy;  

low-energy electron diffraction; surface structure; metallic surfaces; gold; platinum;  

metal-metal interfaces; low index single crystal surface 

 

1. Introduction 

A large number of studies on epitaxy have been carried out for many years. Ultra-thin epitaxial film 

systems exhibit a variety of interesting properties due to the strong correlation between the electronic 

structure of the film and its morphology, strain, and defect structure [1–10]. Structural studies of fcc/fcc 

systems provide a great deal of information on the connection between the geometrical properties of the 

adsorbed atomic layers and the atomic arrangements of the substrates. Various fields are concerned with 

epitaxial growth; these range from basic research on the growth mechanism of thin films to advanced 

research on the development of devices. Platinum is widely used as a catalyst in the chemical and 

petrochemical industries [11,12]. For example, in oil refineries, platinum catalysts are employed in 

processes that involve the reforming of paraffin and the hydrogenation of unsaturated hydrocarbons [11–14]. 

The clean Pt(111) surface itself has been the subject of several structural determinations with  

Low Energy Electron Diffraction (LEED) [15–23], medium energy ion scattering (MEIS) [24], high 

energy ion scattering (HEIS) [25] and surface X-ray diffraction (SXRD) [26,27]. Differently from  

the other noble metal (111) surfaces, clean Pt(111) normally has an unreconstructed bulk-periodic  

surface [23,28–30]. Adams et al. [18] found the first layer spacing to be possible to expand by 0.04 ±  

0.10 Å, while Hayek et al. [21] found an unrelaxed surface with 0.05 Å. Materer et al. [23] found the 

first and second interlayer spacing expanded by 0.04 ± 0.10 Å and 0.005 ± 0.03 Å, respectively. MEIS 

and HEIS experiments [24,25] support the LEED results. Namely, the ion scattering data indicate that 

the Pt(111) structure deviates from the bulk geometry by a possible small outward expansion of the top 

interlayer spacing of 0.03 ± 0.02 Å [24] or 0.03 ± 0.02 Å [25]. No deviation from the bulk position was 

found in the direction parallel to the surface, with a small accuracy of about 0.01 ± 0.02 Å. The surface 

geometry of clean Pt(111) has been the subject of surface X-ray diffraction investigations [26]. These 

investigations gave an outward relaxation of the topmost layer of 0.045 ± 0.005 Å (+2.0%) with respect 

to the ideal bulk termination. 

Properties of ultrathin gold layers deposited on the Pt(111) face were investigated in a number of 

works [31–42]. Studies on single crystalline Au-Pt(111) model surfaces, for instance, have provided 

detailed information on the catalytic properties of these surfaces [31–33]. Davies et al. [31] studied the 

growth and chemisorptive properties of gold and silver monolayers on platinum (111) and (553) single 

crystal surfaces using Auger electron spectroscopy (AES), LEED, and temperature-programmed 

desorption (TPD). The AES results suggested that the growth of Au proceeds via a Stranski-Krastanov 

mechanism at room temperature, and that at temperatures above 800 K gold dissolves into the Pt crystal 

bulk. No extra LEED order spots or spot streaking was observed. In contrast, Shatler et al. [32] with the 

use of AES, LEED, and TPD found that deposition of gold on Pt(111) near T = 300 K indicates a  
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layer-by-layer (Frank-van der Merwe) growth mechanism up to three gold monolayers. The analysis of 

AES measurements showed that two-dimensional islands growth below one monolayer took place. 

Furthermore, with increasing coverage, the gold islands grew until the monolayer is completed, before 

the second layer begins to form. In additional studies by Sachtler et al. [33], the activity for conversion 

of n-hexane as a function of Au surface concentration on Pt(111) was monitored. The Au-covered crystal 

was then annealed at elevated temperatures to allow Au intermixing with the Pt substrate. The formed 

Au-Pt(111) surface alloy showed a much higher activity for n-hexane isomerization than pure Pt. 

Moreover, it has been reported that Au in a dispersed state exhibits a high activity for some reactions at 

low temperatures (e.g., CO oxidation) [35] and that this feature depends on the preparation conditions, 

size and shape of the Au nanostructures [36]. Adsorption experiments with CO as a titration agent 

showed a significantly lower affinity of the Au-Pt surface alloy in comparison to the clean Pt  

surface [37]. Salmeron et al. [38] used photoelectron spectroscopy techniques (UPS (ultraviolet) and 

XPS (X-ray)), LEED and AES to study the electronic structure of Au and Ag overlayers deposited on 

Pt(111), Pt(100), and Pt(997). Between 0 and 1 monolayer, the valence bands of Au and Ag show 

changes in the form of shifts of the most tightly bound peaks and the appearance of the new structures 

around a coverage (θAu) of one monolayer. The Au 5d3/2 peak shifts 0.6 eV towards higher binding 

energies when coverage varies from 0.1 to 1 monolayer and 0.5 eV more when coverage varies from one 

to six monolayers. These shifts are explained as due to the changing contributions of the Au atoms in 

island edges for surface (θAu < 1) monolayer and bulk (θAu > 1) coordination positions. Using AES, they 

found that gold on Pt(111) grows layer-by-layer. Below θAu < 1, no extra LEED spots were observed.  

In addition, the work function decreased upon gold deposition from its initial value of 6.08 ± 0.15 eV 

for clean Pt(111) down to 5.8 ± 0.15 eV. That value was reached at the monolayer and remained constant 

thereafter up to five monolayers and is clearly larger than the 5.31 eV value reported by Potter et al. [43] 

for bulk Au(111). The work function for the Pt(111) surface compares only fairly with that reported by 

Ertl et al. [44] of 6.40 eV. Its smaller value might reflect a less perfect surface with larger number of 

residual steps. It should be pointed out here that Pt(111) surface presents the highest work function value 

among other metals surfaces. Vogt et al. [39] studied Au/Pt(111) system by spin-, angle- and  

energy-resolved photoemission with normal incident circularly polarized synchrotron radiation of 

BESSY and normal photoelectron emission for different Au coverages. The prepared layers were 

characterized by AES and LEED and turned out to grow up two-dimensionally and epitaxially. LEED 

spots did not show any changes in geometry during the evaporation time up to the coverage of a thick 

Au layer [39]. Later, the electrodeposition of Au on Pt(111) from electrolytes containing µM 

concentrations of ݈ܥݑܣସ
ି  was investigated by in situ electrochemical scanning tunneling microscopy  

(EC-STM) by Sibert et al. [41,42]. Under conditions of high Au surface mobility, multilayer growth proceeds 

via a typical Stranski-Krastanov growth mode, with layer-by-layer growth of a pseudomorphic Au film 

up to two monolayers and three-dimensional growth of structurally relaxed islands at higher coverage, 

indicating thermodynamic control under these conditions. 

In the present work, in order to study the structural and electronic properties during the initial 

adsorption process of gold on Pt(111) surface at room temperature, we have performed low-energy 

electron diffraction, scanning tunneling microscopy measurements in ultrahigh vacuum and density 

functional theory calculations with the use of CASTEP code. 
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2. Experimental Details 

The measurements were carried out in a stainless steel ultra-high vacuum chamber with a base 

pressure of 2.0 × 10−8 Pa. The chamber was equipped with a reverse-view LEED optics, which was used 

for low-energy electron diffraction measurements, and also with a variable-temperature scanning 

tunneling microscopy stage. The Pt(111) single crystal was supplied by MaTeck [45]. The surface of the 

Pt(111) single crystal was cleaned by repeated cycles of sputtering with 3 keV Argon ions at  

T = 300 K and annealing at T = 1100 K. After annealing at 1100 K, the residual carbon was removed in 

7.0 × 10−4 Pa of oxygen, followed by desorption of any remaining oxygen at 1200 K. This procedure 

was repeated until the LEED pattern of a clean Pt(111) surface with sharp spots and low background 

was obtained. The deposition of Au (99.999%) on the Pt(111) sample was achieved by vaporization from 

a Knudsen cell and the coverage of gold was determined via STM. Film coverages are described in 

monolayers (ML), where a 1 ML Pt(111) film corresponds to an atomic packing density of  

1.503 × 1015 atoms/cm2 obtained from a bulk lattice constant aPt = 3.9239 Å [46] (for comparison the 

atomic packing density of Au(111) equals 1.387 × 1015 atoms/cm2 for aAu = 4.0785 Å [46]). This cell 

had been constructed from an Al2O3 crucible from Friatec [47] with a diameter of 5 mm. It was filled 

with a 0.5 mm thick Au wire from Goodfellow [48] and closed by a two-hole ceramic. The Knudsen cell 

was heated by a tungsten wire from Goodfellow (diameter 0.3 mm) wound around the crucible and 

thermally shielded by a water-cooled jacket. In order to control the deposition time, a rotatable shutter 

was placed in front of the cell opening. The working pressure during Au deposition was below  

1.0 × 10−7 Pa. All STM measurements were performed with the use of electrochemically etched  

W (99.99%) tips (diameter 0.5 mm, length 3.5 mm). For the potassium hydroxide electrolyte,  

a 4 Vp−p square wave voltage (f = 100 Hz) was applied to the tip. In the electrochemical cell, a tungsten 

wire is used as the working electrode (anode) and a Pt (99.999%) loop (diameter 10 mm) is used as the 

counter electrode (cathode). A 3 M KOH solution from Sigma Aldrich [49] is used as the electrolyte. 

The following reactions take place: 

Cathode Pt (Reduction Reaction):  

CATALYSTS2CATALYSTS2 PtH3KOH6PtOH6K66  e  (1)

Anode W (Oxidation Reaction):  

  e6WW 6  (2)

  K6W(OH)KOH6W 6
6  (3)

Total Reaction:  

CATALYSTS26CATALYSTS2 PtKOH6H3W(OH)PtKOH6OH6W   (4)

All presented STM images were recorded in constant current mode and processed by the WSXM 

image-processing software [50]. Before starting experimental investigations of the Pt(111) and  

Au-Pt(111) surfaces, the experimental system was calibrated with the use of well know Si(111)-(7 × 7) 

reconstructed surface [51–54] (Figure 1). Si(111)-(7 × 7) surface was prepared by twice direct current 

flashing (I = 4.0 A) an p-type Si(111) substrate (size: 1 × 10 × 0.5 mm, resistivity ρ ≈ 1–10 Ω cm)  

at 1220 K, after degassing at 970 K for two hours by joule heating with a current of 1 A. Atomically 
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resolved STM images of the empty and filed states of Si(111)-(7 × 7) are presented in Figure 1b,c, 

respectively. The measured surface unit cell is characterized by two diagonals of the diamond  

(a1 = 46.6 Å and a2 = 26.9 Å). Silicon adatoms (12 per unit cell) are marked in red in Figure 1b, and they 

occur as bright “dots” in empty-state STM image. Visible in STM images deep holes (depth ~ 2 Å) are 

called corner hols. 

 

Figure 1. Si(111)-(7 × 7) surface at T = 300 K: (a) LEED patterns recorded at normal 

electron incidence for E = 40 eV; (b) STM image of empty states (150 Å × 150 Å,  

IT = 0.5 nA, Ubias = +1.6 V); and (c) STM image of filled states (150 Å × 150 Å, IT = 0.5 nA, 

Ubias = −1.6 V). Au deposited on Pt(111) at T = 300 K at a coverage θAu ≤ 1.0 ML:  

(a) θAu ≈ 0.8 ML (5000 Å × 5000 Å, IT = 4.0 nA, Ubias = 1.0 V); (d–f) line scans along the 

lines A, B, and C from the image in (b). The unit cell is indicated by the blue diamond 

(diagonals: a1 = 46.6 Å, a2 = 26.9 Å). Si adatoms (12 per surface unit cell) cell are marked 

as red dots. 

3. Calculation Details 

All calculations were performed based on the pseudo-potential plane-wave within the density 

functional theory [55,56], using the Cambridge serial total energy package (CASTEP) [57]. The effects 

of exchange correlation interaction are treated with the generalized gradient approximation (GGA) of 

Perdew-Burke-Ernzerhof (PBE) [58,59]. The ultra-soft pseudo-potentials [60] describe this electron-ion 

interaction system to high accuracy with a plane wave energy cutoff of 600 eV. The energy calculations 

in the first irreducible Brillouin-zone were conducted by using the (4 × 4 × 1) k-point grid of the 
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Monkhorst-Pack scheme [61]. Spin polarization of platinum was included in the calculations to correctly 

account for its magnetic properties. All atomic positions have been relaxed according to the total energy 

and force using the BFGS scheme [62] based on the cell optimization criterion RMS force of 0.03 eV/Å, 

stress of 0.05 GPa, and displacement of 0.001 Å. The calculation of total energy and electronic structure 

is followed by cell optimization with SCF tolerance of 1 × 10−6 eV/atom. The Pt(111) surface was 

modeled using a slab containing 7 (=15.84 Å) and 10 (=22.63 Å) layers of Pt atoms with a vacuum gap 

in the [111] direction equal to 20.57 Å and 30.37 Å, respectively. Full slab relaxation was performed in 

both cases. 

4. Results and Discussion 

4.1. LEED and STM 

Gold atoms on the Pt(111) face form an ordered structure after evaporation onto the crystal face. 

Typical LEED pattern observed before and after deposition of gold on the Pt(111) face in normal electron 

incidence are shown in Figure 2. In this figure, the unit cell of the platinum lattice is indicated. The 

lattice constant of the platinum surface unit cell is 2.775 Å (primitive fcc (111) unit cell) [63].  

The patterns are shown to demonstrate the quality of the structural order at the surface. It should be pointed 

out that the positions of the LEED spots associated with the Pt(111) substrate remains unchanged during 

the gold deposition at 300 K (Figure 2c), as was previously reported by Sachtler and Samorjai [32] and 

Vogt et al. [40]. Thus, the lattice constant of the first substrate layer remains constant, too, and suggests 

a two-dimensional growth of the first gold layer. 

 

Figure 2. LEED patterns observed during the growth of Au on the Pt(111) surface recorded 

at normal electron incidence for E = 120 eV, and T = 300 K: (a) clean Pt(111)  

for E = 120 eV. kX and kY denote axes in the reciprocal lattice; (b) 1 ML of Au on Pt(111); 

and (c) line profile along the lines from the image in (a,b) demonstrating that the position of 

LEED spots remain unchanged after gold deposition. The unit cell is outlined. 
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Figure 3. STM images of the clean Pt(111) surface: (a) T = 25 K (3734 Å × 3734 Å,  

IT = 141 pA, Ubias = +50 mV); (b) line-scan corresponding to line drawn in (a); and  

(c) T = 300 K (40 Å × 40 Å, IT = 49 pA, Ubias = +48 mV). The unit cell is outlined. STM 

image evidences a hexagonal lattice arrangement of Pt atoms with measured nearest 

neighbor distance of 2.80 Å. 

The results of our STM measurements on the clean Pt(111) surface are presented in Figure 3.  

Figure 3a displays an STM image, taken on a low-index Pt(111) substrate with terraces between  

100 and 300 nm width separated by monoatomic steps. The height of the steps on the Pt(111) surface 

was measured by STM to be 2.26 ± 0.3 Å (Figure 3b). However, one need to remember that the observed 

by STM step height includes geometric and electronic factors. Figure 3c presents atomic resolution of 

the Pt(111) face. The obtained topography shows a hexagonal lattice arrangement of Pt atoms with the 

nearest neighbor distance of 2.80 Å. This value describes the dimension of the surface unit cell and is 

0.90% higher compared to the literature value (=2.775 Å) [63]. Figure 3c demonstrates that the surface 

structure seen in the obtained STM image has a clear long-range character. Figure 4 shows STM images 

of the Pt(111) surface with varying Au coverage in order to illustrate the morphology of the Au layers 

deposited on Pt at room temperature. Figure 4a shows a typical STM image corresponding to a 

submonolayer coverage of θAu ≈ 0.8 ML. An analysis of the STM measurements indicates that for 

coverage less than 1 ML, two-dimensional growth of gold layer is observed. This is in agreement with 

photoelectron spectroscopy study [38], our present and previous AES/LEED measurements [32,39].  

The darker features in Figure 4a represent still visible platinum substrate as predicted in the previous  

studies [32]. Similar to the results observed by us, two-dimensional gold monolayer was obtained by 

electrodeposition of Au on Pt(111) from electrolytes containing µM concentrations of of ݈ܥݑܣସ
ି [42]. 

The line scan in Figure 4b shows that the height of the first gold layer corresponds to the height of a 

single Pt step height equal to 2.26 Å. As the Au coverage is close to 1 ML, Au wets the Pt(111) surface 

completely, as can be seen in Figure 4c. This is not easy to confirm with STM, whether the surface is 

wetted or not. However, the reason for the perfect wetting is because of the high-specific surface free 

energy of the Pt(111) surface (2.299 J/m2 < γPt(111) < 2.489 J/m2) [64–68] as compared with that of the 

Au(111) surface (1.283 J/m2 < γAu(111) < 1.506 J/m2) [64–68]. Since the total specific surface free energy 

should be minimized, a covered Pt(111) surface is favored [69]. Closer view of the STM image 

topography in Figure 4d reveals the presence of well-ordered gold structures. STM images indicate a 
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long-range order in the surface system. The obtained topography shows a hexagonal lattice arrangement 

of Au atoms with a nearest neighbor distance of 2.80 Å, which is exactly the same value as mentioned 

above in the case of Pt atoms. The same value of the surface unit cell after adsorption of gold could 

suggest that the gold atoms are adsorbed in sites (hollow fcc or hcp), which are a direct continuation of 

the Pt lattice ABCABCA. This is in good agreement with the supposition from the spin-resolved 

photoemission studies of Au-Pt(111) system [40], where the best fit of experimental results and 

theoretical model was achieved on that basis. 

 

Figure 4. STM images of Au deposited on Pt(111) at T = 300 K at a coverage θAu ≤ 1.0 ML: 

(a) θAu ≈ 0.8 ML (5000 Å × 5000 Å, IT = 4.0 nA, Ubias = +1.0 V); (b) line scan along  

the line from the image in (a) demonstrating that the height of the gold layer corresponds to 

the height of a single Pt step height; (c) θAu ≈ 1.0 ML (5000 Å × 5000 Å, IT = 2.0 nA,  

Ubias = +1.0 V); and (d) (30 Å × 30 Å, IT = 4.65 nA, Ubias = +159 mV). The unit cell is 

outlined. STM image evidences a hexagonal lattice arrangement of Au atoms with measured 

nearest neighbor distance of 2.80 Å. 
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4.2. DFT 

4.2.1. Structure of Clean Pt(111) 

In the theoretical part of our work, we have calculated multilayer relaxations of the Pt(111) system 

using the slab with 7 and 10 atomic layers. Figure 5a shows the schematic view of relaxed slab structure 

for the seven platinum layers. The platinum low-index surface was modeled by repeated slabs with a  

(1 × 1) surface unit cell with four atoms in each layer. The calculated atomic layer distances for seven 
and ten planes are shown in Table 1. ݀௜ି௝

௑ି௒  defines the distance along the surface normal direction 

between the X atom at the i atomic layer and the Y atom at the j atomic layer. Surface relaxation ݀௜ି௝௑ି௒ 

is characterized as the percent of change of the spacing between layers i and j versus the bulk layer 

spacing (d0). Bulk value (d0) is taken from our GGA calculations and describes average distance between 

atomic planes of seven (=2.30 Å) and ten (=2.29 Å) platinum layers, respectively. Further calculations 

of gold adsorption on Pt(111) surface has been performed on seven platinum layers. 

 

Figure 5. (a) Side view of the relaxed Pt(111) surface for seven layers. Values of denoted 

characteristic inter plane distances are given in Table 1. (b) Considered positions of Au 

adsorption on the Pt(111) surface: A—on top; B—hollow fcc; C—hollow hcp; and  

D—bridge. The unit cell is outlined. The nearest neighbor Pt-Pt distance of 2.83 Å is 

obtained from our theoretical calculations. 

Our calculations for the clean Pt(111) show very good agreement with the above-presented STM  

results and with the other experimental and theoretical literature studies [15,16,18,20–23,26,30,70,71] 

presented in Table 1. Obtained lateral geometrical properties of Pt(111) surface and distances between 

the nearest Pt atoms in the structure (=2.83 Å) are very close to STM measurements (=2.80 Å), with the 

difference about 1%. The first and second interlayer spacings of the clean Pt(111) surface were 

determined to be 2.32 Å and 2.29 Å, respectively, in case of calculated slab with seven atomic layers. 

This corresponds to a +0.87% expansion and −0.43% contraction of the first and second metal layer 

spacings of the ideally terminated Pt(111) clean surface (=2.30 Å), respectively. These values and the 

value obtained in our calculations of lattice constant of the bulk Pt (=3.99 Å) are in excellent agreement 

with the previous GGA calculations [70] and surface X-ray diffraction results [26] (Table 1). However, 
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comparison of our calculations to the quantitative low-energy electron diffraction value of the first 

interlayer spacing shows that our theoretical value (=2.32 Å) is slightly larger (+2%) then the average 

value of 2.27 Å observed experimentally [15,16,18,20–23]. 

Table 1. Distances (݀௜ି௝
௑ି௒) between the atomic planes of the relaxed Pt(111) system, and 

their percentage changes (݀௜ି௝
௑ି௒) with respect to the bulk value (d0), calculated for the slab 

with 7 and 10 atomic layers and compared with experimental [15,16,18,20–23,26,72] and 

theoretical [30,70,71] literature data. Notation of inter-plane distances are the same as in 
Figure 1.	݀௜ି௝

௑ି௒ denotes the interlayer spacing between layers i and j for the X and Y atoms 

type. d0—average distance between atomic planes of seven and ten layers, respectively.  

a0—lattice constant of Pt. GGA—generalized gradient approximation, LDA—local density 

approximation, LEED—low energy electron diffraction, SXRD—surface X-ray diffraction. 

Present Work GGA (CASTEP) Previous DFT study LEED SXRD g 

࢐ି࢏ࢊ
࢐ି࢏ࢊ7 layers ઢ (Å)࢟ି࢞

࢐ି࢏ࢊlayers ઢ 10 (%)࢟ି࢞
࢐ି࢏܌ (%)࢟ି࢞

࢐ି࢏ࢊઢ (Å)࢟ି࢞
࢐ି࢏܌ (%)࢟ି࢞

࢐ି࢏܌ (Å)࢟ି࢞
࢐ି࢏ࢊઢ (Å)࢟ି࢞

 (%)࢟ି࢞

݀ଵିଶ
௉௧ି௉௧ 2.32 +0.87 2.33 +1.75 2.766 h(LDA) 

 2.26 a 

2.31 ± 0.05 +2.0 

+0.44 h(LDA) 2.29 ± 0.1 b 

+0.85 i(LDA) 2.2713 c 

+1.14 j(LDA) 2.26 ± 0.05 d 

+0.85 j(LDA) 2.2655 ± 0.025 e 

 2.29 ± 0.001 f 

݀ଶିଷ
௉௧ି௉௧ 2.29 −0.43 2.29 - 2.746 h(LDA) 

−0.31 h(LDA) 2.26 a   

−0.56 i(GGA) 2.2405 ± 0.025 e   

−0.29 j(LDA) 2.27 ± 0.003 f   

−0.22 j(LDA)    

݀ଷିସ
௉௧ି௉௧ 2.30 - 2.29 -  

−0.15 i(GGA) 
2.26 a  

2.2655 ± 0.05 e 

  

−0.21 j(LDA)   

−0.17 j(LDA)   

݀ସିହ
௉௧ି௉௧ 2.30 - 2.30 +0.43   2.26 a   

݀ହି଺
௉௧ି௉௧ 2.29 −0.43 2.29 -      

݀଺ି଻
௉௧ି௉௧ 2.30 - 2.30 +0.43      

݀଻ି଼
௉௧ି௉௧   2.29 -      

଼݀ିଽ
௉௧ି௉௧   2.29 -      

݀ଽିଵ଴
௉௧ି௉௧   2.30 +0.43      

݀଴ሺÅሻ 2.30  2.29  2.75 h(LDA) 

 2.26 c   

 2.2655 e 2.26  

 2.265 f   

ܽ଴ሺÅሻ 3.99  3.99  

3.99 i(GGA) 

3.92 k(EXP) 
3.92 a  

3.9231 d 

  

3.97 j(LDA)   

3.89 j(LDA)   

a Ref. [15,16]; b Ref. [18]; c Ref. [20]; d Ref. [21]; e Ref. [22]; f Ref. [23]; g Ref. [26]; h Ref. [30];  
i Ref. [70]; j Ref. [71]; k Ref. [72]. 

  



Materials 2015, 8 2945 

 

 

4.2.2. Structure of the Au/Pt(111) System 

Figure 5b shows the four possible gold adsorption sites on the Pt(111) surface with one on-top site 

(labeled as A), two hollow sites: hollow fcc (labeled as B), hollow hcp (labeled as C), and one bridge 

site (labeled as D), In our calculations, we define one monolayer of adsorbed Au atoms corresponding 

to the same atoms as the atomic sites in the surface layer. One Au atom adsorbing on the Pt(111) surface 

corresponds to an adsorption coverage of 0.25 ML. The minimum adsorption energy (Eads) was 

calculated by means of the following total energy difference:  

௔ௗ௦ܧ ൌ ்ܧ	 ൬
ݑܣ

ሺ111ሻݐܲ
൰ െ ሻݑܣሺ்ܧ െ ሺ111ሻሻ (5)ݐሺ்ܲܧ

where ET is the total energy of the system and 
஺௨

௉௧ሺଵଵଵሻ
 ሺ111ሻ refer to the atom-on-metalݐܲ and ,ݑܣ ,

system, the free Au atom, and the bare Pt surface, respectively. 

Table 2 displays the predicted adsorption energies of Au on the Pt(111) surface and the distance 

between the Au atom and its nearest (rNN) and next nearest neighbors (rNNN). A, B, C and D describe 

positions of Au atom on the Pt(111) surface before starting calculations. As one can see, only in the case 

of bridge position D displacement of gold atom towards hollow fcc position B is observed, while the 

other gold adsorption positions described as A, B and C remain unchanged. The comparison of the 

calculated adsorption energies reveals that the preferred position of the Au on the Pt(111) surface is the 

hollow fcc with the Eads = −0.578 eV. At this favorable position, the nearest to the nearest (NN) and 

next-nearest (NNN) neighbor distance is equal to 2.58 Å and 3.76 Å, respectively. The adsorption energy 

of one gold atom in hollow fcc site is negative, which indicates in addition that this adsorption position 

is the most stable. Similar conclusion was obtained in case of a quantitative LEED analysis of the 

structure of Pt(111) (√3 × √3) R30°-S, where the best agreement between experiment and theory has 

been found for a model with a sulfur atom in the three-fold hollow fcc site [21]. Moreover, our theoretical 

studies are in agreement with the spin-resolved photoemission predictions where the Au is adsorbed in 

sites, which are a direct continuation of the Pt lattice [40]. In contrast to very stable hollow fcc site, the 

on-top adsorption position is the most unstable place with Eads = +0.580 eV. Next, taking into account 

our experimental STM results, we have considered structural model of the Au/Pt(111) surface 

reproducing in the best way the topography of the obtained STM images. Structural relaxation has shown 

that such a model is stable. The lateral positions of all gold atoms in the relaxed structure remained the 

same as in the starting configuration. This model assumes that the gold structure is built up by Au hollow 

fcc and hollow hcp atoms (Figure 6). The obtained lateral geometrical properties of this Au/Pt(111) 

model and distances between the nearest gold atoms in the structure (=2.83 Å) are almost the same as 

those following STM measurements (=2.80 Å) with the difference close to 1%. Table 3 presents obtained 

changes in the Pt(111) geometry induced by presence of a two-dimensional gold layer. Namely, we find 

the top interlayer spacing ݀.௉௧ି஺௨ noticeably expanded by +2.16% with respect to the ideal platinum bulk 

value (=2.31 Å). The calculated value of the surface free energy of gold layer equals to γAu = 1.481 J/m2, 

and it is in very good agreement with the value of the surface free energy of Au(111) mentioned in 

literature (1.283 J/m2 < γAu(111) < 1.506 J/m2) [64–68]. 
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Table 2. Calculation results of one Au atom adsorption on the Pt(111) surface.  

Eads—adsorption energy; rNN and rNNN describe the distance to the nearest (NN) and  

next-nearest (NNN) neighbors. D → B means that after calculations gold atom has moved 

from the bridge position D towards the most favorable hollow fcc position B. 

(111) Site Eads (eV) rNN (Å) rNNN (Å) 

Au on top A +0.580 2.58 3.76 
Hollow fcc B −0.578 2.74 3.89 
Hollow hcp C −0.518 2.75 3.92 

Bridge D → B −0.578 2.74 3.89 

Table 3. Calculated distances (ࢅିࢄ࢐ି࢏ࢊ) between the atomic planes of the relaxed Au-Pt(111) 

system, and their percentage changes (ࢅିࢄ࢐ି࢏ࢊ) with respect to the ideal Pt bulk value (d0), for 

the slab with eight atomic layers (see slab and top view of the considered structure in Figure 6). 

࢐ି࢏ࢊ
 (Å) ࢅିࢄ

Adsorption Site B 
8 Layers ࢐ି࢏ࢊ

 (%) ࢅିࢄ

݀.௉௧ି஺௨ 2.36 +2.16 

݀ଵିଶ
௉௧ି௉௧ 2.34 +1.30 

݀ଶିଷ
௉௧ି௉௧ 2.31 - 

݀ଷିସ
௉௧ି௉௧ 2.32 +0.43 

݀ସିହ
௉௧ି௉௧ 2.31 - 

݀ହି଺
௉௧ି௉௧ 2.30 −0.43 

݀଺ି଻
௉௧ି௉௧ 2.33 +0.86 

d0 2.31 - 

 

Figure 6. (a) Side view of the calculated most stable hollow fcc position of a relaxed  

Au atom on the Pt(111) surface; (b) top view of the calculated Au/Pt(111) surface.  

The unit cell is outlined. The nearest neighbor Au-Au distance of 2.83 Å is obtained from 

our theoretical calculations. 
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4.2.3. Density of States 

The calculated electronic structure (density of states—DOS) for the studied adsorption system is 

presented in Figure 7. The DOS curve for bare Pt(111) and Pt(111) covered by Au is displayed in Figure 

7a as red dotted and black line, respectively. In case of Au/Pt(111) surface, the DOS curve was obtained 

by considering gold atoms sitting in the most stable hollow fcc positions. Density of states distributions 

of Pt(111) and Au/Pt(111) systems were calculated for seven (clean platinum) and eight (one gold 

monolayer on platinum) atomic layers, respectively. In the case of density of states for clean Pt(111) 

surface, our results are in very good agreement with previous theoretical studies [73–77]. Changes in the 

electronic properties of our Au/Pt(111) system, compared to Pt(111), are visible. In particular, noticeable 

increase in the intensity of occupied states in the energy range between −5 and −1 eV, and slight change 

of the DOS shape after including of one gold layer into calculations. Both alterations, mainly attributed 

to the interaction of Au atoms with Pt(111) surface [39,40], are represented by the projection of the 

adsorbed gold density of states in Figure 7a. Density of states distribution calculated for the bulk 

platinum presented in Figure 7b, confirms well that the electronic structure of platinum is dominated by 

d state within the whole considered energy range. 

 

Figure 7. Density of states curves for gold on Pt(111): (a) Clean Pt(111) (red dotted line);  

1 ML of Au on Pt(111) (black line). The projection of the adsorbed gold density of states is 

shaded in blue. (b) Clean bulk platinum (black line) and its components associated with s 

(orange line), p (green line) and d (blue line) orbitals. EF denotes Fermi level. 

5. Conclusions 

In this work, experimental and theoretical studies of the geometrical and electronic properties of (111) 

surface of the ordered Au-Pt adsorption system have been presented. The analysis of LEED and STM 

measurements indicates that for a coverage below 1 ML, two-dimensional growth of the first Au 

monolayer takes place. Based on LEED results, no change of the lattice constant after gold adsorption 

was observed. The topography of the obtained STM images of Pt(111) and Au/Pt(111) surfaces on the 

level of the atomic resolution demonstrate that the surface structures have hexagonal arrangement of 
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atoms and that the surface lattice constant is equal to the distance between the nearest platinum surface 

atoms (=2.80 Å). This is in very good agreement (close to 1%) with our presented DFT calculations, 

where the distances between the nearest atoms in the case of bare Pt(111) and Au/Pt(111) surface equal 

to 2.83 Å. It was shown that the first and second interlayer spacings of the clean Pt(111) surface were 

determined to be expanded by +0.87% and contracted by −0.43%, respectively. The calculated 

adsorption energy of the Au atom on the Pt(111) surface is dependent on the adsorption site, and there 

is a preference for a hollow fcc site (Eads = −0.578 eV). In the presence of gold layer on the Pt(111) 

surface, the top interlayer spacing was found expanded by +2.16% with respect to the ideal bulk value. 

Density of states for the Pt(111) surface present very good agreement with previous literature studies, 

while observed changes in the electronic properties of the Au/Pt(111) system below the Fermi level are 

mainly connected to the interaction of Au atoms with Pt(111) surface. 

Acknowledgments 

Katarzyna Krupski acknowledges funding from the University of Warwick Chancellor’s scholarship. 

Work of Paweł Jóźwik and his research stay at the University of Warwick (IX 2014) was supported by 

the Military University of Technology in Warsaw under Grant No. 853/2013/MUT. Work of  

Tomasz Kobiela and his research stay at the University of Warwick (VII 2014) was supported by the 

Warsaw University of Technology. Katarzyna and Aleksander Krupski would like to thank Beata and 

Marek Chirek for useful discussions. Theoretical part of research was partly supported by PL-Grid 

Infrastructure [78]. 

Author Contributions 

Aleksander and Katarzyna Krupski developed the concept and designed the manuscript.  

Marco Moors, Tomasz Kobiela, Paweł Jóźwik, Katarzyna and Aleksander Krupski have done STM 

measurements. Katarzyna Krupski has done DFT calculations. Katarzyna and Aleksander Krupski 

prepared the manuscript. Aleksander Krupski edited the English language. Katarzyna Krupski,  

Marco Moors, Tomasz Kobiela, Paweł Jóźwik, and Aleksander Krupski discussed the manuscript at  

all stages. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Himpsel, F.; Ortega, J.; Mankey, G. Magnetic nanostructures. Adv. Phys. 1998, 47, 511–597. 

2. Larsen, J.; Chorkendorff, I. From fundamental studies of reactivity on single crystals to the design 

of catalysts. Surf. Sci. Rep. 1999, 35, 163–222. 

3. Krupski, A. Growth morphology of thin films on metallic and oxide surfaces. J. Phys.  

Condens. Matter 2014, 26, 053001–053026. 

4. Jiang, M.; Sak, E.; Gentz, K.; Krupski, A.; Wandelt, K. Redox activity and structural transition of 

heptyl viologen adlayers on Cu(100). ChemPhysChem 2010, 11, 1542–1549. 



Materials 2015, 8 2949 

 

 

5. Krupski, A.; Mróz, S. Properties of ultrathin Sb layers on the Ni(111) face. Surf. Rev. Lett. 2003, 

10, 65–72. 

6. Mróz, S.; Nowicki, M.; Krupski, A. Directional elastic peak electron spectroscopy: Theoretical 

description and review of applications. Prog. Surf. Sci. 2003, 74, 109–122. 

7. Krupski, A.; Mróz, S. Leed investigation of the Pb and Sb ultrathin layers deposited on the Ni(111) 

face at T = 150–900 K. Surf. Rev. Lett. 2003, 10, 843–848. 

8. Jurczyszyn, L.; Krupski, A.; Degen, S.; Pieczyrak, B.; Kralj, M.; Becker, C.; Wandelt, K. Atomic 

structure and electronic properties of Ni3Al(111) and (011) surfaces. Phys. Rev. B 2007, 76, 045101, 

doi:10.1103/PhysRevB.76.045101. 

9. Krupski, A. Pb on Mo(110) studied by scanning tunneling microscopy. Phys. Rev. B 2009, 80, 

035424, doi:10.1103/PhysRevB.80.035424. 

10. Miśków, K.; Krupski, A.; Wandelt, K. Growth morphology of Pb films on Ni3Al(111). Vacuum 

2014, 101, 71–78. 

11. Thomas, J.M.; Thomas, W.J. Principles and Practice of Heterogeneous Catalysis; VCH:  

New York, NY, USA, 1997. 

12. Somorjai, G.A. Introduction to Surface Chemistry and Catalysis; Wiley: New York, NY, USA, 

1994. 

13. Masel, R.I. Principles of Adsorption and Reaction on Solid Surfaces; Wiley: New York, NY, USA, 

1996. 

14. Speight, J.G. The Chemistry and Technology of Petroleum, 2nd ed.; Marcel-Dekker: New York, 

NY, USA, 1991. 

15. Kesmodel, L.L.; Samorjai, G.A. Structure determination of the platinum (111) crystal face by  

low-energy-electron diffraction. Phys. Rev. B 1975, 11, 630–637. 

16. Kesmodel, L.L.; Stair, P.C.; Somorjai, G.A. On the relaxation of the Pt(111) surface: Results of 

dynamical LEED calculations. Surf. Sci. 1975, 64, 342–344. 

17. Feder, R. Spin-polarized LEED from low-index surfaces of platinum and gold. Surf. Sci. 1977, 68, 

229–235. 

18. Adams, D.L.; Nielsen, H.B.; van Hove, M.A. Quantitative analysis of low-energy-electron 

diffraction: Application to Pt(111). Phys. Rev. B 1979, 20, 4789–4806. 

19. Bauer, P.; Feder, R.; Mueller, N. Spin polarization in low-energy electron diffraction from Pt(111): 

Experiment and theory. Surf. Sci. 1980, 99, L395–L401. 

20. Feder, R.; Pleyer, H.; Bauer, P.; Mueller, N. Spin polarization in low-energy electron diffraction: 

Surface analysis of Pt(111). Surf. Sci. 1981, 109, 419–434. 

21. Hayek, K.; Glassl, H.; Gutmann, A.; Leohard, H. A LEED analysis of the structure of  

Pt(111)(√3 × √3)R30°-S. Surf. Sci. 1985, 152–153, 419–425. 

22. Ogletree, D.F.; van Hove, M.A.; Samorjai, G.A. LEED intensity analysis of the structures of  

clean Pt(111) and of CO adsorbed on Pt(111) in the c(4 × 2) arrangement. Surf. Sci. 1986, 173,  

351–365. 

23. Materer, N.; Starke, U.; Barbieri, A.; Doell, R.; Heinz, K.; van Hove, M.A.; Samorjai, G.A. 

Reliability of detailed LEED structural analyses: Pt(111) and Pt(111)-p(2 × 2)-O. Surf. Sci. 1995, 

325, 207–222. 



Materials 2015, 8 2950 

 

 

24. Davies, J.A.; Jackson, D.P.; Matsunami, N.; Norton, P.R. Temperature dependence of Pt(111) 

surface relaxation. Surf. Sci. 1978, 78, 274–294. 

25. Van der Veen, J.F.; Smeenk, R.G.; Tromp, R.M.; Saris, F.W. Relaxation effects and thermal 

vibrations in a Pt(111) surface measured by medium energy ion scattering. Surf. Sci. 1979, 79,  

219–230. 

26. Felici, R.; Pedio, M.; Borgatti, F.; Iannotta, S.; Capozi, M.; Ciullo, G.; Stierle, A. X-ray-diffraction 

characterization of Pt(111) surface nanopattering induced by C60 adsorption. Nat. Mater. 2005, 4, 

688–692. 

27. Krupski, A.; Krupski, K.; Bailly, A.; Saint-Lager, M.C.; Baudoing-Savois, R.; Dolle, P.; Becker, C.; 

Wandelt, K. Structure determination of the Pt(111)(2 × 2)-Sn and Pt(111)(√3 × √3)R30°-Sn surface 

alloys: Surface X-ray-Diffraction and DFT study. In preparation. 

28. Grübel, G.; Huang, K.G.; Gibbs, D.; Zehner, D.M.; Sandy, R.S.; Mochrie, S.G.J. Reconstruction of 

the Pt(111) surface: X-ray-scattering measurements. Phys. Rev. B 1993, 48, 18119–18139. 

29. Sandy, A.R.; Mochrie, S.G.J.; Zehner, D.M.; Huang, K.G.; Gibbs, D. Structure and phases of the 

Au(111) surface: X-ray-scattering measurements. Phys. Rev. B 1991, 43, 4667–4687. 

30. Feibelman, P.J. First-principles calculations of stress induced by gas adsorption on Pt(111).  

Phys. Rev. B 1997, 56, 2175–2182. 

31. Davies, P.W.; Quinlan, M.A.; Samorjai, G.A. The growth and chemisorptive properties of Ag and 

Au monolayers on platinum single crystal surfaces: An AES, TDS and LEED study. Surf. Sci. 1982, 

121, 290–302. 

32. Sachtler, J.W.A.; Somorjai, G.A. Influence of ensemble size on CO chemisorption and catalytic  

n-hexane conversion by Au-Pt(111) bimetallic single-crystal surfaces. J. Catal. 1983, 81, 77–94. 

33. Sachtler, J.W.A.; Somorjai, G.A. Cyclohexane dehydrogenation catalyzed by bimetallic Au-Pt(111) 

single-crystal surfaces. J. Catal. 1984, 89, 35–43. 

34. Yeates, R.C.; Somorjai, G.A. Surface structure sensitivity of alloy catalysis: Catalytic conversion 

of n-hexane over Au-Pt(111) and Au-Pt(100) alloy crystal surfaces. J. Catal. 1987, 103, 208–212. 

35. Meyer, R.; Lemire, C.; Shaikhutdinov, S.K.; Freund, H.J. Surface chemistry of catalysis by gold. 

Gold Bull. 2004, 37, 72–124. 

36. Kobiela, T.; Kaszkur, Z.; Duś, R. Fabrication of Au nanostructures in the process of amalgam 

formation followed by Au-Hg alloy thermal decomposition. Thin Solid Films 2005, 78, 152–158. 

37. Kobiela, T.; Moors, M.; Linhart, W.; Cebula, I.; Krupski, A.; Becker, C.; Wandelt, K. 

Characterization of bimetallic Au-Pt(111) surfaces. Thin Solid Films 2010, 518, 3650–3657. 

38. Salmeron, M.; Ferrer, S.; Jazzar, M.; Samorjai, G.A. Photoelectron-spectroscopy study of the 

electronic structure of Au and Ag overlayers on Pt(100), Pt(111), and Pt(997) surfaces. Phys. Rev. B 

1983, 28, 6758–6765. 

39. Vogt, B.; Schmiedeskamp, B.; Heinzmann, U. Spin-resolved photoemission from epitaxial Au 

layers on Pt(111): Coverage dependence of the bandstructure and evidence of surface resonances. 

Z. Phys. B Condens. Matter 1990, 80, 359–364. 

40. Stoppmanns, P.; Heidemann, B.; Irmer, N.; Mueller, N.; Vogt, B.; Schmiedeskamp, B.; Heinzmann, U.; 

Tamura, E.; Feder, R. Au-Induced Surface State on Pt(111) Revealed by Spin-Resolved 

Photoemission with Linearly Polarized Light. Phys. Rev. Lett. 1991, 66, 2645–2648. 



Materials 2015, 8 2951 

 

 

41. Sibert, E.; Ozanam, F.; Maroun, F.; Magnussen, O.M.; Behm, R.J. Potential-Induced Strain 

Relaxation in Au Mono- and Bilayer Films on Pt(111) Electrode Surfaces. Phys. Rev. Lett. 2003, 

90, 0561021–0561024. 

42. Sibert, E.; Ozanam, F.; Maroun, F.; Behm, R.J.; Magnussen, O.M. Diffusion-limited 

electrodeposition of ultrathin Au films on Pt(111). Surf. Sci. 2004, 572, 115–125. 

43. Potter, H.C.; Blakely, J.M. LEED, Auger spectroscopy, and contact potential studies of  

copper-gold alloy single crystal surfaces. J. Vac. Sci. Technol. 1975, 12, 635–642. 

44. Hulse, J.; Kueppers, J.; Wandelt, K.; Ertl, G. UV-Photoelectron spectroscopy from xenon adsorbed 

on heterogeneous metal surfaces. Appl. Surf. Sci. 1980, 6, 453–463. 

45. MaTeck. Available online: http://www.mateck.com/ (accessed on 27 April 2015). 

46. Foiles, S.M.; Baskes, M.I.; Daw, M.S. Embedded-atom-method functions for the fcc metals Cu, Ag, 

Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983–7991. 

47. Friatec. Available online: http://www.friatec.de/ (accessed on 27 April 2015). 

48. Goodfellow. Available online: http://www.goodfellow.com/ (accessed on 27 January 2015). 

49. SigmaAldrich. Available online: http://www.sigmaaldrich.com (accessed on 27 January 2015). 

50. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. 

WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 

2007, 78, 013705, doi:10.1063/1.2432410. 

51. Avouris, Ph.; Wolkow, R. Atom-resolved surface chemistry studied by scanning tunneling 

microscopy and spectroscopy. Phys. Rev. B 1989, 39, 5091–5100. 

52. Piancastelli, M.N.; Motta, N.; Sgarlata, A.; Balzarotti, A.; de Crescenzi, M. Topographic and 

spectroscopic analysis of ethylene adsorption on Si(111)-(7 × 7) by STM and STS. Phys. Rev. B 

1993, 48, 17892–17896. 

53. Giessibl, F.J. Atomic Resolution of the Silicon(111)-(7 × 7) Surface by Atomic Force Microscopy. 

Science 1995, 267, 68–71. 

54. Neddermeyer, H. Scanning tunnelling microscopy of semiconductor surfaces. Rep. Prog. Phys. 

1996, 59, 701–769. 

55. Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects.  

Phys. Rev. A 1965, 140, 1133, doi:10.1103/PhysRev.140.A1133. 

56. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. B 1964, 136, doi:10.1103/ 

PhysRev.136.B864. 

57. Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pichard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. 

First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 

2002, 14, 2717–2744. 

58. Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. 

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for 

exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. 

59. Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple.  

Phys. Rev. Lett. 1996, 77, 3865–3868. 

60. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.  

Phys. Rev. B 1990, 41, 7892–7895. 



Materials 2015, 8 2952 

 

 

61. Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 

5188–5192. 

62. Fischer, T.H.; Almlof, J.J. General methods for geometry and wave function optimization.  

J. Phys. Chem. 1992, 96, 9768–9774. 

63. Pearson, W.B. A Handbook of Lattice Spacings and Structures of Metals and Alloys;  

Pergamon Press: New York, NY, USA, 1967; Volume 2. 

64. Bauer, E. Epitaxy of metals on metals. Appl. Surf. Sci. 1982, 11/12, 479–494. 

65. Tersoff, J. Surface-Confined Alloy Formation in Immiscible Systems. Phys. Rev. Lett. 1995, 74, 

434–437. 

66. Vitos, L.; Ruban, A.V.; Skriver, H.L.; Kollar, J. The surface energy of metals. Surf. Sci. 1998, 411, 

186–202. 

67. Tyson, W.R.; Miller, W.A. Surface free energies of solid metals: Estimation from liquid surface 

tension measurements. Surf. Sci. 1977, 62, 267–276. 

68. De Boer, F.R.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Niessen, A.K. Cohesion in Metals; 

North-Holland: Amsterdam, The Netherlands, 1988. 

69. Campbell, C.T. Bimetallic Surface Chemistry. Annu. Rev. Phys. Chem. 1990, 41, 775–837. 

70. Sinhg-Miller, N.E.; Marzari, N. Surface energies, work functions, and surface relaxations of low 

index metallic surfaces from first-priniples. Phys. Rev. B 2009, 80, 2354071–2354079. 

71. Da Silva, J.L.F.; Stampft, C.; Scheffler, M. Converged properties of clean metal surfaces by all 

electron first-principles calculations. Surf. Sci. 2006, 600, 703–715. 

72. Kittel, C. Introduction to Solid State Physics, 7th ed.; Wiley: New York, NY, USA, 1996. 

73. Kitchin, J.R.; Norskov, J.K.; Barteau, M.A.; Chen, J.G. Modification of the surface electronic and 

chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120,  

10240–10246. 

74. Schminka, L.; Harl, J.; Stroppa, A.; Grueneis, A.; Marsman, M.; Mittendorfer, F.; Kresse, G. 

Accurate surface and adsorption energies from many-body perturbation theory. Nat. Mater. 2010, 

9, 741–744. 

75. Behafarid, F.; Ono, L.K.; Mostafa, S.; Croy, J.R.; Shafai, G.; Hong, S.; Rahman, T.S.; Bare, S.R.; 

Cuenya, B.R. Electronic properties and charge transfer phenomena in Pt nanoparticles on γ-Al2O3: 

Size, shape, support, and adsorbate effects. Phys. Chem. Chem. Phys. 2012, 14, 11766–11779. 

76. Liu, X.; Sui, Y.; Duan, T.; Meng, C.; Han, Y. CO oxidation catalyzed by Pt-embedded graphene: 

A first-principles investigation. Phys. Chem. Chem. Phys. 2014, 16, 23584–23593. 

77. German, E.; Lopez-Corral, I.; Pirillo, S.; Juan, A.; Brizuela, G. A DFT study of cyclopropane 

adsorption on Pt(111). Electronic structure and bonding. Appl. Surf. Sci. 2014, 303, 324–330. 

78. PL-Grid. Available online: http://www.plgrid.pl/en (accessed on 27 January 2015). 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


