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Abstract: Workability is a key performance criterion for mining cemented tailing backfill, 

which should be defined in terms of rheological parameters such as yield stress and plastic 

viscosity. Cemented tailing backfill is basically composed of mill tailings, Portland cement, 

or blended cement with supplementary cement material (fly ash and blast furnace slag) and 

water, among others, and it is important to characterize relationships between paste 

components and rheological properties to optimize the workability of cemented tailing 

backfill. This study proposes a combined model for predicting rheological parameters of 

cemented tailing backfill based on a principal component analysis (PCA) and a  

back-propagation (BP) neural network. By analyzing experimental data on mix proportions 

and rheological parameters of cemented tailing backfill to determine the nonlinear 

relationships between rheological parameters (i.e., yield stress and viscosity) and mix 

proportions (i.e., solid concentrations, the tailing/cement ratio, the specific weight, and the 

slump), the study constructs a prediction model. The advantages of the combined model were 
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as follows: First, through the PCA, original multiple variables were represented by two 

principal components (PCs), thereby leading to a 50% decrease in input parameters in the 

BP neural network model, which covered 98.634% of the original data. Second, in 

comparison to conventional BP neural network models, the proposed model featured a simpler 

network architecture, a faster training speed, and more satisfactory prediction performance. 

According to the test results, any error between estimated and expected output values from the 

combined prediction model based on the PCA and the BP neural network was within 5%, 

reflecting a remarkable improvement over results for BP neural network models with no PCA. 

Keywords: cemented tailing backfill; yield stress; viscosity; principle component analysis 

(PCA); back-propagation (BP) neural network 

 

1. Introduction 

Due to its exceptional performance, high-density unclassified tailing paste represents the future 

developmental direction of cemented tailing backfill as well as an inexorable trend in the promotion of 

“green mines” [1–4]. In this regard, an appropriate evaluation of the consistency, flowability, and 

workability of cemented tailing backfill is crucial for determining the ease and homogeneity with which 

it can be mixed, transported, placed, and compacted while avoiding the clogging or failure of pipelines 

transporting cemented tailing backfill. Many studies have examined the consistency, flowability, and 

workability of cemented tailing backfill with respect to its rheological behavior [5–11]. It is generally 

accepted that the rheological behavior of cemented tailing backfill can be approximated using the 

Bingham model [12], which requires two independent properties to describe the rheological behavior, 

including yield stress, which corresponds to the shear stress required to initiate the flow of cemented 

tailing backfill, and plastic viscosity, which describes paste resistance to the flow of cemented tailing 

backfill under some external stress [13,14]. 

The selection of rheological parameters is of vital importance because they are influenced by solid 

concentrations, the specific weight, the tailing/cement ratio, the slump, and physical/chemical properties 

of mill tailings (e.g., their type, chemistry, particle size distribution, and mineralogy). Traditionally,  

the rheological behavior of cemented tailing backfill is evaluated by the slump only from an empirical 

perspective without considering the theoretical level, and therefore the relationship between the slump and 

the rheological behavior is not reflected accurately [15–18]. As indicated in Hu [19], Christensen [20], 

Clayton [21], Pashias [22], and Bentz [23], models relating the slump height to yield stress have been 

developed for cone and cylinder slump tests, and with respect to test results from the viscometer,  

there is typically good agreement between predicted and test results. 

Rheological properties and their prediction using the neural network have been investigated in the 

last two decades [24–28], and some scholars have used the BP neural network to predict other properties 

of cemented tailing backfill [29–31] and found simulation results for prediction models to be in good 

agreement with experimental results. However, the neural network has several limitations in predicting 

rheological properties: First, there are too many input variables (i.e., solid concentration, specific weight, 

tailings/cement ratio, and slump) required for predicting rheological properties, which affects the 
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training speed of the constructed neural network. Second, input variables are highly correlated with one 

another, hindering the construction of a high-quality prediction model and reducing its accuracy. If it is 

possible to reduce the number of input variables and eliminate their correlations, then a sharp decrease 

in the computation time and a substantial increase in accuracy can be achieved. 

Based on the aforementioned limitations of using the neural network model to predict rheological 

parameters of cemented tailing backfill, this study proposes a prediction model combining the principle 

component analysis (PCA) and the back-propagation (BP) neural network. To eliminate correlations 

between factors and reduce the number of input factors, the sample data were compressed by a PCA in 

advance not only to improve predictive accuracy but also to enhance the computational efficiency 

of the BP neural network while incurring almost no major change in the data. According to the 

results, the combined model predicted rheological parameters more precisely than the BP neural 

network model. The relative error was within 5%, and the predicted outcome was in good agreement with 

experimental results. 

2. Cemented Tailing Backfill Properties and Their Measurement 

2.1. Material Characterization 

2.1.1. Tested Tailings 

Tested tailing materials were obtained from an iron mine located in the northeastern region of China. 

Mill tailings are main ingredients of cemented tailing backfill, and physical properties (e.g., bulk density, 

specific gravity, porosity, the specific surface area, and the particle size distribution) and the chemical 

composition play key roles in the performance of cemented tailing backfill. 

Based on the Specification of Soil Test (SL 237-1999) [32], the bulk density and special gravity of 

tailings were measured using the picnometer method (SL 237-005-1999) [32] and the relative density 

method (SL 237-004-1999) [32], respectively. Physical properties of tailing materials are shown in Table 1. 

Table 1. Physical properties and particle size distribution of tailings. 

Physical properties Particle size distribution 

Specific gravity 2.69 d10 (μm) 25.07 
Bulk density (t/m3) 1.58 d50 (μm) 122.08 

Porosity (%) 44.12 d90 (μm) 288.59 
Specific surface area (m2/m3) 872,000   

As shown in Figure 1, the particle size distribution (PSD) was well graded, and d10, d50, and d90 of 

tailings were 25.07, 122.08, and 288.59 μm, respectively. The coefficient of uniformity of the particle 

size composition was 5.506. It should be noted that tailings satisfying backfilling requirements general 

refer to a coefficient of uniformity between 4 and 6 [33]. 

The main chemical elements of mill tailings are shown in Table 2. The proportions of metallic 

elements and related oxides (Fe, Al2O3, CaO, and MgO) were relatively high in unclassified tailings 

(8.85%, 4.59%, 6.78%, and 5.08%, respectively), and other metallic elements showed lower content in 

tailing samples. Nonmetallic elements and related oxides in mill tailings were mainly SiO2, S, and P 
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(71.96%, 0.11%, and 0.07%, respectively), indicating that the low content of sulphide and phosphide 

had little damaging effect on the quality (e.g., strength deterioration) of cement-based backfill materials. 

 

Figure 1. The particle size distribution of Xin-Cheng mill tailings. 

Table 2. Main chemical elements of mill tailings. 

Element Contents (%) Element Contents (%) 

Cu <0.005 Sn 0.058 
K 1.33 Na 0.4 
Pb 0.014 SiO2 71.96 
Zn 0.037 Al2O3 4.59 
Fe 8.85 CaO 6.78 
Mn 0.05 MnO 5.08 
P 0.07 S 0.11 

Based on X-ray diffraction, a mineralogical analysis was conducted (Figure 2). From the peak height 

of the XRD spectra, the major mineral elements of tailings were quartz, mica, and hematite, whose main 

chemical components were SiO2, Al2O3, Fe2O3, and K2O, and these analysis results are consistent with 

those in Table 2. 

 

Figure 2. An X-ray diffraction analysis (XRD) of mill tailings. 
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2.1.2. Binders 

Portland cement (PC I) was used as the binder for cemented tailing backfill and was added to the 

mixture to increase the support potential. The main physical properties are shown in Table 3. 

Table 3. Main physical properties of Portland cement (PC I). 

Item Value Item Value

Fineness (<0.045 mm), % 11.0 28 days flexural strength, MPa 6.6 
Initial setting time, min 162 28 days uniaxial compressive strength, MPa 31.5 
Final setting time, min 203   

2.1.3. Water 

Water from the mine site was added to reach desired consistency, and the chemical properties of water 

used in cemented tailing backfill were taken into account during the mixture design because this was 

important for water selection as well as for its direct impact on the mechanical strength development of 

the backfill body. Table 4 shows the chemical composition of water used to prepare all sample mixtures. 

As shown in the table, there was a high level of sulphide, indicating a need to consider its effects on the 

backfill body. 

Table 4. The chemical composition of water used. 

Element Water (mg/L) Element Water (mg/L) 

As 0.022 Cl− 63.71 
Mn 0.52 SO4

2− 742.3 
Cu 0.058 PO4

2− <0.1 
Pb <0.01 HCO3

− 29.4 
Zn 0.094 NO3

− 14.14 
Cr 0.001   

2.2. Testing and Measurement 

Because cemented tailing backfill is multi-phase slurry, rheological properties are affected by several 

factors. In this study, the solid concentration of cemented tailing backfill (PC-1), the tailing/cement ratio 

(PC-2), the specific weight of slurry (PC-3), and the slump (PC-4) were selected as input factors, and 

the yield stress (Y1) and viscosity (Y2) of cemented tailing backfill were considered as output factors. 

Tailings in the experiment were obtained from a filling plant, and bulk cement was used as the cementing 

material. In the experiment, the yield stress and viscosity of cemented tailing backfill were measured 

using the torque rheometer, and a cylindrical slump container (10 cm in diameter and 10 cm in height) 

was used to detect the slump of cemented tailing backfill based on solid concentrations ranging from 

70% to 80% and tailing/cement ratios being 4, 6, 8, and 10. Table 5 shows the mix proportions and 

rheological properties of cemented tailing backfill obtained from the experiment. 

Rheological properties such as viscosity and yield stress increased with an increase in the solid 

concentration. However, viscosity and yield stress showed no particular response to the tailing/cement 
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ratio, whereas the slump was affected by the ratio. An increase in the tailing/cement ratio led to a slight 

increase in the slump. However, this relationship weakened with an increase in the solid concentration. 

Table 5. Mix proportions and rheological parameters of cemented tailing backfill. 

Solid Concentration 
(%) 

Tailing/Cement 
Ratio 

Specific Weight 
(kg/m3) 

Slump 
(m) 

Yield Stress 
(Pa) 

Viscosity 
(Pa·s) 

70 4 1.85 0.080 43.85 1.35 
70 6 1.84 0.083 48.74 1.51 
70 8 1.84 0.085 50.92 1.57 
70 10 1.84 0.088 35.62 1.09 
72 4 1.89 0.080 73.51 2.27 
72 6 1.89 0.080 67.44 2.08 
72 8 1.89 0.081 65.50 2.03 
72 10 1.89 0.082 66.48 2.05 
74 4 1.94 0.060 142.15 4.41 
74 6 1.94 0.065 111.05 3.43 
74 8 1.94 0.070 80.47 2.48 
74 10 1.93 0.073 94.42 2.91 
76 4 1.99 0.037 175.96 5.44 
76 6 1.99 0.039 177.56 5.46 
76 8 1.99 0.040 154.19 4.79 
76 10 1.99 0.033 124.95 3.86 
78 4 2.04 0.017 300.05 9.38 
78 6 2.04 0.019 341.78 10.82 
78 8 2.04 0.016 338.25 7.56 
78 10 2.04 0.017 322.47 9.24 
80 4 2.13 0.012 533.92 12.11 
80 6 2.13 0.013 542.38 13.06 
80 8 2.13 0.014 521.31 10.97 
80 10 2.13 0.012 532.10 12.53 

3. The PCA Method 

3.1. The Background of the PCA Method 

In complex problems, the PCA method is an effective technique for reducing data dimensions to 

prevent information repetitions and redundancies to address principal contradictions [34–37]. The PCA 

method is a statistical procedure by which an information matrix of possibly correlated original sample 

data is converted into a set of values for linearly uncorrelated variables known as principal components 

by using an orthogonal transformation. Without loss of original sample information, the PCA method 

focuses on the crux of problems not only to reduce information dimensions but also to eliminate any 

information redundancy and nonlinearity. In this study, a prediction index system for rheological 

parameters of cemented tailing backfill was developed, and then a data matrix of samples was obtained 

according to experimental results. Rheological parameters of cemented tailing backfill can be considered 
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a question involving n sets of experimental samples and p numbers of influencing factors (p < n) based 

on the following data matrix: 

ܺ ൌ ൦

ଵଵݔ ଵଶݔ ⋯ ଵ௣ݔ
ଶଵݔ ଶଶݔ ⋯ ଶ௣ݔ
⋯ ⋯ ⋯ ⋯
௡ଵݔ ௡ଶݔ ⋯ ௡௣ݔ

൪ (1)

where X is an n × p matrix representing n sets of data in which each data set consists of p variables and 

xij represents parameters to be tested. 

Given dimensional inconsistencies in factors influencing rheological parameters of cemented tailing 

backfill, and it is necessary to standardize sample data as follows:  

௜௝ݔ
∗ ൌ

௜௝ݔ െ ௝ݔ

ඥݎܽݒሺݔ௝ሻ
 (2)

where ݔ௝  denotes the mean of the j-th variable;ඥݎܽݒሺݔ௝ሻ denotes the standard deviation of the j-th 

variable; i = 1, 2, …, n; and j = 1, 2, …, p. 

Standardized data were rearranged such that p numbers of combined variables were obtained by a 

linear combination of original variables (x1, x2,…, xp): 

൞

ଵݕ ൌ ଶݔଵଶݑଵ൅ݔଵଵݑ ൅ ⋯൅ ௣ݔଵ௣ݑ
ଶݕ ൌ ଶݔଶଶݑଵ൅ݔଶଵݑ ൅ ⋯൅ ௣ݔଶ௣ݑ

⋯⋯
௡ݕ ൌ ଶݔ௡ଶݑଵ൅ݔ௡ଵݑ ൅ ⋯൅ ௣ݔ௡௣ݑ

 (3)

where ݑ௜௝ is the loading of the principle component representing the weight of the j-th variable projected 

onto the i-th principle component. 
In addition, the coefficients iju had to meet the requirement ݑ௞ଵ

ଶ ൅ ௞ଶݑ
ଶ ൅ ⋯൅ ௞௣ݑ

ଶ ൌ 1 ,  

k = 1,2, …, p, which were determined by the following principles: 

(i) yi should be linearly uncorrelated with yj (i ≠ j; i, j = 1,2, …, p). 

(ii) y1 is the first principal component and has the largest variance in a linear combination of x1, x2, …, 

xp. That is, it accounts for as much variability in data as possible. y2 is the second principal component 

and has the largest variance in a linear combination of x1, x2, …, xp, which are linearly uncorrelated with 

y1. Similarly, yp is the p-th principal component and has the largest variance in a linear combination of 

x1, x2, …, xp, which are linearly uncorrelated with y1, y2, …, yp−1. 

As stated earlier, rearranged integrated variables were defined as the first, second … and p-th principal 

components of original variables such that y1 had the highest ratio of the total variance and other 

integrated variables y2, y3, …, yp had gradually decreasing variances. The number of principle 

components was chosen based on the accumulated contribution ratio of variances such that the larger 

the accumulated contribution, the less the information loss. However, more calculations were required 

in both cases. Accordingly, the suitable accumulated contribution ratio was set to approximately 80%, 

and only several largest principle components were picked for constructing the next model to simplify 

the structure of the system and grasp the essence of the question. 
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3.2. The Application of the PCA Method for Reducing Rheological Property Data 

Although prediction models for rheological properties based on artificial intelligence methods have 

been introduced [17,18], correlations and overlaps between input data have been ignored, which can 

have unfavorable effects on the accuracy of prediction models. To overcome this limitation, the PCA 

method was adopted before constructing prediction models with the BP neural network. New input 

factors (principal components) were obtained by the orthogonal transformation of original input factors. 

The number of input factors was reduced effectively almost without any change in original information, and 

correlations between input factors were eliminated, improving the precision and efficiency of calculations. 

Standardized preprocessing [34–37] was employed using the experimental results for rheological 

properties of cemented tailing backfill tabulated in Table 6. Then a Pearson correlation analysis was 

conducted to investigate the interrelationships between four input factors tabulated in Table 7.  

There were distinct correlations between the specific weight and solid concentration of cemented tailing 

backfill, as well as between the slump and the solid concentration, indicating the existence of some 

information overlap between input factors, and therefore the use of principle components was required. 

Table 6. The standardized processing of index data.  

Item PC-1 PC-2 PC-3 PC-4 

1 −1.43303 −1.31339 −1.24818 1.01734 
2 −1.43303 −0.43780 −1.35077 1.11851 
3 −1.43303 0.43780 −1.35077 1.18596 
4 −1.43303 1.31339 −1.35077 1.28713 
5 −0.85982 −1.31339 −0.83782 1.01734 
6 −0.85982 −0.43780 −0.83782 1.01734 
7 −0.85982 0.43780 −0.83782 1.05106 
8 -0.85982 1.31339 −0.83782 1.08478 
9 −0.28661 −1.31339 −0.32487 0.34286 

10 −0.28661 −0.43780 −0.32487 0.51148 
11 −0.28661 0.43780 −0.32487 0.68010 
12 −0.28661 1.31339 −0.42746 0.78127 
13 0.28661 −1.31339 0.18808 −0.43279 
14 0.28661 −0.43780 0.18808 −0.36534 
15 0.28661 0.43780 0.18808 −0.33162 
16 0.28661 1.31339 0.18808 −0.56769 
17 0.85982 −1.31339 0.70103 −1.10727 
18 0.85982 −0.43780 0.70103 −1.03982 
19 0.85982 0.43780 0.70103 −1.14099 
20 0.85982 1.31339 0.70103 −1.10727 
21 1.43303 −1.31339 1.62434 −1.27589 
22 1.43303 −0.43780 1.62434 −1.24216 
23 1.43303 0.43780 1.62434 −1.20844 
24 1.43303 1.31339 1.62434 −1.27589 
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Table 7. A Pearson correlation analysis of factors influencing rheological properties. 

Pearson Correlation Analysis 

Rheological properties 
Solid 

Concentration (%) 

Tailing/Cement 

ratio 

Specific 

Weight (kg/m3) 

Slump  

(m) 

Solid 

concentration (%) 

Pearson correlation coefficient 1 0.000 0.992 ** −0.969 ** 

Significance (two-sided) 0.000 1.000 0.000 0.000 

N 24 24 24 24 

Tailing/cement 

ratio 

Pearson correlation coefficient 0.000 1 −0.012 0.041 

Significance (two-sided) 1.000 0.000 0.957 0.849 

N 24 24 24 24 

Specific weight 

(kg/m3) 

Pearson correlation coefficient 0.992 ** -0.012 1 -0.955 ** 

Significance (two-sided) 0.000 0.957 0.000 0.000 

N 24 24 24 24 

Slump (m) 

Pearson correlation coefficient −0.969 ** 0.041 −0.955 ** 1 

Significance (two-sided) 0.000 0.849 0.000 0.000 

N 24 24 24 24 

Note: ** Distinct correlations between input factors are in bold type. 

Analyses were conducted using data in Table 6 based on SPSS (Statistical Package for the Social 

Sciences) and its PCA function, and principle components and scree plots were obtained. As shown in 

Figure 3, the X-axis shows principal components sorted by the decreasing fraction of the total variance 

explained, and the Y-axis shows corresponding eigenvalues. Based on the scree plots, there large 

differences in eigenvalues between PC-1 and PC-2 and between PC-3 and PC-4, indicating that the first 

two components of the rearranged information matrix included original information. Therefore, PC-1 

and PC-2 were considered the most important indices, and PC-3 and PC-4 were considered  

non-significant indices. The scree plot was consistent with the cumulative contribution of the first  

two sets of data in Table 8. Despite some errors in the substitution of two sets of data in the rearranged 

information matrix for the original four sets of data, test data accounted for 98.634% of information in 

the original sample, produced reliable calculations, and enhanced computing efficiency because of a 

reduced number of factors. In addition, the results satisfy the requirement that the ratio of required 

information accounts for more than 75%–85% of original information in the PCA. Further, the results 

in Table 8 are consistent with Figure 3. 
  



Materials 2015, 8 2085 

 

 

 

Figure 3. A PCA scree plot. 

Table 8. Variance and cumulative contributions of PC-1, PC-2, PC-3, and PC-4. 

Components 
Initial Eigenvalue Accumulated Contributions 

Total Variance (%) Accumulation (%) Total Variance (%) Accumulation (%) 

PC-1 2.945 73.622 73.622 2.965 73.622 73.622 
PC-2 1.000 25.012 98.634 1.000 25.012 98.634 
PC-3 0.048 1.210 99.844    
PC-4 0.006 0.156 100.000    

A coefficient matrix of principle components was calculated and tabulated based on SPSS in Table 9 

for relationships between two principle components and original data: 

ܼଵ ൌ 0.338 ൈ PC1 െ 0.009 ൈ PC2 ൅ 0.337 ൈ PC3 െ 0.334 ൈ PC4 (4)

ܼଶ ൌ 0.027 ൈ PC1 െ 0.999 ൈ PC2 ൅ 0.015 ൈ PC3 െ 0.016 ൈ PC4 (5)

Principal components (PCs) were determined using the standardized data in Table 6 according to  

the aforementioned formula. The prediction model was constructed using the results tabulated in  

Table 10. 

Table 9. The weight factor matrix of principle components. 

Coefficient 
Principle Component 

Z1 Z2 

PC1 0.338 0.027 
PC2 0.009 0.999 
PC3 0.337 0.015 
PC4 0.334 0.016 
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Table 10. Experimental data with the PCA method. 

No. Z1 Z2 Yield Stress (Pa) Viscosity (Pa·s) 

1 −1.23297 1.27439 43.85 1.35 

2 −1.30922 0.399356 48.74 1.51 

3 −1.33962 −0.47488 50.92 1.57 

4 −1.3813 −1.34893 35.62 1.09 

5 −0.90094 1.290709 73.51 2.27 

6 −0.90882 0.416121 67.44 2.08 

7 −0.92796 −0.4583 65.50 2.03 

8 −0.9471 −1.33271 66.48 2.05 

9 −0.30905 1.30441 142.15 4.41 

10 −0.37325 0.430723 111.05 3.43 

11 −0.43745 −0.44297 80.47 2.48 

12 −0.51369 −1.31801 94.42 2.91 

13 0.31663 1.31757 175.96 5.44 

14 0.286221 0.443342 177.56 5.46 

15 0.267078 −0.43108 154.19 4.79 

16 0.338045 −1.30693 124.95 3.86 

17 0.908515 1.331271 300.05 9.38 

18 0.878106 0.457043 341.78 10.82 

19 0.904017 −0.4181 338.25 7.56 

20 0.884874 −1.2925 322.47 9.24 

21 1.469734 1.351618 533.92 12.11 

22 1.450588 0.47721 542.38 13.06 

23 1.431445 −0.39721 521.31 10.97 

24 1.446093 −1.27216 532.10 12.53 

4. The Prediction of Rheological Properties of Mining Cemented Tailing Backfill 

4.1. The Prediction Model Combining the PCA Method with the BP Neural Network 

The BP learning algorithm can be divided into two phases: The transmission of operating signals 

(forward propagation) and the back-propagation of errors [38–40]. During the forward propagation of 

operating signals, the input signal propagates from the input layer through a hidden layer to the output 

layer, and the status of each layer of neurons influences only the next layer of neurons. If the output 

cannot be achieved in the output layer, then it should be switched to the back-propagation process of 

error signals. During the back-propagation of error signals, the error signal propagates from the output 

end to the input layer in a layer-by-layer manner, and the weight of the network is regulated by error 

feedback. With the adoption of the gradient descent method in the weighted vector space, the continuous 

modification of weight and offset values is applied during dynamically interactive searches, making the 

real output of the network closer to the expected one to achieve information extraction and memory,  

as shown in Figure 4. 
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Figure 4. The topological structure of a three-layer BP neural network. 

Given a set of N samples (XK, YK) (k = 1,2, …, N) corresponding to the j-th unit in the l-th layer, the 

output of the j-th node with the input of k samples can be described as  
1l l l

jk ij jk
j

net W O    (6)

where ௜ܹ௝
௟  represents the weight and ௝ܱ௞

௟ିଵ represents the output of the j-th node in the (l−1)-th layer 

when the k-th sample is imputed. 
The output of the l-th node can be expressed as ௝ܱ௞

௟ ൌ ݂ሺ݊݁ݐ௝௞
௟ ሻ	such that the sigmoid function is 

adopted as the activation function f: 

݂ሺݔሻ ൌ
1

1 ൅ ݁ି௫
 (7)

The error function can be expressed as 

 21

2K jk jk
i

E Y Y   (8)

where ௝ܻ௞ is the actual output of the j-th unit such that the total error can be calculated by 

ܧ ൌ
1
2ܰ

෍ܧ௞

ே

௞ୀଵ

 (9)

If l k
jk l

jk

E

net






, then the steps of the algorithm can be described as follows: 

Step 1: The initial weight is assigned randomly. 

Step 2: The following processes are repeated until E  , where   is predetermined precision: 

(i) Calculations for k = 1 to N: 
The forward propagation of the input signal: l

jkO , l

jknet , and jkY  of each unit with k = 2, …, N; 

The back-propagation of the error signal: l

jk  of each unit in the hidden layer. 

(ii) The weight correction: 
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First, a set of correlated variables is transformed into a set of linearly uncorrelated variables called 

principle components obtained from the PCA such that obtained variables are adopted as input variables 

in the BP neural network, as shown in Figure 5. 

 

Figure 5. The prediction model based on the BP neural network combined with the PCA method. 

4.2. The Design and Training of the Prediction Model 

The network topology and calculation procedures introduced in the previous section were adopted. 

X1 and X2 were employed as input factors, and the yield stress and viscosity of cemented tailing backfill 

were employed as output factors. Experimental data from the PCA tabulated in Table 10 were divided 

into two groups: A training data set (1–20) and a prediction sample set (21–24). For the construction of the 

prediction model, the learning rate and the momentum coefficient were set to 0.972 and 0.8, respectively. 

A three-layer network was adopted in the optimization calculation such that the node numbers were 

7, 15, and 2. MATLAB was used to obtain the prediction results tabulated in Tables 11 and 12.  

The prediction error for the BP neural network model combined with the PCA method was less than 5%. 

In sum, the BP neural network prediction model combined with the PCA method clearly enhanced 

predictive accuracy in comparison to conventional ANNs with no PCA. The PCA method could identify 

the correlations between input variables and reduced the number of input variables, enabling the 

construction of an accurate prediction model. 

Table 11. Comparisons of predicted yield stress between the PCA model and the non-PCA model. 

No. 
Expected Value of 

Yield Stress (Pa) 

PCA Model Non-PCA Mode 

Predicted Value with 

the BP Neural Network

Relative 

Error (%)

Predicted Value with 

the BP Neural Network 

Relative 

Error (%)

21 533.92 514.86 3.57 475.94 10.86

22 542.38 537.93 0.82 503.55 7.16

23 521.31 513.28 1.54 476.95 8.51

24 532.10 506.93 4.73 504.38 5.21
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Table 12. Comparisons of predicted viscosity between the PCA model and the non-PCA model. 

No. 
Expected Value of 

Viscosity (Pa·s) 

PCA Model Non-PCA Model 

Predicted Value with 
BP-ANN

Relative 
Error (%)

Predicted Value with 
rBP-ANN 

Relative 
Error (%)

21 12.11 11.61 4.17 11.40 5.84
22 13.06 12.89 1.33 12.12 7.16
23 10.97 10.69 2.54 10.04 8.51
24 12.53 12.42 0.89 17.77 6.09

5. Conclusions 

It is important to characterize the interrelationships between paste components and rheological 

properties to optimize the workability of cemented tailing backfill. In this regard, experiments were 

conducted to examine rheological properties of cemented tailing backfill by considering the solid 

concentration and the tailing/cement ratio. Intercorrelations between the content of components and 

rheological properties were comprehensively investigated. An increase in the solid concentration 

increased rheological properties of cemented tailing backfill. Rheological properties and the specific 

weight increased with an increase in the solid concentration. However, rheological properties showed 

no particular response to the tailing/cement ratio, whereas the slump was affected by the ratio. 

Based on the experimental results, a prediction model was constructed. More specifically, the BP 

neural network was combined with the PCA method to predict rheological properties of cemented tailing 

backfill. The PCA method could identify intercorrelations between input variables and reduced the 

number of input variables, making it possible to construct an accurate prediction model with no changes 

in major information in sample data. That is, the proposed approach accurately and quickly predicted 

rheological properties through a simple network structure. The BP neural network prediction model 

combined with the PCA method clearly enhanced predictive accuracy in comparison to conventional 

ANNs without the PCA method. Validation results show that the error between estimated and output 

values obtained using the proposed prediction model was within 5%, reflecting a remarkable 

improvement over that for conventional ANN prediction models without the PCA method. 
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