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Abstract: The dynamics of a disclination loop (s = ˘1/2) in nematic liquid crystals constrained
between two coaxial cylinders were investigated based on two-dimensional Landau–de Gennes
tensorial formalism by using a finite-difference iterative method. The effect of thickness
(d = R2 ´ R1, where R1 and R2 represent the internal and external radii of the cylindrical cavity,
respectively) on the director distribution of the defect was simulated using different R1 values.
The results show that the order reconstruction occurs at a critical value of dc, which decreases with
increasing inner ratio R1. The loop also shrinks, and the defect center deviates from the middle of the
system, which is a non-planar structure. The deviation decreases with decreasing d or increasing R1,
implying that the system tends to be a planar cell. Two models were then established to analyze the
combined effect of non-planar geometry and electric field. The common action of these parameters
facilitates order reconstruction, whereas their opposite action complicates the process.

Keywords: liquid crystal; order reconstruction; disclination loop; cylindrical wall; biaxial transition;
Landau–de Gennes theory

1. Introduction

The equilibrium configuration of a confined nematic liquid crystal (NLC) is caused by interplay
among surface interaction, elastic distortion, and finite-size effect. Confined systems that suffer
from continuous symmetry-breaking transitions often display topological defects [1–4], which are
utilized in new-generation LC devices. Therefore, study of defects is an important field in physics.
In particular, defects in nanoconfined LC cells have received increased research attention. A weak
local perturbation in an LC confined in a nanoscale cell can stimulate an apparent mesoscopic or even
macroscopic response [5].

Eigenvalue exchange/order reconstruction occurs under severe confinement in the
presence of antagonistic anchorings, and this mechanism relaxes surface-induced frustrations.
Order reconstruction structures have been investigated in detail [6–11] for various boundary
conditions in nematic cells bounded by parallel walls, for which the characteristic linear size of the
confining plates is large and virtually infinite compared with the cell thickness. These structures
are stable in a sufficiently thin cell [6,7], whose gap is comparable with the order parameter length
ξ0 (characteristic length for order-parameter changes), or when a sufficiently strong electric or
magnetic field is applied [8,9]. Studies [12–14] revealed that mesoscopic Landau–de Gennes theory
can accurately predict the structural and phase behavior of severely confined LCs.

Although LC defects have been intensively studied theoretically and experimentally, LC shells
have been rarely investigated. LC shells have received increased research interest because of their
potential to generate colloids with a valence, which can be used to build colloidal architectures for
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photonic applications. Several scholars have numerically simulated the possible defect configurations
in nematic and smectic shells [15–17].

NLCs in a cylindrical cavity have been studied for approximately 40 years. Cylindrical geometry
is the most convenient geometry after planar cell geometry for theoretical and experimental analyses.
As such, all experimentally observed and theoretically possible configurations of the director field

Ñ
n

yield a complete or approximate analytic description [18]. The possible equilibrium configurations of
an NLC in a cylindrical cavity primarily depend on how

Ñ
n is anchored to the cylinder surface.

In this study, we investigated the structural behavior of a nanoscale NLC system confined in
a cylindrical cavity with a topological defect loop by using the finite-difference iterative method.
The outline of the paper is as follows. In Section 2, we introduce the phenomenological model
employed and describe the geometry of the problem and our parametrization. The results are
presented in Section 3, and the conclusions are summarized in Section 4.

2. Theoretical Basis

2.1. Free Energy

Our theoretical argument is based on Landau–de Gennes theory [19], wherein the orientational
order of LC is described by a second-rank symmetric and traceless tensor [3]:

Q “

3
ÿ

i“1

λi
Ñ
e i b

Ñ
e i (1)

where
Ñ
e i is the orthogonal unit vector representing the eigenvector of Q, and λi is its eigenvalue.

The range of eigenvalues must be λi P

ˆ

´
1
3

,
2
3

˙

to interpret Q as the traceless second-moment tensor

of the molecular distribution function. Q vanishes in the isotropic phase, whereas this parameter has
two degenerate eigenvalues in the uniaxial ordering and can be represented by

Q “ S
ˆ

Ñ
n b

Ñ
n ´

1
3

I
˙

(2)

where
Ñ
n is the nematic director pointing along the local uniaxial ordering direction, and S is

the uniaxial scalar parameter expressing the magnitude of fluctuations about the nematic director.
In Equation (2), S can be either positive or negative. The ensemble of molecules represented by Q
tends to align along

Ñ
n when S is positive and tends to lie in the plane orthogonal to

Ñ
n when S is

negative. Finally, the LC is in a biaxial state when all the eigenvalues of Q are distinct. The degree of
biaxiality is expressed by the parameter β2 defined as [20]

β2 “ 1´
6
“

tr
`

Q3˘‰2

“

tr
`

Q2
˘‰3 , (3)

This equation is a convenient parameter for illustrating spatial inhomogeneities of Q and ranges
in the interval [0,1]. All uniaxial states with two degenerate eigenvalues correspond toβ2 = 0, whereas
states with maximal biaxiality correspond to β2 = 1. As tr(Q3) = 3detQ, states with β2 = 1 are those
with det Q = 0, which implies that at least one eigenvalue of Q vanishes.

The Landau–de Gennes free energy density of LC is given by f = fbulk{Qαβ} + felastic{Qαβ,5} +
fdielectric{Qαβ}, in which

fbulk “
A
2

trQ2 ´
B
3

trQ3 `
C
4

´

trQ2
¯2

(4)
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is the bulk energy that describes a homogeneous phase. In fbulk, B and C are constants, and A is
assumed to vary with temperature T in the form of A = a (T ´ T*), where a is a positive constant
and T* is the nematic supercooling temperature. Equation (4) provides the bulk equilibrium value of

the uniaxial scalar order parameter in Equation (2) Seq=
B

4C

˜

1+

c

1´
24AC

B2

¸

, which depends on the

temperature.
The free-energy felastic, which penalizes gradients in the tensor order parameter field, is given in

the form
felastic “

1
2

L |∇Q|2 (5)

where the one-elastic-constant approximation is used for simplicity, and the elasticity of the system is
represented by a single positive elastic constant L.

The dielectric contribution to the free energy density is given by [21]

fdielectric “ ´
ε0

2

Ñ

E ¨ ε
Ñ

E (6)

where ε0 is the vacuum electric permeability constant, and ε is the dielectric tensor to describe the

local anisotropic response of the nematic ordering to
Ñ

E . ε is generally expressed as

ε “ εiI` εaQ (7)

where εi = (ε‖ + 2εK)/3 and εa = (ε‖ ´ εK)/Seq are isotropic and anisotropic dielectric susceptibilities,

respectively. When εa > 0, similar to the following calculation, nematic uniaxial ordering is along
Ñ

E
and therefore fdielectric can be rewritten as

fdielectric “ ´
ε0

2

ˆ

εi
Ñ

E
2
` εa

Ñ

E ¨Q
Ñ

E
˙

(8)

2.2. Geometry of the Problem

Let us consider an NLC confined between two coaxial cylindrical surfaces whose internal and
external radii are R1 and R2, and the thickness of the shell is d = R2 ´ R1 (Figure 1a). The standard
polar cylindrical coordinates pr, ϑ, zq and the corresponding local frame

´

Ñ
e r,

Ñ
e ϑ,

Ñ
e z

¯

are introduced,

where
Ñ
e z points along the symmetry axis,

Ñ
e r is the radial unit vector emanating from the symmetry

axis, and
Ñ
e ϑ :“

Ñ
e z ˆ

Ñ
e r. The electric field

Ñ

E is applied along the
Ñ
e r axis direction, i.e.,

Ñ

E “ E
Ñ
e r,

which promotes the alignment of the nematic director along the
Ñ
e r axis.

LC molecules on the surfaces of internal and external cylinders are strongly anchored
along the parallel and perpendicular directions, respectively. According to the investigations of
Cavallaro et al. [22], we make the assumption that the LC texture exhibits a cylindrical symmetry
along the cylindrical axis, i.e., the nematic orientation is independent of ϑ. By varying the polar angle
θ1 on the internal surface, where θ1 is the angle with respect to

Ñ
e z in the plane ϑ-z, we have verified

that the choice of θ1 = 0 has the minimum energy, i.e., the director field has no azimuthal component
and occurs in the plane r-z. This is a realistic choice of boundary condition for a cylindrical surface in
industrial production. Generally, a homogenous planar alignment is achieved firstly by rubbing on
flexible substrate, and then the substrate is fit on the solid cylinder, with the rubbing direction along
the symmetric axis. It follows that the texture can be discussed in terms of 2D nematics corresponding
to each radial slice. In the plane r-z, the nematic director is given by

Ñ
n “ psinβ, 0, cosβq, where â is

the angle with respect to
Ñ
e z (as shown in Figure 1) and the order tensor Q can be represented as
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Q pr, zq “

¨

˚

˝

Qrr 0 Qrz

0 Qϑϑ 0
Qrz 0 Qzz

˛

‹

‚

, (9)

Hence,
Ñ
e ϑ is always an eigenvector of Q. This configuration rules out distortions twisted

along
Ñ
e ϑ. Qrz in Equation (9) reveals the departures of the eigenframe

´

Ñ
e 1,

Ñ
e 2,

Ñ
e 3

¯

of Q from
´

Ñ
e r,

Ñ
e ϑ,

Ñ
e z

¯

, with both frames coinciding when Qrz = 0.
We denote the free boundary conditions at the upper and lower lateral walls z = ˘dz/2, with

initial uniaxial ordering by total rotations of ´π/2 (z = dz/2) and +π/2 (z = ´dz/2). These boundary
conditions are consistent with the generation of a defect loop with topological charge s = ´1/2.
Figure 1b shows the director profile in a cross-section along an arbitrary radius of the system.
The results are also applicable to the defect loop with topological charge s = 1/2, with exchanged
conditions of the upper and lower walls.
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( )sin ,0,cosn = β β
, where â is the angle with respect to ze


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( )
0

, 0 0 ,
0

rr rz

rz zz

Q Q
Q r z Q

Q Q
ϑϑ

 
 =  
 
 

 (9) 

Hence, eϑ

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Figure 1. Geometry of the problem. (a) Sketch of cylindrical cavity filled with NLCs; and (b) the 
director profile in a cross-section along an arbitrary radius of the system. 

2.3. Scaling and Dimensionless Evolution Equations 

We introduced the following dimensionless quantities: 
4

3(4 )
Bf f
C

 
≡  

 
 , 0ij ijQ Q q≡ , 

0z z≡ ξ , 0r r≡ ξ , 0a a iqε = ε ε , ( )0 0 0 02 iE q L A= ξ ε ε , 0E E E= , where 0 4q B C=  

is the superheating order parameter at the nematic superheating temperature T**, and 

0 2
0

4L CL
Bq B

ξ = =  is the characteristic length for order-parameter changes. Equations (4), (5), 

and (8) can be reduced to 

( )22 3 21 1
12 3 16bulk
Af trQ trQ trQ= − +


     (10) 

21
2elasticf Q= ∇   (11) 

2 21
dielectric a rrf E Q E

A
 = − + ε 

  


 (12) 

Figure 1. Geometry of the problem. (a) Sketch of cylindrical cavity filled with NLCs; and (b) the
director profile in a cross-section along an arbitrary radius of the system.

2.3. Scaling and Dimensionless Evolution Equations

We introduced the following dimensionless quantities: rf ” f {

«

B4

p4Cq3

ff

, rQij ” Qij{q0, rz ” z{ξ0,

rr ” r{ξ0, rεa “ εaq0{εi, E0 “ pq0{ξ0q

b

2L{ rAεiε0, rE “ E{E0, where q0 “ B{4C is the superheating

order parameter at the nematic superheating temperature T**, and ξ0 “

d

L
Bq0

“

c

4CL
B2 is the

characteristic length for order-parameter changes. Equations (4), (5), and (8) can be reduced to

rfbulk “
rA

12
tr rQ2 ´

1
3

tr rQ3 `
1

16

´

tr rQ2
¯2

(10)

rfelastic “
1
2

ˇ

ˇ

ˇ

r∇ rQ
ˇ

ˇ

ˇ

2
(11)

rfdielectric “ ´
1
rA

”

rE2 `rεa rQrr rE2
ı

(12)
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where the reduced parameter rA “
24AC

B2 defines the temperature scale. Isotropic–nematic transition

occurs at rA “ 8{9. In polar cylindrical coordinates, Equation (11) can be expressed precisely by

rfe “
1
2

»

–

˜

B rQrr

Brr

¸2

`

˜

B rQrr

Brz

¸2

`

˜

B rQϑϑ
Brr

¸2

`

˜

B rQϑϑ
Brz

¸2

`

˜

B rQzz

Brr

¸2

`

˜

B rQzz

Brz

¸2
fi

fl

`

»

–

˜

B rQrz

Brr

¸2

`

˜

B rQrz

Brz

¸2
fi

fl`
1
rr2

´

rQ2
rr `

rQ2
ϑϑ `

rQ2
rz ´ 2 rQrr rQϑϑ

¯

.

(13)

Thus, the reduced uniaxial ordering has the form

rQ “ rSp3
Ñ
n b

Ñ
n ´ Iq

2
, (14)

where rs “
Seq

q0
“ 1`

a

1´ rA is the reduced uniaxial scalar parameter at equilibrium.

We compute the evolution of LC with dynamic theory for tensor order-parameter field Q(r,z,t).
The local values of the scalar-order parameter S and the director

Ñ
n can be calculated from Q by using

the highest eigenvalue and the associated eigenvector, respectively. According to [23], the evolution
equation describing the dynamics of Q can be written as

BQ
Bt
“ Γ

„

´
δ f
δQ

`
1
3

tr
ˆ

δ f
δQ

˙

I


, (15)

where Γ = 6D*/[1 ´ 3tr(Q2)]2, D* is the rotational diffusion for the nematic, and δ f {δQ is assumed to
be symmetrical.

Numerical calculations are performed using the reduced variables. When the functional
derivatives in Equation (15) are evaluated, the following evolution equations for rQ can be obtained.

B rQrr

Bt
“ rΓ

«

´
rA
6
rQrr ` p rQ2qrr ´

´

tr rQ2
¯

˜

rQrr

4
`

1
3

¸

´
2
rr2

´

rQrr ´ rQϑϑ
¯

` rQrr,rrrr `
1
rr
rQrr,rr `

rQrr,rzrz



,
(16)

B rQϑϑ
Bt

“ rΓ

«

´
rA
6
rQϑϑ ` p rQ2qϑϑ ´

´

tr rQ2
¯

˜

rQϑϑ
4
`

1
3

¸

´
2
rr2

´

rQϑϑ ´ rQrr

¯

` rQϑϑ,rrrr `
1
rρ
rQϑϑ,rr `

rQϑϑ,rzrz



,
(17)

B rQzz

Bt
“ rΓ

«

´
rA
6
rQzz ` p rQ2qzz ´

´

tr rQ2
¯

˜

rQzz

4
`

1
3

¸

` rQzz,rrrr `
1
rr
rQzz,rr `

rQzz,rzrz

ff

, (18)

B rQrz

Bt
“ rΓ

«

´
rA
3
rQrz ` 2p rQ2qrz ´

1
2

´

tr rQ2
¯

rQrz ´
2 rQrz
rr2 ` 2 rQrz,rrrr `

1
rr

2 rQrz,rr ` 2 rQrz,rzrz

ff

. (19)

with rΓ “ Γ ˆ pBq0q. We adopt the two-dimensional finite-difference method developed in our
previous studies [24,25] to obtain the numerical simulation results. Here, we let the system relax
from the initial boundary conditions given in Section 2.2, and the initial conditions of the upper and
lower half in the bulk are specified by total rotations of ´π/2 and +π/2, respectively, consistent
with the boundary conditions at the upper and lower walls given above. We consider only the
equilibrium configurations that correspond to the global minimum F. In our numerical calculations, a
discretization with a time step given by 10´10 is sufficient to guarantee the stability of the numerical
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procedure. In addition, our equilibration runs are 2 ˆ 106, which is adequate for the system to reach
the equilibrium.

3. Results

According to parameters given in [26], a = 0.195 ˆ 106 J/m3, B = 7.155 ˆ 106 J/m3,
C = 8.82 ˆ 106 J/m3, L = 10.125 ˆ 10´12 J/m can be easily obtained. In our simulations, the scaled
temperature is set to rA “ 2{3, which corresponds to rs “ 1`

a

1{3. The rotational diffusion D* is
set to 0.35, which is the value used in [26], and the dielectric anisotropy is set to ∆ε = 13.2 (εK = 6.5).
We then obtain the exact values ξ0 = 2.64 nm and E0 = 43.1 V/um. We focus on the dependence of

structure transition on thickness (d) and then on the structure transition induced by electric field (
Ñ

E ).

3.1. Structure Transition with Different Values of Thickness d and Internal Radius R1

We first analyze the equilibrium textures in the case of R1 = 30 ξ0 with different values of d.
Figures 2 and 3 show the director field profile and the calculated biaxiality β2 in a cross-section
along an arbitrary azimuth for different values of d. At relatively large thicknesses, the nematic
system shows the defect core structure (Figure 2a,b) and is uniaxial everywhere (β2 = 0), except
for a small region around the defect core (Figure 3a,b). When d decreases, the defect core clearly
explodes along z (Figure 2c), and a large biaxiality propagates along z inside the system (Figure 3c).
Further decrease in d results in the creation of a biaxial wall, which connects the two orthogonal
uniaxial directions imposed by two cylindrical surfaces (Figures 2d and 3d) at a critical value of
dc = 11.2 ξ0. In summary, the system has transitioned from the eigenvector rotation configuration
with a defect loop into the eigenvalue exchange/order reconstruction configuration by developing
a thin biaxial nematic layer, which forms a cylindrical wall in the nematic system. The transition
process is similar to that conducted in a planar cell in our previous studies [24,25].

Figures 2 and 3 show that the defect center is not located in the middle of the system but shifts
to the internal surface; this phenomenon differs from the case of a planar cell [24,25]. Non-planar
cylindrical geometry causes disclination loops to shrink, and the loop will not disappear under
internal surface confinement [27]. Figure 3 shows that the deviations ∆(d) for different thicknesses (d)
are 1.6 ξ0 (d = 15 ξ0), 1.3 ξ0 (d = 13 ξ0), 0.95 ξ0 (d = 11.8 ξ0), 0.85 ξ0 (d = 11.2 ξ0), 0.45 ξ0 (d = 9 ξ0), and
0.18 ξ0 (d = 6 ξ0). These finding indicate that ∆(d) decreases with decreasing d, even after eigenvalue
exchange (Figure 3e,f). This behavior is due to the gradual transformation of the system to a planar
structure with decreasing d.

The relative deviations δ(d) = ∆(d)/d are calculated and normalized by δ(d)/δ(15 ξ0) to analyze
the influence of non-planar geometry. Figure 4 shows the curves of δ(d)/δ(15 ξ0) as a function of
d/ ξ0. In the figure, the relative deviations decrease with decreasing thickness d.

A clearer explanation of this phenomenon is as follows: For a planar hybrid-aligned cell (R1Ñ8),
the defect center is located in the middle of the system, with the energy on both sides of the
defect equal. While for the non-planar cylindrical geometry, if the director configuration keeps the
configuration of a planar cell, the energy on the inner side of the defect will be lower than that on the
outer side, because that the volume on the inner side is smaller, relative to the outer side. Thus the
defect center shifts to the inner side, and the director configuration of the nematic meanwhile changes,
until the system reaches equilibrium. For fixed R1, the volume differences on the two sides of the
middle of the system decrease with decreasing d, thus deviations decrease with decreasing d.

8077



Materials 2015, 8, 8072–8086

Materials 2015, 8, page–page 

7 

1.5 3.0 4.5 6.0 7.5 9.0 10.5
-5.0

-2.5

0.0

2.5

5.0

z/
ξ 0

(r-R1)/ξ0

(b)

1.5 3.0 4.5 6.0 7.5 9.0 10.5
-5.0

-2.5

0.0

2.5

5.0

z/
ξ 0

(r-R1)/ξ0

(c)

1.5 3.0 4.5 6.0 7.5 9.0 10.5
-5.0

-2.5

0.0

2.5

5.0

z/
ξ 0

(r-R1)/ξ0

(d)

3.0 4.5 6.0 7.5 9.0 10.5 12.0
-5.0

-2.5

0.0

2.5

5.0

z/
ξ 0

(r-R1)/ξ0

(a)

 
Figure 2. Director field profile at the equilibrium state in a cross-section along an arbitrary azimuth 
inside the coaxial cylindrical system for R1 = 30 ξ0 with different thicknesses (d). The red dotted lines 
represent the middle of the simulation system. (a) d = 15 ξ0; (b) d = 13 ξ0; (c) d = 11.8 ξ0; and (d) d = 11.2 ξ0. 
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Figure 2. Director field profile at the equilibrium state in a cross-section along an arbitrary azimuth
inside the coaxial cylindrical system for R1 = 30 ξ0 with different thicknesses (d). The red dotted
lines represent the middle of the simulation system. (a) d = 15 ξ0; (b) d = 13 ξ0; (c) d = 11.8 ξ0; and
(d) d = 11.2 ξ0.
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Figure 3. Biaxiality β2 for different thicknesses (d) in a cross-section along an arbitrary azimuth 
inside the coaxial cylindrical system for R1 = 30 ξ0. The dotted and dashed lines represent the middle 
of the simulation system and the center of the defect, respectively. (a) d = 15 ξ0; (b) d = 13 ξ0;  
(c) d = 11.8 ξ0; (d) d = 11.2 ξ0; (e) d = 9 ξ0; and (f) d = 6 ξ0. 
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Figure 4. Curves of calculated δ(d)/δ(15 ξ0) as a function of d/ξ0. 

Figure 3. Biaxiality β2 for different thicknesses (d) in a cross-section along an arbitrary azimuth inside
the coaxial cylindrical system for R1 = 30 ξ0. The dotted and dashed lines represent the middle of the
simulation system and the center of the defect, respectively. (a) d = 15 ξ0; (b) d = 13 ξ0; (c) d = 11.8 ξ0;
(d) d = 11.2 ξ0; (e) d = 9 ξ0; and (f) d = 6 ξ0.

The energy calculation shows that the energy in the “inner” region of the cylindrical geometry
is higher than that in the “outer” region, indicating that more energy can be saved by shrinking the
disclination to a smaller radius to reduce its total length. In addition, the shrinking of the disclination
to a smaller radius also helps to decrease the total energy of the system.
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The conditions of R1 = 20 ξ0 and R1 = 40 ξ0 are also investigated to explore the influence of
internal radius R1 on equilibrium texture and transition. The critical dc values for different R1 values
are shown in Figure 5. The value of dc increases with decreasing R1. This behavior indicates that
the smaller the internal radius R1, the earlier the biaxial transition occurs. Therefore, a non-planar
cylindrical system induces easy biaxial transition. The cylindrical system gradually flattens with
increasing R1. Thus, we predict that dc gradually becomes equal to that of a planar cell with
increasing R1.

Figure 6 shows the biaxiality β2 in a cross-section for different values of R1 with fixed thickness
d = 11.8 ξ0. Deviations ∆(d) are 1.25 ξ0 (R1 = 20 ξ0), 0.95 ξ0 (R1 = 30 ξ0), and 0.8 ξ0 (R1 = 40 ξ0);
this finding indicates that ∆(d) decreases with increasing R1 or with gradual flattening of the system.
That is because for fixed d, the volume ratio on the two sides of the middle of the system decreases
with increasing R1. We predict that ∆(d) gradually approaches zero when R1 approaches infinity.
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Figure 6. Biaxiality β2 in a cross-section along an arbitrary azimuth inside the coaxial cylindrical 
system for different internal radii (R1) with a certain thickness d = 11.8 ξ0. The dotted and dashed 
lines represent the middle of the simulation system and the center of the defect, respectively.  
(a) R1 = 20 ξ0; (b) R1 = 30 ξ0; and (c) R1 = 40 ξ0. 
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Figure 6. Biaxiality β2 in a cross-section along an arbitrary azimuth inside the coaxial cylindrical
system for different internal radii (R1) with a certain thickness d = 11.8 ξ0. The dotted and dashed lines
represent the middle of the simulation system and the center of the defect, respectively. (a) R1 = 20 ξ0;
(b) R1 = 30 ξ0; and (c) R1 = 40 ξ0.
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3.2. Structure Transition Induced by Electric Field
Ñ

E

In this section, two models are established to analyze the combined effect of geometry and

electric field
Ñ

E . Boundaries on both coaxial cylindrical surfaces are exchanged for the two models, as
shown in Figure 7. Simulations are conducted at internal radius R1 = 30 ξ0 and thickness d = 15 ξ0.
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Figures 8 and 9 show the director field profile and the calculated biaxiality β2 in a cross-section
along an arbitrary azimuth as a function of rE for model I, and Figures 10 and 11 show the results for
model II, respectively. The disclination loops shift to the internal surface at rE “ 0, which is caused
by the non-planar cylindrical geometry. The defect is pushed further toward the internal surface for
model I with increasing rE, whereas the defect initially shifts to the middle of the system and then
to the external surface for model II. Because of the strong anchoring boundaries, the defects exhibit
dramatic changes in shape as the distance between defect center and the surface boundary decreasing,
especially when the defect center lies very close to the surface, a biaxial layer is established, that is
order reconstruction occurs [9,24,25]. Our results show that order reconstruction occurs at critical
values of rEc pIq “ 0.21 and rEc pIIq “ 0.25 for models I and II, respectively. For comparison, a planar cell
is also simulated with the same parameters, and the corresponding reduced critical value of electric
field is rEc0 “ 0.24. The values are clearly ranked as follows: rEc pIq ă rEc0 ă rEc pIIq.

Non-planar cylindrical geometry induces disclination loops to shrink for both models, whereas

electric field
Ñ

E , which tends to enforce the nematic director along the
Ñ
e r axis, expulses the defect

to the internal and external surfaces for models I and II, respectively. It means that the effects of

the cylindrical geometry and electric field
Ñ

E are common for model I, but opposite for model II.
Hence, the transition process differs between the two models. The common action of the cylindrical

geometry and electric field
Ñ

E for model I makes the defect close to the surface boundary more easily

than model II, since the opposite action of the cylindrical geometry and electric field
Ñ

E makes it
difficult for the defect to be close to the surface boundary. From the above, the common action

of the cylindrical geometry and electric field
Ñ

E for model I facilitates order reconstruction, while

the opposite action of the cylindrical geometry and electric field
Ñ

E for model II complicates order

reconstruction. For a planar cell, only the action of electric field
Ñ

E exists. Considering these factors,
our result rEc pIq ă rEc0 ă rEc pIIq is reasonable.

Note that the radial direction uniform electric field has been assumed, which is difficult to
implement or almost impossible in practice. Our results only give the qualitative analysis about
the effect of the electric field as well as the combined effect of geometry and the electric field. We can
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conclude that for the actual cylindrical symmetric radial direction electric field E prq “
E0

r
, the same

conclusion is reached in nature. The detailed and definite results for the actual cylindrical symmetric
radial direction electric field are a task for the future.
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and (d) rE “ 0.21.
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Figure 9. Biaxiality β2 in a cross-section along an arbitrary azimuth inside the cylindrical system for
different rE values for model I. (a) rE “ 0; (b) rE “ 0.1; (c) rE “ 0.15; and (d) rE “ 0.21.

Materials 2015, 8, page–page 

12 

 
Figure 9. Biaxiality β2 in a cross-section along an arbitrary azimuth inside the cylindrical system for 

different E  values for model I. (a) 0E = ; (b) 0.1E = ; (c) 0.15E = ; and (d) 0.21E = . 

 
Figure 10. Director field profile at the equilibrium state in a cross-section along an arbitrary  

azimuth inside the cylindrical system for different E  values model II. (a) 0E = ; (b) 0.1E = ;  
(c) 0.2E = ; and (d) 0.25E = . 

Figure 10. Director field profile at the equilibrium state in a cross-section along an arbitrary azimuth
inside the cylindrical system for different rE values model II. (a) rE “ 0; (b) rE “ 0.1; (c) rE “ 0.2; and
(d) rE “ 0.25.
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Figure 11. Biaxiality β2 in a cross-section along an arbitrary azimuth inside the cylindrical system for
different rE values for model II. (a) rE “ 0; (b) rE “ 0.1; (c) rE “ 0.2; and (d) rE “ 0.25.

4. Conclusions

Structural transitions of an NLC confined between two coaxial cylinders were investigated
through Landau–de Gennes theory by using a two-dimensional finite-difference iterative method.
We considered the cylindrical symmetry configuration about the cylindrical axis. The effects of the

shell thickness d, as well as the strength of the electric field
Ñ

E , were also analyzed. The results
show that order reconstruction occurs in a thin enough shell or under a strong enough electric
field. The non-planar system causes the defect center to deviate from the middle of the system to

the internal surface. The common action of the electric field
Ñ

E along the
Ñ
e r axis and the non-planar

geometry facilitates order reconstruction, whereas their opposite action complicates the process.
By using the obtained parameters, we easily determined the characteristic length ξ0 ~2.64 nm

and the critical separation dc ~30 nm, which is higher than our simulation result for a planar cell
(~27 nm) [24,25]. The non-planar cylindrical system facilitates biaxial transition. We speculate that dc

gradually becomes equal to that of a planar cell with increasing R1.
One thing should be pointed out specially here. In our investigation of the effect of thickness d

and internal radius R1 in Section 3.1, only the effect of non-planar geometry exists, and the results for
the two models are similar. Thus we give the results of Model I only in our manuscript.

Various structures of LC cells may be designed to improve the optical characteristics of an LC

cell. Different directions of
Ñ

E may also be applied and may yield unpredictable optical abnormalities
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because of the generated defects. The evident effect of
Ñ

E on the dynamic behavior of LC around
the defects and transitions between the topologically different states can contribute to the design of
advanced LC modes.

Our simulation describes an isolated and stabilized defect reasonably well. A natural question is
whether our simulation describes a realistic scenario within such a coaxial cylindrical nematic system.
In fact, defect rings with alternating winding signs exist when the defect spacing in the z direction is
large enough. With defect spacing decreasing, the defect rings gradually annihilate at a characteristic
length. Identifying the detailed effects of the defect spacing in the z direction as well as the electric
field on the defect structure are tasks for the future.

Comparison of experimental works with numerical results in nematic shells is rare because
shells are difficult to produce in a controlled manner. Thus far, microfluidics has provided a natural
method to overcome this limitation. Nevertheless, future theoretical and experimental investigations
must be performed to determine the effects of electromagnetic field, temperature, or boundary
anchoring on nematic shells and even smectic or cholesteric shells, especially when degenerate planar
anchoring condition is prescribed on the cylinder surface; this would be a good and interesting topic.
In addition, the geometry of a bookshelf on curved surfaces is also an interesting task for the future.
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