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Abstract: C.I. Natural Red 4 dye, also known as carmine or cochineal, was adsorbed onto 

the surface of spongin-based fibrous skeleton of Hippospongia communis marine 

demosponge for the first time. The influence of the initial concentration of dye, the contact 

time, and the pH of the solution on the adsorption process was investigated. The results 

presented here confirm the effectiveness of the proposed method for developing a novel 

dye/biopolymer hybrid material. The kinetics of the adsorption of carmine onto a marine sponge 

were also determined. The experimental data correspond directly to a pseudo-second-order 

model for adsorption kinetics (r2 = 0.979–0.999). The hybrid product was subjected to 

various types of analysis (FT-IR, Raman, 13C CP/MAS NMR, XPS) to investigate the  

nature of the interactions between the spongin (adsorbent) and the dye (the adsorbate).  

The dominant interactions between the dye and spongin were found to be hydrogen bonds and 
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electrostatic effects. Combining the dye with a spongin support resulted with a novel hybrid 

material that is potentially attractive for bioactive applications and drug delivery systems. 

Keywords: C.I. Natural Red 4; carmine; dye adsorption; kinetic model; marine sponge; 

spongin; Hippospongia communis 

 

1. Introduction 

The synthetic dyes used in foodstuffs have relatively low production costs, high stability, and 

resistance to environmental conditions. This group of substances can be used to create a wide range of 

colors, as well as offering water solubility. They are also resistant to sudden changes in pH, temperature 

and light. In some cases, however, they may have a harmful effect on living organisms, and may contain 

undesirable additional substances [1,2]. Natural dyes used in foodstuffs, in turn, do not pose any risk to 

health, although they have weaker coloring properties and lower color intensity. They may also be 

sensitive to a number of factors: high temperature, changes in pH, and oxidants. Natural dyes are usually 

obtained by a process of extraction, purification, and concentration from plant or animal sources [3,4]. 

Carmine (7-α-D-glucopyranosyl-9,10-dihydro-3,5,6,8-tetrahydroxy-1-methyl-9,10-dioxo-anthracene 

carboxylic acid), molecular weight 492 (g/mol), also called C.I. Natural Red 4 or cochineal, is a dark red 

dye obtained from dried and crushed insects from the Coccidae family (scientific name: Dactylopius 

coccus) [5,6]. Industrial carmine is obtained by mixing carminic acid with metal salts [7]. The structure 

of carminic acid is based on anthraquinone with multiple hydroxyl groups, a carboxyl group, and a 

glucose sugar unit side chain. The molecular structure of the dye is shown in Figure 1. This dye is 

susceptible to thermal decomposition and photodegradation, but exhibits relatively high chemical and 

biological stability [8]. 

 

Figure 1. Structure of carminic acid. 

As carmine is a harmless substance, it is used chiefly in the food, pharmaceuticals and cosmetics 

industries. It is also used as an indicator in analytical chemistry, and to a lesser extent in textiles and 

plastics [7]. Further uses include as a dye in microbiology, and for the modification of ion exchangers [9]. 

Due to the presence of its OH groups, it can form complexes with metal ions like U(VI), Th(IV),  

Mo(VI)) [10]. Carmine has also many biological applications: it can prevent coronary artery disease [11],  

it plays a role in treating Alzheimer’s disease [12], it exhibits cancer chemopreventive activity, [13] and 

is used in drug delivery products [14]. There exist a few publications concerning the adsorption of carmine 
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or carminic acid, and they relate exclusively to inorganic adsorbents: TiO2 [15], glass beads [16], 

Amberlite XAD-16 resin [9], Ag nanoparticles [17], methacrylic acid (MAA) and 4-vinylpyridine [18],  

and multiwalled carbon nanotubes [19]. Carmine or carminic acid have also been combined with SiO2  

sol-gel glass [8], hydrotalcite [20], and amorphous SiO2 [21]. 

Marine demosponges are representatives of the class Demospongiae that belong to the phylum 

Porifera [22]. The species Hippospongia communis also known as bath sponge, belongs to the 

Dictyoceratida order. Species of this order possess three-dimensional non-mineralized fibrous skeletons, 

which are composed mainly of the protein-like substance spongin. Spongin of Demosponges is very 

similar to collagen type XIII found in vertebrates which was confirmed by characteristic aminoacid 

composition [23,24]. Genomic and complementary DNA studies showed that spongin (similarly to 

collagen) contain the classic collagenous Gly-Xaa-Yaa motif where Hydroxyproline (Hyp) occupies any 

of the positions in the triplet motif, other than Gly (Glycine) position [25,26]. This biopolymer of still 

unknown chemical structure seems to be a naturally occurring hybrid between collagen and keratin-like 

proteins that contains sulfur, bromine and iodine [27–31]. Because of its unique physico-chemical, 

structural, and mechanical properties [32] spongin-based skeletons of bath sponges has been broadly 

used since ancient times in household use and medicine [33]. Nowadays, their biocompatibility [34] and 

specific arrangement of structural elements like pores, struts and channels offers model scaffolds for 

tissue engineering [35,36]. Spongin-containing marine sponges, including Mediterranean H. communis, 

are examples of renewable resources due to their ability to be cultivated under marine ranching 

conditions [37,38]. This property enhances the biomimetic potential of bath sponges as organisms, and 

that of spongin as a specific biological material. In contrast to the attempts to dye bath sponges with 

synthetic dyes, their ability to adsorb natural dyes is still not studied. 

Thus, Cohn in his patent [39] reported as follows: “It has been suggested, as disclosed in the English 

Patent to Asher 14,866 of 19 July 1905, that sponges of some unidentified type could be dyed when 

treated first with a metallic mordant at some unidentified temperature and then dyed in an alizarine bath 

at temperatures of 70–80 °C (158–176 °F). The primary objection to sponges dyed in accordance with 

the suggestions in the Asher patent is that the colors are not fast, and the resulting so-called sponge 

bleeds when wetted with warm water. Further, mordants of the type in general use in 1905, such as the 

basic aluminum sulfates suggested, in order to be effective must necessarily be heated at temperatures 

approaching the boiling point (even if the boiling point is not actually reached). Sponges dyed by the 

method disclosed in this English patent do shrivel up despite the claim in the patent that shriveling is 

avoided when the alizarine lakes are maintained at temperatures not exceeding the 70–80 °C. However, 

a more serious objection than simply that the sponge becomes shriveled and cannot retain the color  

of the lake in which it was dyed, is that it is otherwise deleteriously affected in its physical 

characteristics—for instance, it loses to a large extent its elasticity, or spring, or “life”. Any temperature 

as high as 70–80 °C appears to destroy or at least partially close the inhalant pores, the canals, the apoyles, 

and the oscules, and thus interferes with the water flow through the sponge’s passageways. 

It has been found that bleached sponges dye much more readily than unbleached ones. Bleached 

sponges also require about one-half as much color as unbleached sponges do. The bleaching of the 

sponge apparently doubles its color absorbing qualities. Bleaching, particularly with the permanganate 

method proposed, gives the sponge aseptic properties and the developers used in Step I act additionally 

as preservatives to prevent bacteria and mold growth [39]. 
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To our best knowledge, there are no reports to date concerning the adsorption of natural dyes using 

sponginous skeletons of marine sponges as a support. The aim of the present study is to obtain interesting 

dye/biopolymer hybrid materials. Combining the dye with a support improves its bioavailability and its 

resistance to chemical and thermal degradation. This enhanced stability creates opens the door for future 

applications, which may include creating a biocompatible material used in drug delivery. 

2. Results and Discussion 

2.1. Spectrophotometric Investigation 

Absorption spectra (400–900 nm) were obtained for carmine in water at different pH values. Over 

the analyzed pH range (3–11) the absorption maxima varied only slightly. The color of the C.I. Natural 

Red 4 water solution showed marginal variation, as it exists in several forms [17]. Measurements of the 

absorbance of C.I. Natural Red 4in a solution with pH = 7 over the full visible light range showed a 

maximum absorbance at 513 nm. The absorption spectrum of carmine in water undergoes a red shift 

(shift to a longer wavelength absorption) upon addition of metal salts [40]. Based on the literature data, 

for pure carminic acid this value equals 493 nm. 

2.2. Effect of Contact Time and Dye Concentration 

Figure 2 shows the effect of carmine concentration on the amount of the dye adsorbed (qt) on the  

H. communis spongin scaffold, plotted against time. 

 

Figure 2. Adsorption capacity for C.I. Natural Red 4 onto H. communis sponge skeleton,  

as a function of time (results obtained in pH = 7). 

The highest value of qt was obtained after reacting for 90 min. The adsorption capacities for 25,  

50 and 75 mg/L of C.I. Natural Red 4 onto the marine sponge skeleton were 2.45, 4.79 and  

6.84, respectively. 

The efficiency of C.I. Natural Red 4 adsorption decreased as the initial concentration increased, even 

though the quantity of dye adsorbed per unit mass of adsorbate increased. This is linked to the quantity 
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of molecules of the dye adsorbed on the surface of the support: the smaller the dye concentration, the 

more molecules present in the solution can become bound to the adsorbent. An increase in concentration 

leads to saturation of the active sites of the support, which reduces the efficiency of the process; because 

in effect a significant number of dye molecules are not adsorbed [41]. Adsorption is reduced due to the 

lack of sufficient available open sites to adsorb high initial concentrations of the dye [11–16]. This 

situation is caused by the mass transfer driving force, which increases when the initial concentration is 

increased, resulting in higher adsorption of dyes [42,43]. Various studies have confirmed that adsorption 

capacity increases as the dye concentration increases [44,45]. As can be seen from Figure 2, the quantity 

of dye adsorbed rose very rapidly in the course of the first few minutes of the process, for all tested 

concentrations of dye in solution. Similar effects were observed when carmine was absorbed onto glass 

beads [16]. The contact time needed for C.I. Natural Red 4 (in every initial concentration) to reach 

equilibrium was around 30 min. The quantity of carmine adsorbed on marine sponges increases with 

time, and reaches a constant value beyond which no more dye is removed from the solution. At this 

point, the quantity of dye desorbing from the marine sponge skeleton is in a state of dynamic equilibrium 

with the quantity being adsorbed onto it. This observation can be explained by the theory that diffusion 

onto the external surface of the adsorbent was followed by diffusion into the intra-particle matrix to 

attain equilibrium [46]. 

2.3. Effect of pH 

The manner in which the pH of the environment affects the efficiency of adsorption of the dye from 

solution was also examined. The process was carried out at pH = 3, 5, 7 and 9, for initial dye concentrations 

of 25, 50 and 75 mg/L. Adsorption tests were performed over 30 min. 

It was observed that an increase in the acidity of the solution increases the efficiency of the adsorption 

of C.I. Natural Red 4. The quantity of dye adsorbed from a 25 mg/L solution increases from 1.42 mg/g 

(56.7%) at pH = 7 to 2.45 mg/g (98.1%) at pH = 3. In a basic solution, however, the efficiency of the 

adsorption process is zero. The same patterns were observed for the other carmine concentrations.  

This is linked to the protonation of the neutral –NH2 amine groups in the protein scaffold to form –NH3
+ 

cationic groups. Under these conditions the process of adsorption of the dye occurs via electrostatic 

interactions. An increase in the pH leads to deprotonation of –NH3
+ groups, and in effect only hydrogen 

bonds [47] are formed between the support and the dye, reducing the efficiency of adsorption.  

Similar adsorption behavior as the pH is varied has been reported in the literature for compounds 

containing NH2 groups [42,44,48]. The results are presented in Table 1. 

Table 1. Effect of pH on adsorption capacity for C.I. Natural Red 4 onto marine sponge. 

pH 

Dye concentration (mg/L) 

25 50 75 

Experimental qt (mg/g) 

3 2.45 5.00 7.50 

5 1.50 3.62 6.71 

7 1.42 3.42 5.99 

9 0.00 0.00 0.00 
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A similar range of pH values was used during carminic acid impregnation of the resin Amberlite 

XAD-16. A continuous decrease in impregnation efficiency at both pH > 3 and pH < 3 was observed. 

The lowest impregnation efficiency of 89% was at pH = 8 [9]. However, the required time needed for 

completing the impregnating process was found to be at least 3 h. A similar effect of pH on carminic 

acid adsorption is also described in [17]. 

2.4. Desorption Test 

Desorption tests for samples containing C.I. Natural Red 4 were carried out at different pH values  

(7 and 9). In contrast with the adsorption tests performed at varying pH, the results in this case were not 

affected by the acidity of the environment. The efficiency of the process was 13.4% at pH = 7, and 12.8% 

at pH = 9. It was observed, however, that the desorption percentage was greater when the dye was washed 

from samples that contained a greater quantity of dye following the adsorption process. In the case of 

marine sponge skeleton pieces containing 4.54 mg/g of C.I. Natural Red 4 the desorption percentage was 

18.8%, while from samples containing 2.27 mg/g the percentage was 4.7%. 

2.5. Kinetic Analysis 

To investigate the kinetics of the adsorption process, pseudo-first-order (PFO) and pseudo-second-order 

(PSO) models were used. These investigations make it possible to describe the controlling mechanism 

of the adsorption process. 

A pseudo-first-order equation is: 

log(𝑞e − 𝑞𝑡) = log(𝑞e) −
𝑘1

2.303
· 𝑡 (1) 

where qt and qe (mg/g) are the quantities of dye adsorbed at time t (min) and at equilibrium, and k1 

(1/min) is the rate constant of pseudo-first-order sorption. The pseudo-first-order model refers to an 

adsorption process in which sorption proceeds by diffusion through a boundary. 

A pseudo-second-order equation is: 

𝑡

𝑞𝑡
=

1

𝑘2𝑞e
2

+
1

𝑞e
· 𝑡 (2) 

where k2 (g/mg·min) is the pseudo-second-order rate constant. When the adsorption process proceeds 

according to a pseudo-second-order model, the limiting step may be chemical adsorption involving 

valent forces through the sharing or exchange of electrons between the sorbent and adsorbate [49].  

In [16], the adsorption kinetics of C.I. Natural Red 4 were described using the kinetic approximations 

proposed by McKay and Boyd. While adsorption is possible as a result of interaction of the functional 

groups of carmine and glass beads, its rate is controlled by film and particle diffusion. 

In this study, the kinetics of the adsorption process were described using different pseudo-first-order 

and pseudo-second-order models. The equilibrium adsorption capacity (qe) and adsorption rate constant 

(k1) (Table 2) were computed experimentally from a plot of log(qe – qt) against t (Figure 3). 

The coefficient of correlation (r2) obtained when a pseudo-first-order kinetic model is used to describe 

the adsorption of C.I. Natural Red 4 (in concentrations of 25–75 mg/L) lies in the range 0.855–0.986. 

The values of adsorption capacity (qe,cal) computed from the pseudo-first-order kinetic model deviated 
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significantly from the experimental capacities (qe,exp). This indicates that the pseudo-first-order kinetic 

model does not fit well to the experimental data. A significantly better model describing the kinetics of 

adsorption of C.I. Natural Red 4 onto the marine sponge is the pseudo-second-order kinetic model 

(Figure 4). The pseudo-second-order model k1 value is lower than k2, indicating that the pseudo-second-order 

equation better describes the adsorption process. 

Table 2. Pseudo-first-order and pseudo-second-order kinetic parameters and coefficient of 

determination for adsorption of C.I. Natural Red 4 onto marine sponge. 

Type of kinetics 

Parameters Concentration of dye (mg/L) 

Symbol Units 25 50 75 

qe,exp mg/g 2.492 4.858 6.836 

Pseudo-first-order 

qe,cal mg/g 3.799 4.229 7.232 

k1 1/min 0.044 0.116 0.100 

r2 – 0.970 0.855 0.986 

Pseudo-second-order 

qe.cal mg/g 2.810 4.951 6.869 

k2 1/min 0.029 0.092 0.382 

r2 – 0.979 0.999 0.999 

h mg/g min 0.232 2.246 18.023 

 

Figure 3. Pseudo-first-order kinetic fit for adsorption of C.I. Natural Red 4 onto H. communis 

sponge skeleton. 

 

Figure 4. Pseudo-second-order kinetic fit for adsorption of C.I. Natural Red 4 onto  

H. communis sponge skeleton. 
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2.6. Adsorption Isotherms 

Adsorption isotherm is a graphical representation indicating the relation between the mass of the 

adsorbed dye per mass of the used adsorbent, and liquid phase of dye at equilibrium concentration.  

Based on the experimental data adsorption isotherms were determined based using the Freundlich [42] 

and Langmuir [41] models. 

The plot of (qe) versus (Ce) for the adsorption isotherms of C.I. Natural Red 4 onto the  

Demosponge skeleton is presented in Figure 5. Table 3 shows the parameters for the Freundlich and 

Langmuir isotherms. 

The Freundlich equation is given as: 

 𝑞e = 𝐾F · 𝐶e

1
𝑛 (3) 

where Ce is the equilibrium concentration of the dye (mg/L), qe is the quantity of the adsorbed dye per 

mass of adsorbent (mg/g), and KF (mg/g) and n are the Freundlich constants. The KF and n values can be 

estimated from the intercept and slope of a linear plot of logqe versus logCe. 

 

Figure 5. Fitting of the Langmuir and Freundlich isotherm models to equilibrium results of  

C.I. Natural Red 4 adsorbed onto marine sponge skeleton. 

Table 3. Freundlich and Langmuir isotherms constants for C.I. Natural Red 4 adsorbed onto 

marine sponge skeleton. 

Langmuir parameters Freundlich parameters 

R2 qm (mg/g) b (L/mg) R2 KF (mg/g) n 

0.995 18.55 0.034 0.877 3.601 4.195 

The value n determines the degree of nonlinearity between the solution concentration and adsorption: 

a value n < 1 indicates a normal isotherm, while n > 1 indicates a cooperative adsorption. The value  

n computed from Freundlich’s equation for the adsorption of C.I. Natural Red 4 onto the marine sponge 

skeleton is equal to 4.195. 

The equation of a non-linear Langmuir isotherm model takes the following form: 

𝑞e =
𝑞m · 𝑏 · 𝐶e

1 + 𝑏 · 𝐶e
 (4) 
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where Ce is the equilibrium concentration in the solution (mg/L), qm is the maximum adsorption capacity 

and b is the Langmuir constant (L/mg), calculated from the intercepts and slopes of linear plots of  

Ce/qe versus Ce. 

The sorption capacity calculated using the Langmuir model was equal to 18.55 mg/g. Comparing the 

isotherms’ parameters it can be concluded that the experimental data definitely resemble the Langmuir 

model, which is borne out by the high correlation coefficient (R2 = 0.995). 

2.7. FT-IR 

To confirm the effectiveness of adsorption of C.I. Natural Red 4 onto spongin fibers, FT-IR spectra 

of the products were taken to check for the presence of characteristic functional groups. Detailed 

investigations were performed for the H. communis sponge skeleton and C.I. Natural Red 4. Additional 

measurements were made for the dye/spongin hybrid material obtained from an initial dye concentration 

of 50 mg/L, and a reaction time of 30 min. Details of the bands present in the spectra, with their 

wavenumbers and band assignments, are given in Table 4. 

Table 4. FT-IR characteristic wavelengths for C.I. C.I. Natural Red 4, marine sponge and 

hybrid material (dye solution 50 mg/L, contact time 30 min, pH = 7). 

C.I. Natural 

Red 4 

Hippospongia 

communis skeleton 

Dye/Biopolymer 

hybrid material 

Vibrational 

assignment 

3400 3410 3415 –OH stretching 

– 3300 3310 –NH stretching 

2930 2930 2930 –CH2, –CH3 stretching 

1650 1630 1655 C=O stretching 

1560 – 1560 C=CAr stretching 

– 1520 1525 –NH deformational 

– 1460 1460 –CH scissors 

1400 1400 1405 –OH stretching 

– 1250 1250 C–N stretching 

1080 1080 1075 C–O–C stretching 

1020 1020 1020 C–O stretching 

900 – 907 –OH bending 

660 – 660 
–CHAr deformational 

520 – 525 

The spectrum for the adsorbent (Hippospongia communis) displays signals indicating the presence of 

–NH bonds (at 3300 cm−1 and 1520 cm−1) and C–N bonds (at wavenumber 1520 cm−1), which are part 

of the proteinaceous (spongin) skeleton of the sponges. The vibrations generating these bands occur only 

in the structure of the spongin; they are not observed in the dye molecule. 

The bands at 1560 cm−1 (C=CAr stretching vibrations), 660 cm−1 and 520 cm−1 (–CHAr deformational 

vibrations) are found as original signals, and are only observed in C.I. Natural Red 4. There is also a 

clear signal at wavenumber 900 cm−1 due to bending vibrations of OH groups from carboxyl group.  

All of these data are in agreement with the literature [6,15,19]. 
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The spectrum of the dye/biopolymer hybrid material reveals the presence of signals characteristic for 

both the adsorbent and carmine. However, the maxima are shifted in the direction of higher wavenumber 

values for the stretching vibrations of hydroxyl groups (3415 cm−1 and 1405 cm−1) and the stretching 

vibrations of C=O groups (1655 cm−1). The same occurs for the bands generated by stretching and 

deformational vibrations of –NH groups in the sponges (at 3310 cm−1 and 1525 cm−1) and the bending 

vibrations of carboxylic–OH groups in the dye (at 907 cm−1). Apart from the shift in the maxima, certain 

signals are found to be more intense in the spectrum of the hybrid material. This is particularly visible 

in the case of the bands assigned to hydroxyl groups (3415 cm−1 and 1405 cm−1), stretching vibrations 

from –CH2 and –CH3 groups (2930 cm−1), and stretching vibrations due to C=O (1630 cm−1). This is due 

to the fact that these functional groups are present in both starting materials. A further factor may be the 

mechanism of adsorption of the dye on the sponge surface (the formation of hydrogen bonds between 

their surface groups, which are responsible for the observed chemical shifts) [50]. 

The results are presented in Figure 6. 

 

Figure 6. FT-IR spectra of C.I. Natural Red 4, marine sponge and hybrid material  

(dye solution 50 mg/L, contact time 30 min, pH = 7). 

2.8. XPS 

The chemical structures of carmine, marine sponge skeleton and the dye/biopolymer hybrid were also 

studied by XPS spectroscopy. This was used to determine the relative quantities of dye adsorbed on the 

spongin biopolymer surface. 

Figure 7 shows XPS spectra of the dye, the spongin, and a selected dye/biopolymer material. Table 5 

contains the results of quantitative analysis of the samples. Due to the high similarity of the high-resolution 

spectra for the main components C 1s, O 1s and N 1s in the support and the dye, they could not be used 

as a basis for determining the adsorbed quantity of dye. In addition, no changes were found in the bond 

energies of the aforementioned components following impregnation of the support with dye. Among the 

elements potassium, zinc, silicon and sulphur identified in the dye (Table 5), only zinc was detected on 

the surface of the dye/biopolymer hybrid. The quantity of this element rose from 0.16% to 0.31% in 

samples 1–3 (Table 6), in accordance with the sequence of increasing concentration of dye in the initial 

solution. The quantity of zinc on the surface of the samples was determined using the main Auger Zn 
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LMM line of photoelectrons (Figure 8), in view of their superior quality compared with the line Zn 2p3/2 

(at such low surface concentrations of zinc). The value of the modified Auger α’ parameter for Zn LMM 

and Zn 2p3/2 electrons for the pure dye and the tested samples was approximately 2010 eV, indicating 

the presence of ZnO. 

 

Figure 7. XPS spectra of: (a) C.I. Natural Red 4; (b) H. communis sponge skeleton;  

(c) hybrid material (obtained from 75 mg/L dye solution, contact time 30 min, pH = 3). 

Table 5. Surface composition and relative concentration of elements obtained by XPS 

analysis of the marine sponge skeleton, C.I. Natural Red 4, and selected hybrid materials. 

Sample C N O K S Zn Si 

Hippospongia communis 72.54 5.25 22.21 – – – – 

C.I. Natural Red 4 57.90 4.17 31.43 3.60 0.83 2.05 – 

Sample 1 (25 mg/L, 30 min, pH = 3) 66.63 7.37 24.44 – – 0.16 1.40 

Sample 2 (50 mg/L, 30 min, pH = 3) 67.59 6.08 24.75 – – 0.18 1.40 

Sample 3 (75 mg/L, 30 min, pH = 3) 68.52 4.85 26.32 – – 0.31 – 

Table 6. Zinc content in selected dye/biopolymer samples (dye solution 1:25 mg/L; 2:50 mg/L; 

3:75 mg/L; contact time 30 min, pH = 3). 

Sample 1 2 3 

Zn, % at. 0.16 0.18 0.31 

Zn:N 0.022 0.030 0.064 

Clearer confirmation of the correlation between the concentration of dye in the initial solution and its 

content in samples 1–3 is provided by analysis of the Zn:N ratio, which increased from 0.022 in sample 

1 to 0.062 in sample 3. The relatively greater increase found for the Zn:N ratio than for the absolute 

content of Zn results from higher coverage of the surface by the dye. It should be noted that the greater 

part of the nitrogen recorded in samples 1–3 came from the biopolymer (>90%, estimated from the 

decrease in Zn content in the samples compared with the pure dye); also the N 1s bond energies for 

samples 1–3 and the biopolymer were identical at 399.75 eV, compared with 399.30 eV for  

C.I. Natural Red 4. 
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Figure 8. High-resolution XPS spectrum of Zn LMM photoelectrons: (a) dye; (b) sample 1 

(dye solution 25 mg/L, contact time 30 min, pH = 3); (c) sample 3 (dye solution 75 mg/L, 

contact time 30 min, pH = 3). 

2.9. NMR 

The effectiveness of the modification was also verified by means of 13C CP/MAS NMR. The results 

proved that the carmine/spongin interactions are of a chemical nature. Figure 8 shows a 13C CP/MAS 

NMR spectrum of C.I. Natural Red 4, spongin and the obtained hybrid material. Attribution of peaks for 

the dye was made according to [21,51]. The most intense signals, occurring in the range 60–80 ppm, 

come from the glucose residue, and the signal at 20.4 ppm is from a CH3 group. The chemical shifts 

observed above 100 ppm are attributed to aromatic carbons (C=C bonds), and that at δ = 178.2 ppm to 

the carbon of a carboxyl group. The 13C CP/MAS NMR spectrum of H. communis spongin indicates the 

presence of aliphatic carbon (saturated alkanes), as well as carbon bonded to nitrogen (C–NR2) and to 

oxygen (C–OH and C–OR) with signals in the 20–80 ppm range. There is also a marked signal at  

δ = 174.3, which is characteristic of carbon occurring in a carboxyl group or its derivatives [30,52]. 

Marine sponge spongin has an inexact chemical structure, where each resonance represents not just one 

but a range of chemical environments. Due to the lack of NMR data, the attachment position was not 

elucidated but only proposed. However, comparing the spectrum obtained for the spongin with that of 

collagen [53], many similarities are observed, indicating the high degree of similarity of their structures. 

The spectrum for one of the dye/biopolymer materials is shown in Figure 9. It contains a number of 

signals which are not seen in the spectrum of the adsorbent: δ = 170.9, 69.8, 49.8, 38.5, 21.5 ppm. In the 

range 100–150 ppm, as the quantity of adsorbed dye increases, peaks corresponding to aromatic carbon 

become visible. Moreover, comparing the spectra of the hybrid product and marine sponge skeleton 

(taken as a reference sample), changes in the intensities, positions and widths of other signals are observed. 

Unfortunately, some resonances are difficult to observe because of the low signal/noise ratio. 
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Figure 9. 13C CP/MAS NMR spectra of: (a) C.I. Natural Red 4; (b) hybrid material  

(dye solution 75 mg/L; contact time 30 min, pH = 3); (c) H. communis spongin. 

2.10. Raman Spectroscopy 

The Raman spectra of carmine, marine sponge skeleton and dye/biopolymer material are shown in 

Figure 10. In the Raman spectroscopy results, as in the case of NMR spectra, the spectrum for the sponge 

material (spongin) is similar to that of collagen [54]. 

The bands at 2883 cm−1 and 2938 cm−1 can be attributed to the weak stretching mode of OH and 

medium-strong asymmetric stretching of CH3. The signal at 1671 cm−1 corresponds to the weak-medium 

stretching mode of C=O, that at 1448 cm−1 to weak N–H bending, and that at 1281 cm−1 to weak-medium 

stretching of C–N. The signals between 1100 cm−1 and 1000 cm−1 can be attributed to weak asymmetric 

stretching of C–O–C. Some additional signals, originating from CH and CH3 in the glucose residue of 

carmine, are observed in two spectral regions (1350–1050 cm−1 and 880–680 cm−1) [17,55]. The increase 

in the intensity of signals at 1670 cm−1and 1452 cm−1, and the appearance of peaks at around 550 cm−1 

(skeletal vibration), are associated with stretching vibrations in benzene rings in the dye. 

In the case of the dye/biopolymer hybrid material, the results of Raman spectra analysis were similar 

to those for the marine sponge. Analysis of the spectra did not reveal any new bands; however, the bands’ 

intensity changed as a consequence of overlapping of the bands characteristic of marine sponge and dye. 

We conclude that the dye interacts by hydrogen bonding with the hydroxyl and carbonyl groups  

of spongin. 
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Figure 10. Raman spectra of H. communis spongin and selected hybrid materials  

(dye solution 100 mg/L, pH = 7, contact time 15 and 60 min). 

2.11. Thermal Stability 

Thermal analysis is the main method for determining the thermal properties of chemical substances. 

The results of these measurements, which give information about the thermal stability of a substance, 

are among the most important parameters determining the range of potential applications for materials. 

The thermal decomposition profiles of marine sponge skeleton and C.I. Natural Red 4 are shown in 

Figure 11. As mentioned above, both sponge skeletons consist of the protein-like spongin. It is observed 

from the TG curve that the thermal degradation of H. communis spongin takes place in two stages.  

The first stage, in the range 80–110 °C, is associated with the evaporation of water. The second stage, 

involving considerable mass loss (60%–70%), is observed in a temperature range from 210 °C to 410 °C; 

and can be associated primarily with the thermal decomposition of the organic phase [56]. In the range 

600–1000 °C there is another small drop in mass (from 77% to 82%), which may be associated with 

combustion of the organic matrix [57]. 

 

Figure 11. Thermal analysis of C.I. Natural Red 4, H. communis spongin and selected hybrid 

materials (dye solution 25 mg/L, pH = 7, reaction time 1, 15 and 30 min). 

There are no thermogravimetric analysis data available for carmine, but it is known that the  

C.I. Natural Red 4 molecule consists of anthraquinone and glucose. The first mass loss (10%) is caused 
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by loss of water. According to [58], the first obvious peak in the TG curve for glucose pyrolysis occurred 

at a temperature of 239 °C. The maximum mass loss rate of glucose occurred at 301 °C. Further observed 

mass loss may be caused by thermal degradation of the aromatic part of the carmine structure [59]. 

Thermal stability measurements were also performed for selected dye/biopolymer hybrid materials. 

The mass loss profiles of these samples are similar to those obtained for the marine sponge spongin.  

The thermogravimetric curves, irrespective of the quantity of adsorbed dye, show mass loss caused by 

the transformations that occur as the temperature increases. However, as the amount of dye in the hybrid 

material increases, its thermal stability increases. The mass loss of the initial sample at 800 °C, for a 

product obtained after 1 min of adsorption contact time, was 47%; while for 15 min it was 42%, and for 

60 min equals 24%. The increase in the stability of the hybrid material compared with the native 

adsorbent and with C.I. Natural Red 4 can be attributed to hydrogen bonds and electrostatic interactions 

formed between hydroxyl groups of the marine sponge spongin and the dye. The observed temperature 

peaks of mass loss in the TG curves for H. communis spongin, C.I. Natural Red 4 and the dye/adsorbent 

hybrid material made it possible to verify the difference between these compounds. This serves to 

confirm the effectiveness of the method for obtaining the new composite material. 

2.12. SEM 

The SEM images in Figure 12 show the H. communis skeletal fibers and a selected dye/biopolymer 

hybrid material. Analysis of SEM images taken before and after adsorption confirmed that the deposition 

of C.I. Natural Red 4 onto the marine sponge skeletal fibers had taken place. The SEM images reveal 

the presence of dye microparticles (Figure 12b,c). 

 

Figure 12. Scanning electron microscopy (SEM) micrographs of: (a) H. communis fiber 

(after demineralization); and (b,c) a selected dye/biopolymer hybrid material (50 mg/L, 

contact time 30 min, pH = 7) at different magnifications. 

3. Experimental Section 

3.1. Materials 

Dried marine sponges of the species Hippospongia communis (Demospongiae) collected in Tunesian 

coastal waters were purchased from INTIB GmbH (Freiberg, Germany). The preparation of the 

adsorbent involved washing the dry sponge with fresh water to remove salts, and immersing it 

completely in 3 M HCl solution for 72 h at room temperature to dissolve foreign calcium  

carbonate—containing debris. The material was then rinsed with distilled water until the pH of the 

washing solution reached 6.5, and finally dried for 24 h at 50 °C in a drying oven. 
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C.I. Natural Red 4 in powder form was purchased from Sigma-Aldrich (St. Louis, MO, USA). The 

stock solution was prepared by dissolving an accurately weighed 500 mg portion of dye in 1000 mL of 

distilled water. Experimental solutions of desired concentration were obtained by successive dilutions with 

distilled water. 

3.2. Adsorption and Desorption Experiments 

Batch experiments (at 25 °C) were performed to investigate the effect of contact time, and to 

determine the kinetic parameters. Adsorption experiments were performed using 250 mL glass bottles 

containing 0.5 g of marine sponge skeleton as prepared above and 50 mL of the dye solution. The initial 

concentrations of the dye were 25, 50 and 75 mg/L, respectively. 

After different time intervals the samples were filtered off under vacuum and taken for spectrophotometric 

evaluation (Spekol 1200, Analytik Jena, Jena, Germany) at the maximum absorbance wavelength  

513 nm. Dye concentration in the adsorbent phase at a specific time (qt), and the adsorption efficiency 

(E%), were calculated as:  

𝑞𝑡 =
(𝐶0 − 𝐶𝑡) · 𝑉

𝑚
 (5) 

𝐸(%) =
𝐶0 − 𝐶𝑡

𝐶0
· 100% (6) 

where C0 and Ct are the concentrations of the dye in the solution before and after sorption respectively 

(mg/L), V is the volume of solution (L), and m is the mass of the support (g). 

The effect of pH on the adsorption of carmine from aqueous solution onto the marine sponge  

skeleton was investigated in a similar manner. The pH was adjusted to 3, 5, 7 and 9 using either 1 M 

HCl or 1 M NaOH. 

A desorption experiment was performed by placing 0.5 g of selected samples in a 250 mL conical 

flask with 50 mL of water and shaking at room temperature for 1 h. The desorption of C.I. Natural Red 4 

from the hybrid material was measured by UV-Vis absorption, as described above. 

Adsorption isotherms were obtained by placing the samples of 0.5 g of marine sponge skeleton in  

a series of flasks containing 50 mL of dye solution at the desired initial concentrations (50–1500 mg/L) 

at room temperature. Dye concentration after 60 min of phase contact time was measured 

spectrophotometrically at the maximum absorbance wavelengths. The quantity of dye adsorbed at 

equilibrium (qe), was calculated from Equation (7): 

𝑞𝑡 =
(𝐶0 − 𝐶𝑡) · 𝑉

𝑚
 (7) 

where C0 and Ce are the initial and equilibrium concentration of dye (mg/L), V is the volume of solution (L), 

and m is the mass of the support (g). 

The experimental data were used to determine Freundlich and Langmuir adsorption isotherms. 

3.3. Testing of Physicochemical Properties 

FT-IR spectral analysis was performed using a Vertex 70 (Bruker, Bremen, Germany). The samples 

were analyzed in the form of tablets, made by pressing a mixture of anhydrous KBr (ca. 0.1 g) and 1 mg 
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of the tested substance in a special steel ring, under a pressure of approximately 10 MPa. Analysis was 

performed over a wavenumber range of 400–4000 cm−1 (at a resolution of 0.5 cm−1, number of scans: 64). 

X-ray photoelectron spectra were obtained with a UHV/XPS/AES System (SPECS) with a PHOIBOS 

100 analyzer (SPECS, Berlin, Germany) and Mg Kα anode (1253.6 eV). The background line was 

determined by Shirley’s method. The selected reference line was C 1s 284.8 eV (C–C, C–H). 

NMR analysis was performed using a DSX spectrometer (Bruker). A sample of about 100 mg was 

placed in a rotator, made of ZrO2, 4 mm in diameter, which enabled spinning of the sample. 

Centrifugation at the magic angle was performed at a spinning frequency of 8 kHz. 13C CP/MAS NMR 

(Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance) spectra were recorded at  

100.63 MHz in a standard 4 mm MAS probe using a single pulse excitation with high power proton 

decoupling (pulse repetition 10 s, spinning speed 8 kHz). 

Raman scattering spectra were investigated in the spectral range 100–3800 cm−1 (number of scans: 

1024). The non-polarized Raman spectra were recorded in a back scattering geometry, using the inVia 

Renishaw micro-Raman system. The inVia Raman spectrometer (Renishaw, Wotton-under-Edge, UK) 

enabled the recording of Raman spectra with a spatial resolution of about 1 μm. The spectral resolution 

was 2 cm−1. The excitation light used was a laser operating at 785 nm. The laser beam was tightly focused 

on the sample surface through a Leica 50 × LWD (long working distance) microscope lens with 

numerical aperture (NA) equal to 0.5, producing a laser beam with a diameter of about 2 μm. To prevent 

any damage to the sample, the excitation power was fixed at about 5 mW. The position of the microscope 

lens was piezoelectrically controlled during measurement. 

A thermogravimetric analyzer (TG/DTA/DSC, model Jupiter STA 449F3, Netzsch, (Selb, Germany) 

was used to investigate the effect of heat on the samples. Measurements were carried out under a  

flowing nitrogen atmosphere (10 cm3/min) at a heating rate of 10 °C/min over the temperature range  

25–1000 °C, with an initial sample weight of approximately 5 mg. 

The morphology and microstructure of the samples were studied using SEM images recorded from 

an EVO40 scanning electron microscope (Zeiss, Oberkochen, Germany). Before testing, the samples 

were coated with Au for a period of 5 sec using a Balzers PV205P coater (Oerlikon Balzers Coating AG, 

Balzers, Liechtenstein). 

4. Conclusions 

Marine spongin-based demosponges have unique physicochemical properties, and as such may have 

many practical applications. The process of adsorption of C.I. Natural Red 4 onto H. communis was 

found to depend on pH and time. When the initial dye concentration increases, the adsorption capacity 

at equilibrium increases, while the adsorption efficiency decreases. This indicates that initial dye 

concentration plays an important role in the adsorption of dyes. The experimental data correspond to a 

pseudo-second-order kinetic model of adsorption, which indicates that the rate-controlling stage of the 

process involves chemical adsorption. 

For the measured spectra (FT-IR, Raman, 13C CP/MAS NMR, XPS) of the carmine/spongin hybrid 

material, only slight changes are observed relative to the spectra of the adsorbent. The lack of any 

significant changes suggests that there are no strong interactions between carmine and spongin.  

A possible interaction mechanism which may explain these observations is the formation of hydrogen 



Materials 2015, 8 113 

 

 

bonds between the –OH and –COOH of the dye and the marine sponge skeleton. Moreover, the results 

obtained for adsorption at different pH values suggest the existence of additional interactions. The 

highest adsorption efficiency is observed at low pH values. In future work, further studies of adsorption 

will be undertaken to investigate other parameters that may affect this process. These will include 

temperature, quantity of biosorbent and ionic strength, as well as additional analyses; and will be carried 

out to confirm our assumptions. 

The use of this novel C.I. Natural Red 4 dyed spongin skeleton for medical applications, including 

drug delivery, will also be studied in future experiments. 
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