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Abstract: Silicone resin has recently attracted great attention as a high-power Light 

Emitting Diode (LED) encapsulant material due to its good thermal stability and optical 

properties. In general, the abrupt curing reaction of the silicone resin for the LED encapsulant 

during the curing process induces reduction in the mechanical and optical properties of the 

LED product due to the generation of residual void and moisture, birefringence, and residual 

stress in the final formation. In order to prevent such an abrupt curing reaction, the 

reduction of residual void and birefringence of the silicone resin was observed through 

experimentation by introducing the multi-step cure processes, while the residual stress was 

calculated by conducting finite element analysis that coupled the heat of cure reaction and 

cure shrinkage. The results of experiment and analysis showed that it was during the three-step 

curing process that the residual void, birefringence, and residual stress reduced the most in 

similar tendency. Through such experimentation and finite element analysis, the study was 

able to confirm that the optimization of the LED encapsulant packaging process was possible. 

Keywords: LED; silicone resin; encapsulant; multi-step cure process; voids; birefringence; 

residual stress; cure kinetics 
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1. Introduction 

Recently Light Emitting Diode (LED) has attracted great attention as a next-generation light source 

due to its excellent characteristics such as high-energy efficiency, quick response, long life, and light 

weight. To protect the LED module, transparent thermoset polymers, such as epoxy or silicone resin, 

are used as encapsulant covering the LED module. Silicone resin is regarded as superior to epoxy in 

terms of thermal and mechanical characteristics especially for high-power LED.  

Silicone resin is formed into an encapsulant by the consecutive cure process, which involves the 

mixing of base and curing agent, the casting into a mold, the heat-assisted chemical curing at elevated 

temperatures, and the post-cure cooling. During the chemical curing, abrupt temperature rise can cause 

various defects in the cured silicone resin; i.e., surface roughening, delamination from LED chip, 

residual void including air and water, and residual stress, which lead to the deterioration of mechanical 

and optical properties of LED lighting products. In order to minimize such defects, recently a new cure 

process of step-by-step temperature rise has been investigated for thermoset polymers. For example, 

Zhang et al. [1] suggested an optimum cure condition for semiconductor encapsulant epoxy resin by 

applying a step cure condition and three-dimensional finite element analysis.  

White and Hahn [2,3] proposed an optimal cure cycle that could reduce residual stress during the 

cure of composite structures. Kim and Hahn [4] investigated the residual stress build-up by the 

intermittent curing of the unsymmetrical graphite–epoxy laminates using the elasticity-based approach 

to relate the experimental warpage to the residual stresses. Bogetti and Gillespie [5] analyzed the 

development of residual stresses in the cured thick composite laminates by coupling the incremental 

laminated plate theory with the one-dimensional cure simulation, accounting for the chemical 

shrinkage based on the cure-dependent mechanical property of thermoset resin. Zhu et al. [6] presented 

a full three-dimensional coupled thermo-chemo-viscoelastic model simulation for the heat transfer, 

curing, residual stresses, and deformation in a composite part. Yi et al. [7] developed a nonlinear 

transient heat transfer FE model, where material parameters were both temperature and Degree of Cure 

(DOC) dependent, and applied the FE analysis to the two-dimensional cure simulation.  

Ciriscioli et al. [8] developed an algorithm to minimize the internal residual voids and stress for a 

composite. In the multi-step cure process, the abrupt temperature rise due to chemical cure reaction 

heat in the cured polymer can be avoided since the initial temperature for chemical curing is lower than 

the final temperature of the cure process. As a result, various defects in the encapsulant due to abrupt 

temperature rise can be considerably reduced by virtue of the gradual temperature rise. 

When the step cure process was applied in the previous study, how the residual voids decreased was 

observed, through which it was understood that the step cure process was effective for at least 

decreasing the residual void [9,10]. In this paper, whether the step cure process was also effective in 

terms of reducing the residual stress and birefringence was quantitatively studied by calculating the 

residual stress through the finite element analysis of the cure process and experimentally measuring the 

birefringence. In addition, the optimal cure process was derived by conducting an optimization analysis.  
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2. Experimental Observation 

2.1. Experiment Apparatus  

Figure 1 shows the experimental set-up for cylindrical silicone molding. For the convenience of 

experiment and analysis, cylindrical silicone resin with axial symmetry, diameter of 32 mm, and height 

of 12 mm was used. The experiment apparatus consisted of lower heating plate, upper heating plate, 

temperature controller, thermocouple, and real-time temperature monitoring device. In addition, the 

accuracy of the test was increased by adding a glass cover to the molding shape to prevent heat loss 

due to the outside air. The molding was mainly done with the lower heating plate while the upper 

heating plate was heated and kept at 30 °C to minimize any error due to the heat transfer with the 

outside air. The cure process was comprised of mixing liquid silicone base and curing agent, casting 

into a mold, cure reaction at specific temperature, and room temperature cooling. In order to clearly 

observe the residual voids, the base and the curing agent were agitated and directly cast without 

undergoing the vacuum degassing process.  

Figure 1. Experimental set-up for silicone molding. 

 

2.2. Step Cure Process Design  

In order to determine the curing temperature and step cure conditions, the cure reaction temperature 

of the heating-up reaction was measured by making use of differential scanning calorimetry (DSC). 

The silicone resin generated reaction heat due to the chemical reaction during the curing process into 

thermoset resin and when this generated reaction heat was measured with DSC, the curing properties 

could be made known [11]. In the case of the silicone used in this study, the cure reaction began at  

70 °C and finished at 150 °C [9,10]. The curing conditions as shown in Figure 2 and the actual 

temperature measuring profile were derived by making reference to the cure reaction results. Although 

there were slight differences with the conceptualized curing conditions, it was observed that the 

temperature distribution was relatively well-followed. A total of three types of curing conditions were 
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applied wherein curing was done at an isothermic condition of 150 °C in the one-step, there was 

temperature elevation to 90 °C and application of curing time in the two-step, and there was 

temperature elevation to 70 °C and 110 °C and application of curing time in the three-step.  

Figure 2. Temperature-time cure cycle ramps. 

 

2.3. Residual Voids  

Among the defects in LED products, the residual voids of the curing process were a cause of 

decreasing the LED lamp efficiency. Such residual voids typically occur when the air is mixed during 

the dispensing or the silicone is abruptly cured due to the mixing of moisture and vaporization of the 

moisture in the adherend during the silicone storing process [9,10]. After conducting the step cure 

experiment according to Figure 2, microscopic imaging at a magnification of 40× was performed on 

the cured specimen to observe the presence of residual void.  

Figure 3 shows the residual voids’s distribution from the step cure process. Figure 3a shows the 

distribution in the one-step, which refers to the high-temperature isothermal cure process at 150 °C. As 

shown in the figure, voids that were pre-existing in the material, voids that formed during the casting 

process, and the many voids that formed as moisture in the adherend, vaporized as abrupt cure reaction 

began. Figure 3b shows the results of the second step cure. In comparison to the first step cure, 

relatively large voids were removed but it was observed that small voids still remained. Figure 3c 

shows the results of the three-step cure. Although some of the large voids remained, it was found that 

most of the voids were removed during the 70 °C heating-up stage and isothermal stage, which were 

approximately 20 min. It is considered that internal voids are sufficiently removed when applying the 

step cure process from low temperature to high temperature since the viscosity is maintained at low 

enough state prior to curing, after which curing with almost no voids present would be possible during 

the reaction.  
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Figure 3. Trapped voids after step cure process. (a) one-step; (b) two-step; (c) three-step.  

(a) (b) 

(c) 

3. Finite Element Analysis of Silicone Curing for Step Cure Process Analysis 

3.1. Governing Equation and Cure Kinetics  

The finite element analysis was conducted to predict the degree of cure and temperature distribution 

according to the step cure conditions. The three-dimensional heat transfer energy equation is the sum 

of the Fourier heat conduction equation and the exothermic reaction from the cure reaction, which can, 

in summary, be expressed as follows [1,12]:  

2 2 2

p r2 2 2

dα
ρ ρ

d

T T T T
C k H

t x y z t

    
        

 (1)

Here, T stands for absolute temperature, k for thermal conductivity, Cp for specific heat, ρ for 

density, Hr for total heat of reaction, α for degree of cure, and t for time. In order to find the reaction 

rate, the isothermic cure experiment using the Differential Scanning Calorimeter (DSC) was performed 

at temperatures of 60 °C, 70 °C, 80 °C, and 90 °C. Based on such test results, the constants of the 

autocatalyzed cure kinetics were obtained as shown in Equation (2) [13]:  
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Here, α stands for degree of cure, K for reaction rate constant, m and n for reaction exponent, A for  

pre-exponential factor, E for active energy, R for gas constant, and T for absolute temperature. Table 1 

shows the constants of the cure kinetics that were obtained by conducting non-linear curve  

fitting [10,11]. 

Table 1. Constant of cure kinetics for silicone. 

Constant 
Cure temperature (°C) 

60 70 80 90 

k (×10−3) 1.736 3.839 9.739 21.58 
A (S−1) 4.007 × 1010 

E (KJ/mol) 85.293 
m 0.62 
n 1.39 

R (J/mol·K) 8.31 

3.2. Assumption of Elastic Modulus and Cure Shrinkage  

Silicone is a visco-elastic material wherein the modulus changes according to time and temperature. 

Accordingly, Figure 4 shows the stress relaxation curve of the storage modulus which was obtained by 

experimenting with dynamic mechanical analysis (DMA). Although the curve fitting must be done 

with Prony series as shown in Equation (4) within the linear visco-elastic region for the analysis, only 

the effects of elasticity were considered since silicone was a material in which the cure process took 

place from liquid state to solid state and the effects of visco-elasticity in the cure process was not 

significant [2,3]. 

Figure 4. Stress relaxation of silicone resin. 
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Here, σ stands for stress, ε for strain, t for time, G0 for equilibrium modulus, Gi for i-th Prony constant, 

and τi for i-th Prony retardation time constant.  

The silicone resin is gradually cured from liquid phase to solid phase and its elastic modulus 

increases accordingly to which Tsygankov et al. [2,3,14] reported that there was linear relationship 

between the degree of cure and the elastic modulus. Therefore, the relationship between the degree of 

cure and the elastic modulus E can be expressed as shown in Equation (5): 

0αE E  (5)

Here, E0 stands for the proportional constant.  

In case of thermoset resin, cure shrinkage occurs due to the chemical crosslink reaction according to 

the progress of cure because of which volumetric reduction takes place [15]. In general, it is known 

that the cure shrinkage has linear relationship with degree of cure [5,16] and so modeling the degree of 

cure with linear function is possible as shown in Equation (6): 

α TV V  (6)

Here, V stands for volumetric cure shrinkage, α for degree of cure, and VT for total volumetric cure 

shrinkage. It is known that the silicone used in this study has cure shrinkage of approximately 3% upon 

complete cure. 

3.3. Thermal Properties  

The thermal properties were obtained as shown in Table 2 to conduct the heat transfer analysis.  

The measurements were done by measuring three times using laser flash after which the average value  

was taken. 

Table 2. Thermal properties of silicone. 

Thermal properties Value 

Density (kg/m3) 1168 
Thermal conductivity (W/m·°C−1) 0.148 

Specific heat (J/kg·°C−1) 1424 

In addition, for the initial condition, room temperature (30 °C) was applied for all joints, and for the 

boundary condition, natural convection condition was assumed in which the silicone resin was heated 

to set temperature by the lower heating plate while the upper plate was not heated additionally. The 

heat transfer coefficient between the silicone and the cylindrical heater during the heating up process 

was assumed to be 0.5 KW/m2·°C. The stress-strain that occurred in the silicone resin during the cure 

process was calculated by coupling the structural analysis, which considered both the elastic 

deformation and cure shrinkage, with the heat transfer analysis that considered the heat of cure 

reaction. Furthermore, the measurements were taken from the central part of the cylindrical model and 

the wall side of the mold for comparing the curing characteristics according to position. 
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4. Analysis and Experiment Results on the Step Cure Process 

4.1. Finite Element Analysis for Step Cure  

Figure 5 illustrates the results of residual stress and degree of cure distribution for one-step curing. 

The analysis results showed that residual stress largely appeared at the wall side of the mold, but it was 

not observed from the central area of the mold. The residual stress at the wall side of the mold  

(point B) increased to a maximum after four minutes, followed by decreases, before it maintained a 

constant value after 12 min. The degree of cure for four minutes elapsing at these two sides showed 

that the wall side was completely solidified due to abrupt curing process on four minutes of curing 

time, while curing progressed in the central area (point A) of the mold. Therefore, there occurred a 

large difference in the degree of cure according to location, which led to the solidified condition. It was 

found that large residual stress occurred due to cure shrinkage from the solidified wall side of the 

mold. After 12 min, curing was completed until the central area. Cure shrinkage with complete 

solidification until the central area might have reduced the residual stress, which was maintained at the 

wall side of the mold to some extent.  

Figure 5. Residual Stress evolution and degree of cure during one-step curing at  

Points A and B. 

 

Figure 6 shows the results of residual stress and degree of cure distribution for two-step curing. The 

analysis results showed that residual stress largely appeared as in one-step, while residual stress was 

not observed from the central area (point A) of the mold. When the degree of cure at two areas was 

compared during 16 min of curing time, 100% solidification was achieved from the wall side (point B) 

due to abrupt cure reaction showing complete solidification, while the central area was solidified only 

around 20%. The difference in the degree of cure according to location the same as one-step resulted to 

different solidification conditions in different locations. Larger residual stress was observed from the 

solidified wall side of the mold. After 22 min, solidification was completed until the central area, while 

curing process was completed which might reduce residual stress and maintain it to some extent. 

The final residual stress value for Point B (wall side) was 11.5 MPa, which reduced from the first 

step analysis result of 21.3 MPa by 54%. The final stress value was 8.2 MPa, which reduced from the 

first step analysis result of 8.2 MPa by 49%. 



Materials 2014, 7 4096 

 

 

Figure 6. Residual Stress evolution and degree of cure during the two-step curing at  

Points A and B.  

 

Figure 7 illustrates the results of residual stress and degree of cure distribution for three-step curing. 

The analysis results showed that residual stress was observed largely from the wall side of the mold, 

holding the same results as earlier, while residual stress was not found from the central area (point A) 

of the mold. However, unlike in the previous case, residual stress during the initial stage of curing was 

not abruptly increased in the wall side (point B) of the mold. Solidification was completed in the 

central area of the mold for four minutes more than in the wall side when the degree of cure progressed 

from 90% due to gradual temperature increases. Therefore, it can be judged that abrupt increase in 

residual stress was mitigated since the degree of solidification according to location became minimized 

as compared with earlier solidification progress. The final residual stress value at point B (wall side) 

was 6.29 MPa, which decreased from the one-step analysis result of 21.3 MPa by 38%.  

Figure 7. Residual stress evolution and degree of cure during the third step curing at  

Points A and B.  

 

Figure 8 shows the section contour of the final residual stress distribution. As shown in the figure, 

there was almost no stress generated in the central area but there was high stress generated in the wall 

side of the mold. In addition, it was evident that as the number of steps increased, the final residual 

stress greatly decreased.  
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Figure 8. Section contour of residual stress in step cure process. 

 

Table 3 shows the final residual stress occurring during each step. During one-step; that is, during 

isothermal cure, relatively large residual stress occurred near the wall side since the degree of cure was 

different at different locations due to abrupt temperature increases and exothermic reaction generated 

inside of the mold, while cure reactions during two-step and three-step yielded relatively small residual 

stresses and the difference per the location was also less. The abrupt cure reaction would not occur 

under these cure condition steps because temperature was not abruptly increased. 

Table 3. Comparison of final residual stress. 

Measuring point Step cure Final Residual Stress  Difference 

Point A 

1 step 0 MPa 
No residual stress 

generated in the center 
2 step 0 MPa 

3 step 0 MPa 

Point B 

1 step 16.73 MPa – 

2 step 8.17 MPa 49% of 1-step 

3 step 6.29 MPa 38% of 1-step 

4.2. Results Comparison for Birefringence Distribution and Analysis  

A residual stress in transparent products such as lenses causes not only deterioration of optical 

properties but also increases in optical distortion [17,18]. Lu and Khim [19] carried out injection 

molding experiment using the design of experiment for polycarbonate spherical lenses. They estimated 

the distribution of residual stress for lenses according to process condition by the measurement of 

birefringence. They also improved the optical property of lenses by improving the unevenness on the 

surface which was caused by residual stress.  

Lai and Wang [20] predicted residual stress distribution by comparing injection molding analysis 

and birefringence for COP plastic lenses. They also analyzed the effect of birefringence on the optical 
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property of lenses by measuring the optical aberrations of lenses according to process conditions using 

design of experiment. 

The final residual stress distribution obtained through the analysis can predict and compare the 

stress distribution through the birefringence test. The linear photo-elastic theory pertains to the 

phenomenon in which the isotropic material in transmittance optically shows anisotropy while under 

stress. When material with such characteristics is compressed, characteristics of negative uniaxial 

crystal are presented whereas characteristics of positive uniaxial crystal are presented in case tensile 

force is applied instead. For each of these cases, the ray of light corresponds to the direction of stress 

while the birefringence induced by the anisotropy is proportional to the difference of principal stresses. 

Therefore, if the distribution of stress for a certain specimen is not consistent, the birefringence will 

also appear differently. Such photo-elasticity theory provides the foundation for studying the stress 

distribution of transparent mechanical structures. When the linear photo-elastic theory is expressed as 

an equation, it is as shown below: 

 σ σi j i jn n C    (7)

 i jt n n    (8)

ni − nj is the birefringence, t is the thickness of specimen and Γ is the phase shift (retardation). At a 

state of plane stress, σi and σj stand for each of the principal stresses in the two directions, ni is the 

refractive index of the light polarized in the main axis i direction, and C is the stress-optical 

coefficient. This linear photo-elastic interaction formula has been proven in considerably wide ranges 

of several polymers [21]. Therefore, phase shift of birefringence as shown in Equation (7) can be a big 

indicator for predicting the residual stress based on the photo-elasticity theory. 

As shown in Figure 9, the phase shift of birefringence of the silicone was measured with WPA-100-S of 

Photonic Lattice, Inc. (Sendai, Japan). Unlike other existing birefringence measuring devices, this 

device does not require for the polarized light filter to be rotated. Instead, it carries the advantage of 

allowing the phase shift of birefringence to be measured quickly and accurately by having an image 

sensor integrated with fine polarized filter without the polarization drive unit [22].  

Figure 9. Polarimeter system for measuring residual stresses in silicone encapsulant. 

 

Figure 10 shows the birefringence distribution and phase shift according to each step. As illustrated 

in Figure 10a, the final residual stress is largely distributed from the surroundings of the wall side of 
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mold at first step, and this value decreases more and more as the third step is reached. Figure 10b 

presents the phase shift value from the wall side of the mold to the center as a graph. There is barely 

any production of residual stress when moving towards the center and such tendency shows similar 

distribution with the results from the finite element analysis of the section in Figure 8.  

Figure 10. Comparison of birefringence distribution and phase shift after the step cure 

process. (a) Birefringence distribution; (b) Phase shift.  

 
(a) 

 
(b) 

Figure 11 shows the results of comparing the simulation and experiment as measured from the wall 

side of the mold. In other words, the final residual stress values based on the maximum value of the 

first step and the maximum phase shift value of the birefringence were compared non-dimensionally.  

It can be observed that the residual stress and the phase shift decreased similarly as the steps 

increased. In case of the second step, the residual stress and phase shift accounted for 49% and 59.6%, 

respectively, in relation to the first step. In case of the third step, the residual stress and phase shift 

decreased to 38% and 46.9%, respectively, in relation to the first step. Although there were slight 

differences between the simulated results and experiment results, the reduction of the residual stress 

with similar tendency was able to be confirmed. 



Materials 2014, 7 4100 

 

 

Figure 11. Comparison of normalized value between experiment and simulation. 

 

5. Three-Step Cure Optimization 

5.1. Finite Element Analysis for Step Cure  

The Taguchi method was conducted to find the optimal process for understanding the factors that 

affect the final residual stress in the three-step process and minimizing the final residual stress.  

With the Taguchi method, data is obtained using the table of orthogonal arrays with the controllable 

design parameters that have significant influence, based on which optimal values are determined by 

analyzing the SN Signal-to-Noise (SN) ratio. The SN ratio is a scale that considers both the average 

and scatter of the objective function and is presented as a ratio of the predictive value for the square of 

population mean for the scatter predictive value. All stages of the Taguchi method aims at reducing the 

scatter. Reducing the scatter is the same as increasing the SN ratio. Depending on the problem, the SN 

ratio is defined as nominal-the-best (NTB), smaller-the-better (STB), and larger-the-better (LTB) 

characteristics. For this study, it can be defined as the smaller-the-better (less residual stress during the 

cure process is better). The SN ratio is expressed in the following: 

2

0

1
SN 10log

n

i
i

y
n 

 
   

 
  (9)

Here, n represents repeated test and yi represents reaction value. 

The target characteristic of the experiment was set as the final residual stress measurement of the 

#82 element as shown Figure 12a. The heating rate was fixed at 4 °C/min and the factors were selected 

as shown in Figure 12b wherein the keep temperature and the keep time were selected based on the 

first step plateau and second step plateau. Table 4 summarizes the selected factors. 

The plan of experiment was prepared using the table of orthogonal arrays of four factors and three 

levels (L9). Table 5 summarizes the results from analyzing each of the experiment conditions of the 

table of orthogonal arrays. Figure 13 shows the response graph of the S/N ratio and mean value for 

each of the control factors that were calculated based on the results of the table of orthogonal arrays to 

find the optimal conditions. The results of the analysis showed that the factor that has the greatest 

effect on the final residual stress is the first step keep temperature. This result showed that the greatest 
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effect for the final residual stress was during the initial cure temperature, which was similar to the 

study results in which most of the voids were removed during the initial cure temperature as well [10]. 

Therefore, it is considered that the residual voids and final residual stress are closely related depending 

on such process conditions.  

Figure 12. Selection factor for the design of experiment (DOE) of the three-step cure 

process. (a) Measuring element; (b) Selection factor.  

(a) (b) 

Table 4. Design parameters of the DOE of the three-step cure process. 

Design parameters 
Level 

1 2 3 

A First step temperature 60 °C 70 °C 80 °C 
B Second step temperature 100 °C 110 °C 120 °C 
C First step time 5 min 10 min 15 min 
D Second step time 5 min 10 min 15 min 

Table 5. Orthogonal array (L9) of the DOE of the three-step cure process.  

No. 

Design parameters 
S/N Ratio 

(dB) 
Final residual 
stress (MPa) 

First step 
temperature (°C) 

Second step 
temperature (°C) 

First step 
time (min) 

Second step 
time (min) 

1 60 100 5 5 −15.22 5.77 
2 60 110 10 10 −14.81 5.50 
3 60 120 15 15 −14.79 5.49 
4 70 100 10 15 −15.30 5.82 
5 70 110 15 5 −15.28 5.81 
6 70 120 5 10 −15.59 6.02 
7 80 100 15 10 −16.49 6.68 
8 80 110 5 15 −16.51 6.69 
9 80 120 10 5 −16.49 6.68 

  



Materials 2014, 7 4102 

 

 

Figure 13. Main effect plots of (a) S/N ratio and (b) mean value in response graph.  

 
(a) 

 
(b) 

Moreover, the optimal combination for reducing the final residual stress is A1(60 °C)-B2(110 °C)-

C3(15 min)-D3(15 min), and this combination was used for conducting optimization analysis. Through 

the analysis, the final residual stress was calculated to be 5.47 MPa, which was 93.9% of the initial 

three-step stress value, making it possible to predict an additional 6.1% reduction of final residual stress.  

6. Conclusions  

By applying the step cure process of the silicone resin for LED encapsulation, the typical defect of 

having residual voids and birefringence was observed through experimentation, and the residual stress 

distribution was calculated by conducting finite element analysis. The results of residual voids 

experiment showed that most of the voids were removed during the initial cure temperature, which was 

a temperature elevation to 70 °C and keeping of the isothermic temperature. In addition, the residual 

stress that occurred in the silicone resin was calculated by coupling the structural analysis that 

considered the elastic deformation and cure shrinkage with the heat transfer that considered the heat of 

cure reaction. The results of the analysis showed that the final residual stress decreased by 50% and at 

most 60% for the two-step and three-step, respectively. Furthermore, the reliability of the analysis was 

obtained since similar results of birefringence measurement were observed in both the experiment and 

the simulation.  

In addition, the final residual stress analysis was performed with the Taguchi method by selecting 

four-process parameters regarding the three-step process. The factor that has the greatest effect on the 

final residual stress is the first step keep temperature, which is congruent to the similar results of the 

voids removal experiment. It is considered that such defect factors occur because they are closely  
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inter-related. In addition, it is possible to predict an additional 6.1% reduction in final residual stress 

through the optimization analysis.  

It is possible to confirm that the optimization of residual stress and optical characteristics of the 

LED encapsulant is indeed possible through such experiment and finite element analysis. In addition, 

even in case that the silicone resin is decided to be of specific material, it will be possible to derive the 

cure process for manufacturing the optimal LED packaging by carrying out the finite element analysis 

beforehand on the various cure processes (changes in the cure temperature, curing time, cooling time, 

heating method, etc.) based on an understanding of the material properties.  
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