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Abstract: A comprehensive mathematical model of the hot extrusion process for 
aluminum alloys has been developed and validated. The plasticity module was developed 
using a commercial finite element package, DEFORM-2D, a transient Lagrangian model 
which couples the thermal and deformation phenomena. Validation of the model against 
industrial data indicated that it gave excellent predictions of the pressure during extrusion. 
The finite element predictions of the velocity fields were post-processed to calculate the 
thickness of the surface cladding as one billet is fed in after another through the die  
(i.e., the transverse weld). The mathematical model was then used to assess the effect a 
change in feeder dimensions would have on the shape, thickness and extent of the 
transverse weld during extrusion. Experimental measurements for different combinations 
of billet materials show that the model is able to accurately predict the transverse weld 
shape as well as the clad surface layer to thicknesses of 50 µm. The transverse weld is 
significantly affected by the feeder geometry shape, but the effects of ram speed, billet 
material and temperature on the transverse weld dimensions are negligible. 
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1. Introduction 

Billet-on-billet extrusion is utilised in the vast majority of commercial aluminum extrusion 
operations. This is done to allow use of sophisticated handling systems that maximize productivity of 
the extrusion process. On the other hand there are unwanted consequences of extruding in this manner 
including the development of a transverse weld which will develop between the individual billets as 
they are extruded into the final extrudate. This can result in a profile that does not meet the mechanical 
property specification. In addition, the surface of the second billet is clad with the first billet with 
remnants of the oxide films from the billet end and feeder face on the interface. This effect can extend 
for many metres into the second billet and the main objectives in continuous billet-on-billet extrusion 
is to minimize the transverse weld interface length and the associated scrap allowance, while at the 
same time providing a weld strong enough to withstand the stretching process after extrusion. It has 
been shown that the transverse welding length depends on how fast the material from the old billet 
flows out at the die corners [1]. Consequently, the geometry of the feeder and die can significantly 
affect the length and thickness of the transverse weld in the extrudate [2,3]. It is now recognised [3] 
that in addition to the physical effects of the transverse weld interface on product integrity, material 
from successive billets can accumulate inside in the feeder pocket and gradually enter the product 
surface generating mill finish or post-anodised streaks. Therefore feeder pocket geometry plays a key 
role on many aspects of extruded product quality and the ability to predict the effect of changes in 
feeder design is a critical step in the improvement of press recovery. 

Using a validated mathematical model of the extrusion process, this research shows the effects of 
parameters such as billet material, feeder geometry and extrusion ratio on the material flow and the 
extent of the transverse welds in the extrudate. 

Transverse Weld Formation 

During the extrusion process, sticking friction usually occurs between the billet and container which 
results in inhomogeneous flow of material towards the die, such that the centre of the billet flows 
towards the die faster than the billet surface [4,5]. When extruding more than one billet, the extrusion 
is stopped before the back-end defect can occur, the remaining part of the billet is sheared off and a 
new billet is loaded into the container. The two billets then butt up against each other and they 
essentially become “welded” together as the extrusion continues and the billet surfaces are forced 
together. In this billet-on-billet extrusion process, which is often used in modern aluminum extrusion 
plants as a mean to maintain continuous production, transverse welding of the two billets can occur; 
the billet surfaces are forced together under high pressure as the ram pushes them towards the feeder 
and into the die. Due to the material flow pattern, as the billet enters the feeder and die, the interface 
(transverse weld) between the billets does not remain flat and can manifest itself on the extrudate as a 
clad surface layer [6]. Jowett et al. [3] found that the thickness of the transverse weld over the length 
of extrudate fits well with a power law function. 

Figure 1 shows an illustration of the formation of a transverse weld or clad surface layer between 
two consecutive billets. During the press stop when the butt is sheared and the next billet loads, a 
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visible mark forms where the die bearing contacts the profile. This mark, known as the “stop mark”, 
can be distinguished on the surface after extrusion.  

Figure 1. Schematic of transverse weld formation showing: (a) end of the extrusion of the 
first billet; (b) shearing the 10% billet butt off the first billet; (c) loading the second billet 
into the container; (d) beginning of extrusion of the second billet, showing the 
development of the transverse weld; (e) the length of the transverse weld (lTW) with 
minimum clad thickness of tm divided into l1 and l2. 

(e) 

Figure 2 shows cross-section images of transverse weld (black ring) at the start (a) and the middle 
of transverse weld (b). As shown in Figure 2a, at the distance of 0.2 m from stop mark the thickness of 
the clad layer is 3.16 mm and at the distance of 1 m, Figure 2b, the transverse weld is 0.28 mm.  

Figure 2. Optical micrograph showing the cross section of transverse weld at (a) 0.2 m  
and (b) 1 m from stop mark for an extrusion ratio of 70 (first billet AA6063 and second 
billet AA3003). 
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2. Results and Discussion 

2.1. Dead Metal Zone and the Effect of Feeder Geometry 

Figure 3 shows the model-predicted effect of feeder geometry on the material flow and dead metal 
zone during a round bar extrusion with extrusion ratio of 70. The first snapshot on the left is for a ram 
stroke of 20 mm which is 4 mm after the break through. During the entire extrusion, the previous billet 
material left inside the regular feeder geometry is much larger than that of the tapered feeder. This 
arises from both the lower initial volume of material remaining inside the tapered feeder from the first 
billet as well as the different metal flow pattern. At the end of the extrusion (ram stroke of 180 mm for 
this case), there is no prior billet material left in the tapered feeder but there is some prior billet 
material left inside the regular feeder. 

Figure 3. Effect of feeder geometry on shape of transverse weld at different ram strokes, 
dotted lines at the first snapshot indicate the position of the stop mark. (Model predictions 
for extrusion ratio of 70; billet temperature = 500 °C; ram speed = 2 mm/s). 

 

2.2. Evaluation of Transverse Weld Thickness 

To validate the model predictions of the geometry of the transverse weld, the thickness of the 
surface clad layer from the previous billet was measured at given positions and compared to model 
predictions. Figure 4 shows a comparison of model predictions of the clad layer against experimental 
measurements for transverse weld thickness along the extrudate. For this feeder configuration and 
extrusion ratio, residual material from the previous billet was present along the entire length of the 
extruded profile. The model predictions of the clad layer thickness fit well with power law trend line 
with an exponent of about −1.5 which was earlier reported by Jowett et al. [3] for simple rectangular 
and shaped feeder plate geometries. As shown in Figure 4a, the model predictions are in good 
agreement with experimental measurements until the thickness of clad layer falls below ~30 µm where 
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the model predictions deviate from the experimental measurements. This is probably due to the mesh 
size used near the surface (~100 µm); with smaller mesh size the model predictions would most likely 
be more accurate to lower clad thicknesses. Figure 4b shows that the trendline fit on the model 
predicted data agrees well with the experimental data throughout the extrudate, even at very low clad 
thickness where the model shows some deviation from the experimental measurements. 

Figure 4. (a) Model predictions and experimental measurements for transverse weld 
thickness plotted on logarithmic scales; (b) power law trendline fitted on model predictions, 
(first and second billet AA3003 with homogenization of 24H600 and 8H550, respectively). 

 
(a) (b) 

2.3. Effect of Billet Material 

The effect of different combinations of alloy types and homogenisation practices on the transverse 
weld shape is shown in Figure 5. The effect of billet material on the shape of the transverse weld 
appears to be negligible at least for the AA3XXX and AA6XXX alloys studied. This indicates that the 
model predictions done on clad thickness should be applicable to a range of aluminum alloys. 
Normally transverse scrap allowances are confirmed by macroetching the profile cross-section and 
determining the position at which the defect is no longer visible by the naked eye or low power 
microscope. In these tests the thickness of the residual material from the previous billet was measured 
by optical metallography on polished sections. When marker materials were used, the contrast between 
alternate billets was clear as shown in Figure 6a which allowed very thin layers <20 µm in thickness to 
be identified along the entire profile length. In Figure 5 it is interesting to note that for AA6063 
followed by AA6063 (large open squares) the metallographic examination only identified the 
transverse weld extending to 5 m, i.e., half the extruded length. As shown in Figure 6b, even at the 1 m 
position for AA6063 the contrast associated with the transverse weld was not clear compared with the 
marker material situation. As indicated by the trends in Figure 5 there is no reason why the weld length 
for AA6063 should be any shorter. In fact the original metallographic work only identified transverse 
weld extending to 1,000 mm for AA6063 and based on the results for the marker materials the samples 
were re-examined and traces of transverse weld were found at the 5 m position. This result is not 
surprising as, for the same material, observation of the transverse weld interface relies on resolution of 
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the oxide film from the billet end surface which is progressively broken up as the weld progresses.  
For structural integrity the avoidance of the oxide layer is the main issue and normal practices usually 
ensure this is not incorporated in saleable product. However, this result does indicate that standard 
practices for determining scrap allowances typically underestimate the presence of residual material in 
surface layers <100 µm in thickness. This suggests that most commercial products have a surface layer 
at least partially composed of the preceding billet which has implications for streak formation. 

Figure 5. Effect of different billet material combination on the thickness of transverse weld 
along the extrudate (legends represent the codes for aluminum alloy used for first and 
second billets for each test, 3003A stand for 3003 aluminum alloy homogenized at 600 °C 
for 24 h and 3003B stands for the same alloy homogenized at 550 °C for 8 h). 

 

Figure 6. Comparison of transverse weld contrast (a) for marker materials and (b) regular 
AA6063 at 1000 mm position. 

  

2.4. Effect of Feeder Geometry 

Figure 7 shows the model predictions and measurements for the effect of tapered feeder on the 
thickness and length of transverse weld. It is observed that using a tapered feeder significantly 
decreases the length of product contaminated by the transverse weld defect and the clad thickness.  
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Figure 7. Comparison of model predictions (lines) to measurements (symbols) showing the 
effect of feeder shape on transverse weld geometry for extrusion ratio of 70 (circles and 
triangles represent measurements for regular and tapered feeder, respectively). 

 

3. Experimental Procedure 

A series of extrusion trials were conducted using the fully instrumented pilot-scale extrusion press 
at the Rio Tinto Alcan Arvida Research and Development Centre located in Jonquiere, Quebec. This is 
a 780 t direct extrusion press with a 106 mm diameter container. The press is highly instrumented. The 
main ram position is measured using a Baluff digital position transducer and this information is used to 
calculate extrusion speed. Extrusion force is determined by the hydraulic pressure acting on the main 
and side cylinders. Billet temperature is accurately measured by three contact thermocouples located 
on the billet loading clamp. The container liner contains 12 thermocouples in holes drilled through the 
container liner such that they touch the liner surface.  

AA3003 billets were DC-cast into 101.6 mm diameter billets with lengths of 200–400 mm and then 
homogenized at three different homogenization conditions. Table 1 shows the range of conditions 
tested during the extrusion trials. For all trials listed here a 60 mm diameter feeder plate was used. 

Table 1. Range of extrusion conditions studied. 

Extrusion parameter Value 
Extrusion ratio 17 70 280 

Temperature (°C) 400, 500 400, 450, 500 400, 500 
Ram speed (mm/s) 8 2, 8, 20, 32 2, 8 
Billet length (mm) 400 200 200 
Homogenization * 8H550 8H500, 8H550, 24H600 8H550 

* 8H500 stands for 8 h at 500 °C and so on. 

To determine the effect of billet material on the transverse weld and also to see a good contrast 
between the clad layer and the extrudate, two billets with different material (AA6063) were extruded 
in between the other billets. 

Table 2 shows the chemical composition of the AA3003 and AA6063 aluminum alloys used in  
this study. 



Materials 2014, 7 3477 
 

 

Table 2. Weight percentage of major alloying elements in aluminum alloys used for the 
billet material. 

Types 
Weight percentage of major alloying elements (wt%) 

Mn Fe Si Mg 
AA3003 1.27 0.54 0.10 – 
AA6063 0.035 0.17 0.44 0.5 

Prior to extrusion, the billets were rapidly reheated in an induction furnace to the extrusion 
temperature, and extruded into round bars. 

During the extrusion of each billet, the ram was stopped when 10% of the original billet length 
remained in the container. The ram and container were then moved back to make it possible to shear 
the butt scrap. Typically the butt or discard length is set as a percentage of the original billet length. In 
our case with a starting billet length of 200 mm, 20 mm of butt scrap was left. The extrusion process 
then continues once the container is repositioned and the next billet loaded.  

To measure the thickness of the transverse weld, the extrudate was sectioned at different positions, 
polished and etched for 60 s with HF 0.5% solution and digital images were taken using the optical 
microscope with variable lighting filter to see the contrast between the clad layer and the extrudate. 

One additional extrusion trial was performed using a tapered feeder to investigate the effect of 
feeder geometry on the length of the transverse weld. While this type of geometry is not commonly 
used for aluminum extrusion, it was selected to impose a major change in the material flow during 
extrusion. The maximum inner diameter of the tapered feeder was 60 mm (equal to the diameter of 
regular feeder) and its exit diameter was 12.7 mm (the same as the die diameter). In both cases, the 
feeder depth was 25 mm. Figure 8 provides a schematic of the two feeder geometries used. 

Figure 8. Schematic of two different feeder geometries. 

 

4. Mathematical Model 

4.1. Finite Element Model 

The commercial finite element (FE) package; DEFORM-2D; was used to numerically model the 
extrusion process. The code is based on the flow formulation approach using an updated Lagrangian 
procedure. The 2D axisymmetric geometry was divided into a series of four-node; quadrilateral; linear 
and iso-parametric elements. These FE element types were the only ones available in the version of 
DEFORM-2D (Version 10) used for these simulations. The calculation time to simulate extrusion of 
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the entire billet using a minimum element size of 0.25 mm was about 8 days; using a 3rd generation 
Intel i7 processor. More detailed information on the FE model is described in a previous paper [7]. 

Since there is large plastic deformation associated with the extrusion process, the billet material was 
assumed to behave as a rigid-viscoplastic material. Whereas the other objects were defined as being 
rigid during deformation; only the billet was involved in the deformation to which the flow 
formulation analysis applies. In this work the solute drag based constitutive model developed by Kocks 
and Chen [8], shown in Equation (1), was used to capture the temperature and strain rate dependence 
of the material flow stress. 

     
 
 
  

   

  
      

  

  
  (1) 

where,    is the strain rate;   is the stress; G is the temperature dependent shear modulus; b is the 
temperature dependent magnitude of the Burgers vector; k is Boltzmann’s constant; T is the 
deformation temperature; Qd is the activation energy for diffusion for the rate controlling diffusing 
species (in this case Mn); R is the gas constant; and A and n are material constants that were 
determined from experimental studies and were found to depend on the starting chemistry and 
homogenization treatment [9]. 

Figure 9 illustrates the capability of the 2D FEM model to predict the extrusion load over the range 
of extrusion conditions outlined in Table 1, by comparing the predicted and measured loads at a ram 
position of 50% of the billet length. As shown in the figure, the model predicted load falls within ±11% 
of the measured load, with the average difference of −1.4% and average absolute difference of 5.3%. 

Figure 9. Comparison of predicted and measured extrusion load for different conditions 
listed in Table 1. Load measurements were taken at the ram stroke which coincided when 
50% of the billet length was extruded. 

 

4.2. Post Processing of FEM Results 

Using MATLAB software, results for velocity flow fields from the FEM model were processed so 
that details of the flow pattern and transverse weld thickness could be determined. The first step in the 
post processing of the FEM results was tracking different points through the velocity field from the 
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billet during extrusion and into the final extrudate. Figure 10 shows the direction and magnitude of 
velocity for each nodal point in the billet for an extrusion ratio of 70. 

Predictions of the transverse weld shape and thickness were made by tracking the points of the 
boundary surface between the two billets. Details of the mathematical procedure for point tracking and 
determination of transverse weld thickness are presented in a previous paper [7]. 

Figure 10. FE model-predicted velocity field showing (a) the direction and (b) the 
magnitude of velocity through the deforming material (extrusion ratio = 70, arrows show 
the direction of velocity for each node). 

 
(a) (b) 

5. Conclusions 

Using a simple but effective numerical technique in conjunction with FE model predictions, the 
thickness and length of the transverse weld was accurately calculated for radically different feeder 
geometries giving good agreement with physical measurements. Although the calculations were done 
predominantly on AA3XXX aluminum alloys, these predictions would be applicable to other 
aluminum alloy systems.  

For round bar extrusion using a simple cylindrical feeder, the simulations indicated that material 
from the preceding billet is still present in the dead zones of the pocket such that the surface of the 
product can be contaminated over the entire length. In the case of the tapered pocket, material from the 
preceding billet clears from the pocket during the push, significantly decreasing the transverse weld length. 

Experimental measurements and model predictions indicate that the thickness of the clad layer as a 
function of extrudate position fits well with a power law with an exponent of −1.6. 

The transverse weld length did not vary with the changes in billet material made in the study. 
However, using dissimilar materials did allow the depth of the surface layer to be tracked to <100 µm, 
indicating that the normal methods industrially used to reveal the transverse weld disregard the 
presence of thin surface layers. 
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