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Abstract: Confinement and surface effects provided by nanoparticles have been shown to 

produce changes in polymer molecules affecting their macroscopic viscosity. Nanoparticles 

may induce rearrangements in polymer conformation with an increase in free volume 

significantly lowering the viscosity. This phenomenon is generally attributed to the 

selective adsorption of the polymer high molar mass fraction onto nanoparticles surface 

when the polymer radius of gyration is comparable to the nanoparticles characteristic 

dimensions. Carbon nanotubes seem to be the ideal candidate to induce viscosity reduction 

of polymer due to both their high surface-to-volume ratio and their nanometric sizes, 

comparable to the gyration radius of polymer chains. However, the amount of nanotube in 

a polymer system is limited by the percolation threshold as, above this limit, the formation 

of a nanotubes network hinders the viscosity reduction effect. Based on these findings, we 

have used multiwalled carbon nanotubes MWCNT “aggregates” as viscosity reducers. Our 

results reveal both that the use of nanotube clusters reduce significantly the viscosity of the 

final system and strongly increase the nanotube limiting concentration for viscosity 

hindering. By using hydroxyl and carboxyl functionalized nanotubes, this effect has been 

rather maximized likely due to the hydrogen bridged stabilization of nanotube aggregates. 
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1. Introduction 

Polymer compounding is one of the most used way to obtain plastics which ensure processing and 

performances demands from markets and industries. Polymer-nanocomposites obtained by dispersing 

organic or inorganic nanoparticles in thermoplastic or thermosetting polymeric matrices nowadays are 

widely studied to improve structural and functional performances [1–11]. 

The extremely small sizes of nanoparticles often lead to a contribution to the bulk properties which 

cannot be explained by classical theories, such as the non-Einstein-like anomalous bulk viscosity of 

polymer-nanocomposite melts. The first evidence of this phenomenon came from the experimental 

results reported by Mackay and coworkers [12]. 

The viscosity of particulate suspensions usually increases with the particle volume fraction, as 

demonstrated in various experimental and theoretical studies [13–15]. At low volume fractions and for 

Newtonian fluids as hosting media, interactions among particles can be neglected and the increased 

bulk viscosity is predictable according to Einstein relation. This relation was progressively extended 

for non-dilute rigid-sphere suspensions, non-rigid (deformable) and non-spherical particles [16], fiber 

suspensions [17] and in the case of interacting particles [15]. Metzner et al. [18] have reviewed the flow 

behavior of concentrated suspensions, providing general predictions of flow when solids are suspended 

in viscous molten polymers. These authors also extended previous theories to non-Newtonian fluids. 

Mackay et al. [12] considered an ideal system of polystyrene (PS) nanoparticles dispersed in a 

linear PS melts, in order to reduce the surface enthalpic interactions. Their work highlighted that bulk 

viscosity decrease is distinctive feature for such a systems in which constituents interact at nanoscale 

level. In these cases, the viscosity reduction effect is related to an increase in free volume, as also 

confirmed by the nanoparticle-induced glass transition temperature decrease and by the polymer 

configuration rearrangements. Tuteja et al. [19,20] have expanded these experimental evidences,  

by disclosing more specific conditions to achieve a reduction in bulk viscosity. They concluded that 

the polymer melt must be entangled and that the average separation distance among nanoparticles has 

to be comparable to the polymer radius of gyration (Rg), under such conditions, nanoparticles can 

perturb polymer chain configurations [19]. In their later work [20], the same authors demonstrated  

that viscosity reduction also occurs in multifunctional nanocomposite fullerene-polystyrene. Zhang, 

Lippits and Rastogi [21] tested dispersions of SWCNTs in ultrahigh molecular weight polyethylene by 

revealing a similar behavior. They have attributed the decrease in viscosity to the selective interaction 

among nanotubes and to the higher molar mass fraction of polymeric bulk, which, consequently, leads 

to a decrease of dynamic viscosity for very low percentage (less than 0.1 wt%) of nanoparticles. 

In this work we have used multiwalled carbon nanotube “aggregates” as viscosity reducers in a  

bi-functional epoxy/ammine system. The effect of the aggregates on viscosity has been measured 

along the occurring in-situ polymerization, which promotes a linearization reaction scheme. The 

interesting phenomena of viscosity reduction is for the first time investigated for an epoxy-thermoplastic 

system with the aim to discuss and rationalize it irrespective of network formation. 
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2. Results and Discussion 

2.1. Rheometric Characterization 

MWCNT suspensions, made by un-functionalized and functionalized multiwalled nanotubes, were 

tested in order to follow changes in rheological behavior during the whole polymerization process.  

A short nomenclature to classify the specimens has been adopted and hereafter reported with the  

aim of identifying better the different samples: “n-EPO” refers to the suspensions containing carbon 

nanotubes without functionalization, “h-EPO” and “c-EPO”, respectively, for suspensions made  

by –OH and –COOH functionalized nanotubes. Results obtained for n-EPO suspensions have been 

reported in Figure 1, as well as rheological behavior of neat resin during the whole thermal process. 

Figures 2 and 3 report, respectively, the corresponding results for h-EPO and c-EPO samples. 

Before polymerization the complex viscosity of the n-EPO suspensions are always higher than the 

corresponding neat resin (see Figure 1). Low molecular weight precursors and nanoparticles interact 

according to the classical Einstein like behavior, since the complex viscosity of the suspensions 

increases with arising of the MWCNT content. When polymerization progresses, monomers bond together 

to form molecular chains with increasing average molecular weight and a radius of gyration Rg. Polymer 

melts characterized by a lower bulk viscosity than the corresponding neat resin are obtained, according 

to Tuteja et al. [20], for the n-EPO suspensions at respectively 0.005 and 0.010 wt% (nominal values). 

In these cases, the viscosity values for the polymerized systems @ 160 °C fall down of an order of 

magnitude compared to the corresponding neat polymer. For n-EPO suspensions, the 0.1wt% 

concentration of MWCNT is a limiting concentration at which the nanotubes network formation 

hinders the viscosity reduction effect. 

Figure 1. Complex viscosity of n-EPO suspensions compared to neat resin. 
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Figure 2. Complex viscosity of h-EPO suspensions compared to neat resin. 

 

Figure 3. Complex viscosity of c-EPO suspensions compared to neat resin. 

 



Materials 2014, 7 3255 

 

 

For suspensions made by functionalized MWCNTs (h-EPO and c-EPO), an analogous effect is 

revealed. All suspensions with ~0.1 wt% nanoparticles exhibit reduced viscosity if compared to n-EPO 

samples, being the same the amount of nanofiller; h-EPO suspensions with 0.478 wt% of nanotubes 

reveals, almost the same viscosity of neat polymer (see Figure 2). This later result could be mainly 

associated to both the improved interface nanoparticle/polymer, which is ensured by the presence of 

hydroxyl groups on both molecules and by the forming nanoparticle clusterings, which prevent an 

early percolation as revealed also by the optical characterization reported in the following paragraph. 

Similarly to h-EPO specimens, c-EPO suspensions at 0.465 wt% preserve the same viscosity of neat 

polymer. The rationale for this effect is likely associated with higher nanoparticle content which 

determines a further effect. In fact, it is believed that functional groups of nanoparticles strongly 

interact with polymer precursors during the chemical reactions and, also due to the higher amount of 

this functionalized nanofiller, they can alter the local stoichiometric balance of the reaction preventing 

the final product of reaching the same average molecular weight. 

In Figure 4, the values of plateau viscosity for all suspensions are reported. Excluding the behavior 

of c-EPO suspension with ~4.5 wt% MWCNTs content, which could not be compared reasonably to 

the neat resin and the other specimens, due to stochiometric changes induced by the functional groups, 

all the other results reveals a very interesting correlation between nanotubes content and plateau 

viscosity of the polymerized systems. Moreover, it results that functionalization of nanoparticles is 

very important leading to an huge decrease in viscosity being constant the nanoparticle amount. 

Figure 4. Plateau complex viscosities. Comparison between pristine and functionalized 

MWCNTs at various weight contents. 
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2.2. Nanoparticles Dispersion: Microscopy 

Dispersion and aggregation arrangements can be effectively analyzed at microlevel by using optical 

microscopy. For n-EPO specimens, an efficient dispersions was achieved with the formation of a fine 

percolated network at very low concentration of about 0.096 wt% (see Figure 5). 

Figure 5. Optical microscopy images of n-EPO samples. 

 

This result matches also with rheological tests (see Figure 1): at this concentration, nanotubes form 

a percolative network which hinders the effect of viscosity reduction due to the interactions between 

nanoparticles and polymer chains. At lower concentration levels, the percolation will not occur thus 

the reduction of system viscosity can be clearly recorded by rheometry. 

In the case of specimens loaded by functionalized nanoparticles (respectively, h-EPO and c-EPO) 

optical microscopy analysis has revealed again a good level of achieved dispersion but conversely, the 
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indented structure of nanoparticles network is replaced by a clustered isolated morphology, which 

prevents percolation (see Figure 6). In order to highlight, how the different dispersion morphologies 

can affect the rheological behavior, the optical images for n-EPO 0.096 wt% and h-EPO 0.099 wt% 

specimens could be compared and analyzed. The amount of nanoparticles added is the same (within 

the experimental error range) however their effect on viscosity results very remarkable with over an 

order of magnitude difference (see Figure 4). 

Figure 6. Optical microscopy images of h-EPO and c-EPO samples. 

 

2.3. Nanocomposite Glass Transition Temperature 

A further parameter which can be used to investigate effectively the interaction between 

nanoparticles and polymer matrix is represented by the glass transition temperature of the final system. 
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As glass transition temperature is strictly related with polymer molecular mobility, the final results, 

obtained for all prepared samples, state that Tg values are lower than the corresponding value for the 

neat resin system and this arises as an interesting feature for the polymer molecular mobility  

(see Figure 7). 

In fact, lower glass transition levels can be attributed to a higher mobility level of polymer chains. 

Therefore, a drop of the system viscosity is expected due to the interaction between nanoparticles and 

polymer structures. On the other hand, by using a higher nanotubes concentration, the complex 

viscosity increases compared to neat polymer system, and this could be suitably related to the elastic 

component of the forming percolative network. 

Figure 7. Glass transition temperature for prepared nanocomposites compared to neat 

polymer Tg. 

 

3. Experimental Section 

Raw Materials: the thermoplastic epoxy system was provided by ELANTAS Italia S.r.l. (Parma, 

Italy). This system is based on diglycidyl ether of bisphenol A (DGEBA) with a low average epoxide 

equivalent weight (EEW) and abi-functional co-monomers with hydroxyl reactive groups in terminal 

positions. The supplied material consists of a mixture of the two components without catalyst, 

separately prepared by melting alchidic ammonium/phosphonium salts in liquid DGEBA, which works 

as compatible medium with reactive mixture. Epoxy resin and co-reactive agent (polyphenols) have 

been premixed in quasi-stoichiometric ratio while catalytic paste is added to suspensions until an 

effective amount of 1 wt% is reached. 

Three types of nanotubes have been used in this work. Catalytic carbon vapor deposition (CCVD) 

grown MWCNTs, namely NC 7000, with an average diameter of 9.5 nm, an average length of 1.5 μm 

and a purity of 90% were purchased by Nanocyl S.A. (Sambreville, Belgium); –COOH functionalized 
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MWCNT, labelled NC 3151, with an average diameter of 9.5 nm, a length of less than 1 μm, a purity 

exceeding 95% and a carboxylic functionalization of about 4% purchased by Nanocyl S.A.; –OH 

functionalized MWCNT, labelled TN-MH3, with a diameter between 10 and 20 nm, a length between 10 

and 30 μm, a purity exceeding 95% were purchased by Chengdu Organic Chemicals Co. Ltd. (Chengdu, 

China), Chinese Academy of Sciences. All nanotubes have been used as received without any extra 

purification treatment and they have been dried at 110 °C for 6 h at 10 kPa absolute pressure. The addition 

of functionalized nanotubes in the reactive mixture has been neglected in terms of stoichiometric 

unbalance; therefore, no correction has been done for the component stoichiometric ratios. 

Production of MWCNT-Epoxy suspensions: MWCNT-Epoxy suspensions have been produced 

using an IKA Ultra-Turrax T25 batch shear mixer (Senaco, Milano, Italy). Due to the high rotation 

speed of the rotor, the medium to be processed is drawn axially into the dispersion head and then 

forced radially through the slots in the rotor/stator gap. The dispersion efficiency is comparable to 

other dispersion techniques like sonication and three-roll milling and is, also, fully scalable for 

industrial applications. 

Optical characterization of polymerized specimens: optical microscopy analysis was carried out  

on 250 µm thick samples of polymerized suspensions in light transmission mode using an Olympus 

BX51 microscope (Olympus, Münster, Germany). 

Rheologic characterization: Rheological test have been performed on the epoxy suspensions using a 

test configuration able to measure viscoelastic behavior before and during and after polymerization 

stage [22–24].Upon preliminary tests on the reactive epoxy system, an oscillatory test has been set up, 

providing the monitoring of suspension rheological behavior before and during the polymerization 

stage by measuring variations of characteristic parameters (complex viscosity, G’,G”) of several 

decades. The oscillatory test has been performed at a constant angular frequency of 5 rad∙s
−1

 and a 

strain amplitude of 10%, ensuring the measure to be conducted in the linear viscoelastic region and the 

oscillation is sufficiently weak to prevent the nanotube network destruction. The rheological 

measurements have been carried out under a controlled heating stage where the suspension viscosity 

has been measured at a constant temperature of 80 °C and during curing stages (ramp at 3 °C∙min
−1

 up to 

160 °C and holding at 160 °C). The used rheometer is an Anton Paar Physica MCR310 (Anton Paar 

Gmbh, Graz, Austria), equipped with a Peltier hot/cold stage, which ensures a very effective temperature 

control (±0.1 °C compliance to setpoint and absence of under/overshoots during transients). 

4. Conclusions 

Multiwalled carbon nanotubes effectively operate as viscosity reducers for polymer matrices, due to 

both their nanometric sizes, comparable to the gyration radius of polymer chains, and their high 

surface-to-volume ratio associated with their aggregates morphology. 

Clustering of nanotube plays a twofold effect, primarily triggering a selective absorption of high 

molecular mass polymer chains and, secondarily, increasing the nanotube concentration to achieve 

“aggregates” percolative network. 

Early percolation for unfunctionalized nanotubes hinders the viscosity reduction effects due to the 

presence of the nanoparticles network. Moreover, it has been found that functionalized nanotubes form 

hydrogen bridged stabilized aggregates by using hydroxyl and carboxyl groups, which prevent 
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percolation and extend the viscosity reduction effect up to nanoparticle concentrations of about one 

order of magnitude higher than the corresponding threshold for unfunctionalized carbon nanotubes. 

Acknowledgments 

This work is a frame of the EPOPLASTIC Project. We are very grateful to MI.S.E. (Italian Ministry 

of Economic Development) for founding the Project. A special thanks is for Marco Busi, R&D 

scientist of Camattini, for his key support. 

Author Contributions 

All authors contributed to scientific discussion and critical revision of the article. In details, Angelo 

Petriccione prepared specimens and performed rheometric tests; Vincenza Antonucci analyzed thermal 

data; Mauro Zarrelli wrote the manuscript and Michele Giordano supervised the study.  

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Thostenson, E.T.; Ren, Z.; Chou, T.-W.; Advances in the science and technology of carbon 

nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. 

2. Martone, A.; Formicola, C.; Giordano, M.; Zarrelli, M. Reinforcement efficiency of multi-walled 

carbon nanotube/epoxy nano composites. Compos. Sci. Technol. 2010, 70, 1154–1160. 

3. Allaoui, A. Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 

2002, 62, 1993–1998. 

4. Li, D.; Zhang, X.; Sui, G.; Wu, D.; Liang, J. Toughness improvement of epoxy by incorporating 

carbon nanotubes into the resin. J. Mater. Sci. Lett. 2003, 22, 791–793. 

5. Martone, A.; Faiella, G.; Antonucci, V.; Giordano, M.; Zarrelli, M. The effect of the aspect  

ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix.  

Compos. Sci. Technol. 2011, 71, 1117–1123. 

6. Camponeschi, E.; Vance, R.; Alhaik, M.; Garmestani, H.; Tannenbaum, R. Properties of carbon 

nanotube–polymer composites aligned in a magnetic field. Carbon 2007, 45, 2037–2046. 

7. Jana, S.C.; Jain, S. Dispersion of nanofillers in high performance polymers using reactive solvents 

as processing aids. Polymer 2001, 42, 6897–6905. 

8. Wetzel, B.; Haupert, F.; Zhang Qiu, M.; Epoxy nanocomposites with high mechanical and 

tribological performance. Compos. Sci. Technol. 2003, 63, 2055–2067. 

9. Martone, A.; Formicola, C.; Piscitelli, F.; Lavorgna, M.; Zarrelli, M.; Antonucci, V.; Giordano, M. 

Thermo-mechanical characterization of epoxy nanocomposites with different carbon nanotube 

distributions obtained by solvent aided and direct mixing. Express Polym. Lett. 2012, 6, 520–531. 

10. Xiao, K.; Zhang, L.; Zarudi, I. Mechanical and rheological properties of carbon nanotube-reinforced 

polyethylene composites. Compos. Sci. Technol. 2007, 67, 177–182. 



Materials 2014, 7 3261 

 

 

11. Loos, M.R.; Coelho, L.A.F.; Pezzin, S.H.; Amico, S.C. Effect of carbon nanotubes addition on the 

mechanical and thermal properties of epoxy matrices. Mater. Res. 2008, 11, 347–352. 

12. Mackay, M.E.; Dao, T.T.; Tuteja, A.; Ho, D.L.; Horn van, B.; Kim, H.-C.; Hawker, C.J. 

Nanoscale effects leading to non-einstein-like decrease in viscosity. Nat. Mater. 2003, 2, 762–766. 

13. Einstein, A. A new determination of the molecular dimensions Annalen Der Physik 1906, 19, 

289–306. (In German) 

14. Pal, R. Rheology of Particulate Dispersions and Composites; CRC Press: London, UK, 2007. 

15. Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge University Press: Cambridge,  

UK, 1967. 

16. Pabst, W. Effective elastic properties of alumina-zirconia composite ceramic. Ceramics 2004, 48, 

6–13. 

17. Petrie, C.J.S. The rheology of fibre suspensions. J. Non Newtonian Fluid Mech. 1999, 87, 369–402. 

18. Metzner, A.B. Rheology of suspensions in polymeric liquids. J. Rheol. 1985, 29, 739. 

19. Tuteja, A.; Mackay, M.E.; Hawker, C.J.; Horn Van, B. Effect of ideal organic nanoparticles on 

the flow properties of linear polymers: Non-Einstein-like behavior. Macromolecules 2005, 38, 

8000–8011. 

20. Tuteja, A.; Duxbury, P.M.; Mackay, M.E. Multifunctional nanocomposites with reduced viscosity. 

Macromolecules 2007, 40, 9427–9434. 

21. Zhang, Q.; Lippitz, D.R.; Rastogi, S. Carbon nanotubes induced nonisothermal crystallization of 

ultrahigh molecular weight polyethylene with reduced chain entanglements. Macromolecules 

2006, 39, 658–666. 

22. Ma, A.W.K.; Chinesta, F.; Mackley, M.R. The rheology of carbon nanotube (CNT) suspensions: 

Experiments and modelling. AIP Conf. Proc. 2008, 1027, 752–754. 

23. Ma, A.W.K.; Chinesta, F.; Mackley, M.R.; Ammar, A. The rheological modelling of carbon 

nanotube (CNT) suspensions in steady shear flows. Int. J. Mater. Form 2008, 1, 83–88. 

24. Rahatekar, S.S.; Koziol, K.K.K.; Butler, S.A.; Elliott, J.A.; Shaffer, M.S.P.; Mackley, M.R.; 

Windle, A.H. Optical microstructure and viscosity enhancement for an epoxy resin matrix 

containing multi-wall carbon nanotubes. J. Rheol. 2006, 50, 599–610. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


