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Abstract: The scattering of Dirac electrons by topological defects could be one of
the most relevant sources of resistance in graphene and at the boundary surfaces of a
three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit
of the Dirac equation, the topological defect can be described as a distortion of the metric
in curved space, which can be accounted for by a rotation of the Gamma matrices and by a
spin connection inherited with the curvature. These features modify the scattering properties
of the carriers. We discuss the self-energy of defect formation with this approach and the
electron cross-section for intra-valley scattering at an edge dislocation in graphene, including
corrections coming from the local stress. The cross-section contribution to the resistivity, ρ,
is derived within the Boltzmann theory of transport. On the same lines, we discuss the
scattering of a screw dislocation in a two-band 3D TI, like Bi1−xSbx, and we present the
analytical simplified form of the wavefunction for gapless helical states bound at the defect.
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When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary
states acquire superconductive correlations by proximity. In the presence of a magnetic
vortex piercing the heterostructure, two Majorana states are localized at the two interfaces
and bound to the vortex core. They have a half integer total angular momentum each, to
match with the unitary orbital angular momentum of the vortex charge.

Keywords: Dirac electrons; topological defects; two-band topological insulators;
Majorana bound state

1. Introduction

Boundaries in a topological insulator (TI) host Dirac electrons propagating with a linear dispersion in
energy [1]. On the other hand, it was recognized long ago that the low energy electronic properties of a
graphene sheet, which is a weak topological material, is a semimetal and can be described close to the
neutrality point with the Dirac Hamiltonian [2].

In the recent past, the charge carrier mobility in a single graphene layer has been extensively
investigated [3,4]. Graphene resistivity was experimentally found to be inversely proportional to
concentration n of the charge carriers, which means that their mobility is almost independent of n [5–7].
This uncommon behavior cannot be attributed to short-range potentials, due to defects on the scale of the
lattice parameter, a. Indeed, these defects are believed to provide only a small additional contribution
to the resistivity proportional to the impurity concentration [8,9]. Instead, the contribution due to
charged impurities, acting as long-range Coulomb scatterers [10], seems to fit with the experimental
finding in the case of graphene sheets attached to substrates [8,11–13]. In the case of suspended
graphene [14], the matter is still unsettled and has motivated an extended search for other scattering
mechanisms. Particularly, corrugations and ripples have been found, and the systematic investigation
of their effect on the electrical and optical properties are far from being clarified [3,15–18]. Suspended
graphene should not be so influenced by the charge impurities, except for, possibly, trapped clusters in
the wake of the corrugations [19,20]. Other sources of scattering, topological point-like lattice defects,
can induce only little stretching locally, but contribute significantly to the reduction of the mobility. We
find that this is the case of an edge dislocation centered on a pentagon-heptagon defect, which does not
generate any curvature in the graphene sheet. Furthermore, wedge disclinations due to isolated pentagons
or heptagons in the lattice structure could be considered, although they are believed to cost higher
formation energy.

On the other hand, the analysis of the conductance properties of boundary states at the surface of a
three-dimensional (3D) TI, like Bi2Se3, Bi2Te3 and Bi1−xSbx, is still in its infancy. Experimentally, it is
difficult to tune the Fermi energy within the gap of the 3D TI to study the mobility of the Dirac states
located at the boundaries. Besides, in most cases, mesoscopic samples, like TI flakes or TI nanowires, are
plagued by impurity bands within the insulating gap. Therefore, it is difficult to isolate the contribution
of the Dirac electrons from the bulk contribution [21–25]. Measures of the mobility as derived from
Shubnikov–de Haas oscillations or Hall resistance give different results. Aharonov–Bohm oscillations of
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Dirac electrons at the surface of nanowires have been measured [26–28]. To the best of our knowledge,
the influence of topological defects, such as the screw dislocations or the wedge disclinations on the
transport properties, has not been investigated yet.

In a previous paper [29], we considered the contributions to the resistivity, due to elastic scattering
by a smooth curved bump at the surface of a 3D TI [30]. We considered the unrelaxed situation and
attacked the problem directly in the continuum low energy limit, by introducing the defect as a change
of the metric experienced by the electrons [18,31]. In the unrelaxed lattice, the local Lorentz invariance
is assumed to be still conserved. The defect itself is effectively described as an Aharonov–Bohm flux
pinned at its center.

In the case of graphene, we see that the contribution of a collection of isolated edge dislocation to
resistivity in the Boltzmann semiclassical limit is found to be ∝ 1/n. Scattering of an edge dislocation
also depends on the orientation of the Burgers vector and, therefore, on the angle of the incoming
electron wave, but this feature does not introduce any additional k dependence, if some averaging over
randomness is implied. Besides, the resistivity of the edge dislocation is found to be finite, close to
the neutrality point. We find that any additional contribution to the resistivity due to weak local strain
vanishes close to the neutrality point with positive powers of kF . Here, kF is the Fermi wavevector
and ` is the size of the perturbation, which is much larger than the lattice spacing, a. Although the
graphene monolayer is characterized by two Dirac cones centered at the two valley points, K and
K = 4π/3a(0,±1), in the Brillouin zone [32], elastic scattering potentials, smooth on the lattice
scale, such as ripples or point-like defects, are likely not to change the isospin and the valley of the
scattering electrons, nor their energy spectrum drastically, unless the strain produces gaps or zero energy
states [20,33]. We point out that intravalley scattering produced by edge dislocations can give a relevant
contribution to the resistivity, especially in the absence of sizable scattering by charges or resonant
impurities. The question arises: how large is their formation energy in graphene? We will address this
point in Section 3.3.

Similarly, the presence of screw dislocations of Burgers vector ~b can be envisaged in a 3D TI. In
the present work, we apply the analytical methods used to discuss an edge dislocation in the graphene
sheet to a screw dislocation in a two-band 3D TI. In this case, helical bound states can propagate along
its axis. The Hamiltonian can be expanded linearly in ~k close to a time reversal invariant momentum
(TRIM), Mν . Two gapless modes of opposite helicity are present, provided the constraint, Mν · ~b, is
satisfied [34]. The reference case is the alloy, Bi1−xSbx, while TIs like Bi2Se3 and Bi2Te3 cannot fulfill
the constraint, because their 3D Dirac point is located at Γ. We exhibit the wavefunctions of the bound
states and their properties in Section 5.

Superconductive proximity induced at an interface between a 3D TI and a conventional
superconductor has been attracting a lot of interest recently, due to the expectation that Majorana bound
states (MBS) could exist under appropriate conditions [35–37]. In the presence of a magnetic field,
the screw dislocation could host a vortex line with little energy cost. A vortex line piercing a 3D TI
sandwiched between two even-parity superconductors could bind two Majorana quasiparticle excitations
at the opposite interfaces. After the pioneering work of Fu and Kane, this feature has been discussed
by various authors [38–40] in great detail. Some of us, by solving the Bogolubov–de Gennes equations
analytically in the long wavelength limit, exhibited the wavefunctions of the MBS in the two-band 3D TI
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model and discussed how the MBS depends on the parity of the order parameter of the superconductor
inducing the proximity [41]. These results are briefly summarized in Section 6. When proximity involves
odd-parity pairing, the modes appearing in the superconducting gap opened in the Dirac dispersion are
charged surface Andreev bound states. They originate from interfacial circular states of definite chirality,
centered at the vortex singularity and decay with damped oscillations away from the interfaces of the
TI film. The case of d-wave-induced pairing in quasi-one-dimensional TI nanostructures was also
discussed [42,43].

In Section 2, we sketch our approach by introducing some generalities about the change of coordinates
in the presence of defects and curvature, to make the paper self contained [44]. In Section 3, we discuss
the edge dislocation in a graphene sheet and compare the contributions to the cross-section coming from
the topological defect when the lattice is unrelaxed with the one due to the stress-induced relaxation.
The latter turns out to be negligible with respect to the former in the low electron density limit. A
detailed account of the derivation of the phase shifts for the scattering of an Aharonov–Bohm (A-B) flux
can be found in Appendix A. The contribution to the resistivity is also calculated, in the relaxation time
approximation, as well as the self-energy of the defect, which requires Green’s function, which is derived
in Appendix B. In Section 4, we introduce a two-band model for the 3D TI and refer to Appendix C for
the calculation of the wavefunctions of the Dirac dispersed states localized at the boundary. Section 7
concludes the paper with a summary and few final remarks.

2. Dirac Electrons on a Free Surface in the Long Wavelength Limit

The long wavelength dynamics of Dirac electrons propagating on a flat two-dimensional boundary at
energies close to the neutrality point of the Dirac cone is described by the Dirac equation:

γa∂aΨ = 0 (1)

where a = 0, 1, 2, and the Dirac matrices are γ0 = −iσz, γ1 = σy, γ
2 = −σx. In this Section, we

consider the generalization of the algebra of the Dirac matrices describing a flat surface, to include
topological defects and possible curvatures, in the absence of strain. According to the Equivalence
Principle [18], given a frame to be referred to as the “curved frame"; from now on, it is possible
to introduce a local flat, xa, frame at each point. The components of the Jacobian matrix for the
transformation from the coordinates, xµ, defined on the whole manifold and the local parametrization,
are the tetrads, ea µ:

ea µ =
∂xa

∂xµ
(2)

The inverse of the tetrads, e µ
a , are defined through the orthogonality relation e µ

a ea ν = δµ ν . Our
aim is to substitute the Minkowski metric, ηab, of the flat space with the metric, gµν , which is singular
in the case of a topological defect. We follow the convention to use Latin letters and overlined numbers,
a, b, ..., 1, 2, to refer to the local frame, as opposed to the Greek letters, which are refer to the curved
frame. The tetrads satisfy the completeness relation, ea µe

µ
b = δa b. They are linked to the metric

according to:
gµν = ηab e

a
µe
b
ν (3)
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The Dirac matrices γµ = e µ
a γa satisfy the anticommutation relation:

{γµ, γν} = 2gµν (4)

On formulating the Lorentz covariance of the Dirac equation locally, we replace the derivatives with
the covariant derivatives:

∇µ = ∂µ + Γµ = ∂µ +
i

2
Γa b

µ Σab (5)

where Σab are the generators of the spinorial representation of the Lorentz group and are expressed
in terms of the commutators as Σab = i/2[γa, γb]. The connection coefficients, Γa b

µ , are given by
Γa b

µ = ea ν∂µe
bν . The massless Dirac equation on curved space then reads:

γµ∇µΨ = 0 (6)

Making explicit the rotation of the Dirac matrices and the covariant derivatives, the stationary part of
Dirac equation on curved space time is:

− i~vFσae µ
a (∂µ + Γµ)Φ = EΦ (7)

In full generality, defining the components of the affine connection as Γλη
µ =

(
∂λe

a
η

)
e µ
a , the

components of the torsion are:

T µ
λη =

1

2
(Γ µ

λη − Γ µ
ηλ ) =

1

2

(
∂λe

a
η − ∂ηeaλ

)
e µ
a (8)

while the Riemann tensor is defined as:

R κ
µνλ = ∂µΓ κ

νλ − ∂νΓ κ
µλ − Γ σ

µλ Γ κ
νσ + Γ σ

νλ Γ κ
µσ (9)

Equation (8) is clearly zero if the tetrads are regular functions, i.e., if they have continuous second
derivatives, due to the Schwartz lemma. If the Riemann tensor also vanishes, the transformation, xµ(xa),
is just a change of coordinates of the flat space. Tetrads that are not regular could give curvature, torsion
or both. An unrelaxed topological defect does not introduce any curvature, so that only the rotation of
the Dirac matrices has to be accounted for.

3. The Edge Dislocation in Graphene

An edge dislocation in the graphene sheet, centered on the origin, is obtained by cutting the plane;
let us say in correspondence of the negative x1 half axis and by adding a half line of carbon atoms [45].
In the case of a hexagonal lattice, the line of atoms could be interpreted as an armchair row. In fact, the
whole honeycomb lattice could be recovered by arranging arrays of armchair rows in a square structure.
The dislocation produces a pentagon-heptagon pair in the origin of the frame, as shown in Figure 1. In
the unrelaxed structure, the other hexagons are not affected. This kind of defect does not mix the valleys.
Smooth potentials are likely not to change the isospin and the valley of the scattering electrons, nor their
energy spectrum, drastically, unless the strain produces gaps or zero energy states [4,33].
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Figure 1. Edge dislocation appearing as a pentagon-heptagon pair in the perfect lattice of a
graphene monolayer.

Let~b be the Burgers vector pointing down along the x2−axis, orthogonal to the negative x1-axis. The
Burgers vector defines a singular coordinate transformation:

x1 = x1, x2 = x2 − b

2π
arctan

x2

x1
(10)

where the branch cut of the inverse tangent is on the negative x1-axis. The tetrads are easily derived from
the infinitesimal transformation dxa = ea µdx

µ, thus obtaining:

ea µ =

(
1 0

b
2π

y
x21+x22

1− b
2π

x1
x21+x22

)
(11)

Equation (11), as such, describes an unrelaxed configuration. The equilibrium configuration could
be restored by adding an effective gauge potential to the Dirac equation, which may further change the
spin connection, without influencing, however, the holonomy on the wave function, since the elastic
deformation does not add any curvature. This is a way of restating the Saint Venant conditions for the
two-dimensional case.

The Dirac matrices γµ = e µ
a γa can be easily found by inversion of the tetrads:

γ1 = σ1

γ2 =
1

1− b
2π

x1
x21+x22

[
− b

2π

x2

x2
1 + x2

2

σ1 + σ2

]
(12)

In the case of an edge dislocation, the Riemann tensor generated by these tetrads, R κ
µνλ ,

vanishes [31], so that the connection on an edge dislocation can be put to zero. On the contrary,
the torsion is δ−like, as it encodes the mismatch in the parallel transport occurring at the topological
defect [46]:

T 1
12 = −bδ(~r), T 2

12 = 0 (13)

Since the connection vanishes, the spin connection is also zero. Therefore, only the rotation of Dirac
matrices appears in the Dirac equation.

Let ~k = ~p− ~K be the component of the wavevector referring to the valley point, ~K, and θk the angle
of the local momentum, ~k. If Φ0

s(
~k) is a spinor satisfying the equation γakaΦ0

s = 0 (s = ±):

Φ0
s

(
~k
)

=
1√
2

(
1

s eiθk

)
(14)
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the solution of the rotated Dirac equation can be written down in full generality as (µ = 0, 1, 2) [47]:

Ψs(~r) = Φ0
s(
~k) e−i

~K·~r exp i

∫
Cr
pµ(r)dxµ/~ (15)

Here, the integral is to be performed along the geodesic path, Cr, connecting a reference point, ~r0,
with the actual point, ~r. The linear transformation ea µka = kµ defines kµ(r).

This is indeed a solution, because, by substituting the spinor of Equation (15) in the Dirac equation,
we get:

γµ∂µΨs = γa e µ
a kµ(r) Ψs ≡ γae µ

a eb µkb Ψs = 0 (16)

where the equality to zero stems from the definition of Φ0 given in Equation (14).
Equation (15) is a general way to take account of the rotation of the Dirac matrices, and it provides

the full solution when no spin connection is present. In the case of the edge dislocation, the differential
form appearing in the phase of Equation (15), when calculated using the tetrads of Equation (11), is:

kµ(x)dxµ =

(
k1 +

k2 b

2π

x2

x1
2 + x2

2

)
dx1 +

(
k2 −

k2 b

2π

x1

x1
2 + x2

2

)
dx2 (17)

The quantities, k1,2, represent the components of the momentum in the local inertial frame. The curl
of this differential form is zero. Indeed, it is the differential of the accumulated phase given by:

~k · ~r − k2 b

2π
arctan

x2

x1

(18)

It follows that the integral in Equation (15) is independent of the path, and it is readily calculated. The
full spinor solution for electrons having a ~p vector close to the valley point, ~K, includes a fast oscillating
plane wave prefactor, ei ~K·~r , giving:

Ψ~p,s(~r) =
1√
2

(
1

s eiθk

)
ei~p·~re−i

~k· ~b
2π
θr (19)

The edge dislocation produces a vortex-like singularity in the graphene sheet, unless ~k ‖ x̂, that is,
unless the propagation is along the branch cut. The solution corresponds to a plane wave scattering of
a flux line of flux ~k · ~b, piercing the sheet at the origin, and acquiring an Aharonov–Bohm phase in
circulation. The single valuedness of the wavefunction in circulating around the dislocation and the C3

rotational symmetry of the graphene lattice requires that ~k ·~b = 2π/3.

3.1. Cross-Section of the Unrelaxed Topological Defect

The phase shifts of a particle incoming with momentum ~p and scattered with angular momentum
quantum number m by the edge dislocation, δm(~p), can be easily derived [48,49]. They are (see
Appendix A for the details):

δm(~p) = −π
2

(∣∣∣∣∣m+
~k ·~b
2π

∣∣∣∣∣− |m|
)

(20)

Defining the outgoing wave (φ ≡ θr − θk):

ψout (~r) ∼

(
1

seiθk

) [
ei
~k·~r + f(φ, ~p)

eikr√
r

]
(21)
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the scattering amplitude, f(φ, ~p), is:

f(φ, ~p) =

√
1

2πk

∞∑
m=−∞

(−1)m
[
e2iδm(~p) − 1

]
eimφ (22)

The total cross-section, with f(φ, ~p) given by Equation (22), is:

σtopologicaldisl =

∫
dφ |f(φ, ~p)|2 =

4

k

∞∑
m=−∞

sin2 δm(~p) (23)

Close to the neutrality point (limit ~k → 0):

σtopologicaldisl ∼ (kFR)−2 (24)

The resistivity, ρ, can be estimated with the Boltzmann relaxation-time (τ(kF )) approximation as:

ρ (kF ) =
2

e2v2
Fν(0)

1

τ(kF )
(25)

where ν(0) = kF/(π~vF ) is the density of states at the Fermi level for double spin, but one valley. The
usual definition of the total relaxation rate is:

1

τ(kF )
=

2π

~
ν(0)

∫
dεp′ δ(εF − εp′)

∫ 2π

0

dθ~k−~k′
(

1− k̂ · k̂′
)
| < k|teff |k′ > |2 (26)

The relaxation rate, related to the imaginary part of the self-energy, is expressed in terms of the
t−matrix element < k′|teff |k > for an outgoing circular wave, of incoming wavevector ~k + ~K at the
Fermi energy, scattered elastically into a plane wave of wavevector ~p = ~k′ + ~K by the extra potential
arising in Equation (7), of scattering amplitude f(φ, ~p). It is:

〈k′|teff |k〉 =
~vFkF
πR2

∫
rdr

∫
dφ f(φ, ~p)

(1 se−iθk′ )
(

1

seiθk

)
e−i

~k′·~r e
ikr

√
r

=

= ~vFkF
[
1 + e−i(θk′−θk)

] 1

πR2

∫ R

0

rdr
eikr√
2πkr

∑
m

(−1)m[e2iδm − 1] (27)

×
∫ 2π

0

dφ eimφ e−ipr cos [φ−(θp−θk)]

(both waves are normalized to the square root of the area, πR2). It depends on the energy, εp, and on the
scattering angle, θ~k−~k′ between the incoming and outgoing wave. The factor

[
1 + e−i(θk′−θk)

]
provides

the cancellation of the backward scattering. The integration over φ gives a Bessel function, Jm(kr), and
the integral over r can be approximated as:

1

πR2
eim(θp−θk)

∫ R

0

rdr
eikr√
2πkr

2πim Jm(kr) ≈ eim(θp−θk)

πkR
ei
π
4 (−1)m

1

R

∫ R

0

dr (28)

Finally:

〈k′|teff |k〉 =
[
1 + e−i(θk′−θk)

]
eiπ/4

~vF
πR

∑
m

[e2iδm − 1] eim(θk′−θk) (29)
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Now, the sum can be performed. Defining α as the non-integer part of the flux, (~p− ~K)·~b/2π = N+α,
with α < 1, we obtain (Θ ≡ (θk′ − θk)):

〈p|t(~k)|k〉 =
[
1 + e−iΘ

]
eiπ/4

~vF
πR

[
−2πδ (Θ) (1− cos πα) + sinπα

e−i(N+1/2)Θ

sin Θ/2

]
(30)

The prefactor of Equation (26),
(

1− k̂ · k̂′
)
≡ 1 − cos Θ, makes the first term in Equation (30)

disappear, which is likely to be spurious anyway [48]. It also compensates for the divergence at Θ = 0

of the second term. The final result is:

1

τ
(
~kF

) = sin2 πα
2vF

π4kFR2

∫ 2π

0

dθk′ (1− cos Θ)
(1 + cos Θ)

sin2 Θ/2
= sin2 πα

8vF
π4kFR2

(31)

Equation (31) depends on the incoming direction due to the orientation of the Burgers vector
contained in α.

When multiplying this result by the number of dislocations, zd, and after averaging over their random
distribution, the resistivity of Equation (25) due to the elastic scattering on the edge dislocation turns out
to be:

ρ
(
~kF

)
= zd

~
e2

16

π2

sin2 πα

(kFR)2 = zd
~
e2

16

π2

sin2 π/3

(kFR)2 (32)

The resistivity is proportional to the density of the defects and inversely proportional to the density
of carriers n ∝ k2

F . Lattice relaxation, around the branch point, provided it is not too strong, would
contribute to the resistivity with a term that is a higher positive power of kF [20] and would not change
this result qualitatively. This is proven in the Section 3.2.

3.2. Cross-Section Due to the Stress at the Origin of the Edge Dislocation

The singularity point, which is the origin of the branch cut, due to the edge dislocation, is also
the center of a strain texture induced by the defect. In this section, we show that the contribution
of the strain to the total cross-section of Equation (23), due to the stress at the dislocation, is higher
order with respect to the one that contributes to the relaxation time, τ(kF ), calculated in the previous
section. The stress provides an extra term coupling the sublattices, A and B, within the same valley
V̂ =

∫
d2r V (r)a†(r)b(r) + h.c.(here a(r), b(r) are fields on the two sublattices) which takes the

form [32,50]:

V (r) = ~σ · ~A(r) e−i
~K·~b; Ax(r) =

3

4
βκ (uxx − uyy) (r); Ay =

3

2
βκuxy(r) (33)

where βκ is the stiffness of the lattice. Here, uij(r) is derived from the displacement field around the
dislocation center, ~u(r), which is taken to decay radially as 1/r by approximation:

uij(r) =
1

2
{∂iuj + ∂jui} (r) (34)

Explicitly, the potential arising from the strain due to the edge dislocation, away from the core of the
defect (r > a) is, in cylindrical coordinates,

V (r) =
βκ

r

(
0 −i cos θe2iθ

i cos θe−2iθ 0

)
(35)
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and is limited to an area < π`2, where ` is the mean free path between dislocations. The incoming Dirac
electron wave function:

Ψ0
~k,s

(~r) =
1√
2

(
1

seiθk

)
ei
~k·~r (36)

is scattered by the potential. The Green’s function is required, which solves the Dirac equation inclusive
of the A-B flux, f , at the origin:

[ω 1−Hf ]Gf (r, r
′;ω) = iδ(~r − ~r ′)σz (37)

Its spectral representation is given in Appendix B. In the Born approximation, we get:

Ψ~k,s(~r) = Ψ0
~k,s

(~r) + σz

∫
d~r′Gf (~r, ~r ′, ω)V (~r ′)Ψ0

~k,s
(~r ′) (38)

We keep just the contribution coming from the pole Equation (A20), and we take the direction of the
incoming ~p orthogonal to~b as the reference direction.

Using the decomposition of a plane wave in angular momentum eigenfunctions,
Equation (36) becomes:

Ψ0
~k,s

(r, θr) =
1√
2

∑
n

in

(
Jn(kr)

isJn+1(kr)eiθr

)
ein(θr−θk) (39)

The integral giving the scattered part of the wave function is (B is a constant, including βκ and a
normalization factor):

σz

∫
d~r′Gf (~r, ~r ′, ω)V (~r ′)Ψ0

~k,s
(~r′) =

= σz (−i)fBk

(
sJm+f (kr)

−iJm+1+f (kr)e
iθr

) ∫
dr′dθr′

∑
m

eim(θr−θr′ ) (40)

×
∑
n

(
Jm(kr′)Jn+1(kr′) cos θr′e

3iθr′ + Jn(kr′)Jm+1(kr′) cos θr′e
−3iθr′

)
einθr′

= (−i)fBk
∑
n

{I1n + I2n}

where Iin are shorthand for the two contributions to the integral given above. Let us analyze the
first one:

I1n =
∑
m

(
sJm+f (kr)

iJm+1+f (kr)e
iθr

)
eimθr

∫
dr′dθr′Jm(kr′)Jn+1(kr′) cos θr′e

3iθr′ei(n−m)θr′

=

(
sJn+4+f (kr)

iJn+5+f (kr)e
iθr

)
ei(n+4)θr

∫
dr′Jn+4(kr′)Jn+1(kr′)

+

(
sJn+2+f (kr)

iJn+3+f (kr)e
iθr

)
ei(n+2)θr

∫
dr′Jn+2(kr′)Jn+1(kr′) (41)

These integrals are special cases of the Weber–Schafheitlin integral:∫ ∞
0

dt Jα+p(kt)Jα−p−1(kt) =
(−1)p

2k
(42)
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with (α, p) = (n+3, 1) and (n+2, 0). Thus, the first integral is equal to−1/2k, while the other is 1/2k.
Putting things together:

I1n = − 1

2k

(
sJn+4+f (kr)

iJn+5+f (kr)e
iθr

)
ei(n+4)θr +

1

2k

(
sJn+2+f (kr)

iJn+3+f (kr)e
iθr

)
ei(n+2)θr (43)

Similarly, the second contribution yields:

I2n =
∑
m

(
sJm+f (kr)

iJm+1+f (kr)e
iθr

)
eimθr

∫
dr′dθr′Jn(kr′)Jm+1(kr′) cos θr′e

−3iθr′ei(n−m)θr′

=

(
sJn−4+f (kr)

iJn−3+f (kr)e
iθr

)
ei(n−4)θr

∫
dr′Jn−4(kr′)Jn+1(kr′)

+

(
sJn−2+f (kr)

iJn−1+f (kr) e
iθr

)
ei(n−2)θr

∫
dr′Jn−2(kr′)Jn+1(kr′) (44)

where the same integral as Equation (42) appears, with (α, p) = (n − 1,−3) and (n,−2), so that the
final result is:

σz

∫
d~r ′G (~r, ~r ′, ω)V (~r ′)Ψ0

s,n(~r ′) = (45)

= (−i)fA
2
einθr

{
−

(
sJn+4+f (kr)

iJn+5+f (kr)e
iθr

)
ei4θr +

(
sJn+2+f (kr)

iJn+3+f (kr)e
iθr

)
ei2θr

−

(
sJn−4+f (kr)

iJn−3+f (kr)e
iθr

)
e−i4θr +

(
sJn−2+f (kr)

iJn−1+f (kr)e
iθr

)
e−i2θr

}

The dominant contributions to the t−matrix scattering amplitude in the long wavelength limit (~k → 0)
come from the terms in which the order of the Bessel functions is the lowest possible, i.e.:

〈k′|teff |k〉 →
〈
Ψ0
s,0|σzGVΨ0

s,±2

〉
and

〈
Ψ0
s,0|σzGVΨ0

s,±4

〉
(46)

Putting aside the consideration that these matrix elements imply incoming waves of relatively high
order (i.e., |n| = 2, 4), the largest ones among them lead to integrals whose limiting form is of the kind:

lim
k→0

1

R2

∫ ∞
0

rdr J0(kr) Jf (kr) ≈
1

k2R2Γ(1 + 1/3)

∫ k`

0

tdt

(
1

2
t

)1/3

J0(t) ∼ (k`)1/3 (47)

We conclude that their contribution to the cross-section goes as:

σstressdisl ∼
`2

R2
(kF `)

2/3 (48)

which is higher order, when compared with σtopologicaldisl ∼ (kFR)−2, which was derived in Section 3.1.
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3.3. Self-Energy of the Dislocation

We now evaluate the formation the self-energy of the dislocation. In the long wavelength limit, we
cannot account for the cost of the pentagon-heptagon defect formation, but we can include the strain
cost, which is long range, because it decays as 1/r. We will make use of the Hellmann–Feynman
theorem [51]:

dE(λ)

dλ
= 〈Ψλ

0 |V̂ |Ψλ
0〉 (49)

by adding a perturbation potential, λV̂ , of the kind of Equation (35) to the unperturbed Hamiltonian
H0 = −ivF~σ · ~∇:

with 〈λV̂ 〉 =
−i
2

∫
d2r

∫ +∞

−∞
dω eiωη lim

r′→r
tr
[
ω 1 + ivF~σ · ~∇

] {
Gλ(r, r′, ω)−G0(r, r′, ω)

}
(50)

Gλ is the Green function for our system, with an A-B flux, λf , at the origin. λ is a parameter introduced
for convenience, which we integrate out from zero to one:

E − E0 =

∫ 1

0

dλ

λ
〈λV̂ 〉 (51)

We have subtracted a reference term in which the dislocation is absent. This is independent of λ and
is immaterial, except for the fact that it provides the vanishing of the perturbation, when λ → 0. The
prescription, eiωη, is fixed by the requirement that one has to impose t′ → t + 0+ to get the correct
ordering in the Green’s functions, which is 〈ψ̂†(r′, t′)ψ̂(r, t)〉.

Using the Dyson equation Gλ = G0
0 +G0

0λV Gλ, we obtain:

E − E0 =
−i
2

∫
d2r

∫ 1

0

dλ

λ

∫ +∞

−∞
dω eiωη lim

r′→r
tr

{[
ω 1+ ivF~σ · ~∇

] ∫
d2r′′ G0

0(r, r
′′, ω) λV (r′′)Gλ(r′′, r′, ω)

}
(52)

The strain potential of the edge state is taken from Equation (35). It is defined for r > a, where a is
the radius of the core of the dislocation.

According to Equation (A13),
[
ω 1 + ivF~σ · ~∇

]
G0

0(r, r′′, ω) = i δ(r− r′′)σz. On the other hand, the

spectral representation of Gλ, Equation (A25), which includes the half pole only (~vF ≡ 1), is:

Gλ
(
~r, ~r ′, ω

)
→ −i(−i)λf ω

π

∑
m,s

1

2

(
Jm+λf (pr) Jm(pr) i Jm+λf (pr) Jm+1(pr) e

iθr

−i Jm+1+λf (pr)Jm(pr) e
−iθr Jm+1+λf (pr) Jm+1(pr)

)
(53)

The correct time ordering requires that, before taking the limit, the variables are exchanged: r′ → r

and θr ↔ −θr′ . After multiplying the matrices and taking the trace, we get:
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∫
d2r lim

r′→r
σz λV (r)Gλ(r, r′, ω) ≈

−λ
4π

∫
rdr

βκ

r

∫ 2π

0

dθ(−i cos θ)(i)1−λfω

×
∑
m

[
e2iθe−iθJm+1+λf (ωr)Jm(ωr) + e−2iθeiθJm+λf (ωr)Jm+1(ωr)

]
(54)

=
−λ
4π

∫
rdr π

β

r
(−i)(i)1−λfω

×
∑
m

[Jm+1+λf (ωr)Jm(ωr) + Jm+λf (ωr)Jm+1(ωr)]

with
∑
m

[...] = [J1+λf (2ωr) + Jλf−1(2ωr)] =
2λf

ωr
Jλf (2ωr)

Now the integral over ω. The largest contribution comes from ω → 0 and/or r → 0. Hence,
we substitute the factor, ω, with sin(ωa)/a, to regularize the integral. Using dimensionless variables,
t = 2ωr, b = a/(2r)→ 0, we perform the integration on the real axis:

λf

ar
lim
b→0

∫ ∞
−∞

dt
sin bt

t
Jf (t) =

λf

ar
lim
b→0

[∫ ∞
0

dt
sin bt

t
Jλf (t) +

∫ ∞
0

dt
sin bt

t
Jλf (−t)

]
(55)

=
λf

ar
lim
b→0

(
1 + eiπλf

) ∫ ∞
0

dt
sin bt

t
Jλf (t) =

2λf

ar
eiπλf/2 cos

πλf

2
× cos πλf

λf

Plugging all together, the awkward prefactor, eiπλf/2, disappears, and the final result is (` is the size
of the defect):

E − E0 = −1

2

βκ

a

∫ `

a

dr

r

∫ 1

0

dλ cos
πλf

2
× cos πλf =

1

2

βκ

a

∫ `

a

dr

r

1

6π
=

1

12π

βκ

a
ln
`

a
(56)

This is the expected self-energy for a long-range strain potential.

4. Effective Theory for Boundary States in 3D Topological Insulators

Bismuth-based materials are mostly studied since the prediction that Bi(1−x)Sbx is a strong 3D TI [52],
which was confirmed soon after with angle-resolved photoemission spectroscopy (ARPES) [53]. The
stoichiometric crystal, Bi2Se3, is the prototype of a class of 3D TIs. This material was predicted to have
boundary states with energy dispersion forming a Dirac cone centered at the Γ point located within the
insulating gap [54]. The prediction has been experimentally confirmed [55]. The atomic structure of
the material consists of the stacking of quintuple layers. While the coupling is strong inside each of the
quintuple layers, the coupling between quintuple layers is much weaker, predominantly of the van der
Waals type. The non-trivial topology in the band structure of the material stems from the inversion, at
the Γ point, of the bands of the pz orbital character, arising from Se and Bi atoms, due to the strong spin
orbit (SO) coupling. A minimal tight-binding model represents the wavefunction for the valence and
conduction bands of opposite parity, on the basis of four p− orbitals, spanning the spin and the orbital
degree of freedom, ΦT = (|p1z ↑〉 , |p2z ↑〉 , |p1z ↓〉 , |p2z ↓〉) (the upper label, T , means “transpose”) as:
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|Ψn~k(r)〉 =
∑
R

ei
~k·~R

∑
α=A,B,C,D

Ψnα(~R)
∣∣∣Φα

(
~r − ~R

)〉
(57)

where ~R are lattice vectors, in terms of the slowly-varying envelope functions Ψnα(~R). The symmetries
of the crystal can be represented as:

• the time reversal symmetry Θ = iσy ⊗ IK
• the inversion symmetry I = I⊗ τz
• the three-fold rotational symmetry around the z-axis C3 = exp

(
iπ

3
σz ⊗ I

)
Here, K is the complex conjugation, σi are the Pauli matrices in the spin space and τi are the Pauli

matrices acting in the orbital space.
For states with ~k in the vicinity of the Γ point, the Hamiltonian can be written in the ~k · ~p or effective

mass approximation as [56]:

H0 − µ I4×4 = (h0 − µ) I4×4 + ~vF


−M− µ i∂z 0 i(∂x − i∂y)
i∂z M− µ i(∂x − i∂y) 0

0 i(∂x + i∂y) −M− µ −i∂z
i(∂x + i∂y) 0 −i∂z M− µ

 (58)

where vF is the Fermi velocity close to the chemical potential, µ. h0 − µ does not contribute with any
interesting feature to the model and will be dropped in the following. In the bulk, −i ~∇ → ~k and
M→M(k) = M + C1k

2
z + C2

(
k2
x + k2

y

)
with M > 0 and C1, C2 < 0, to implement the inversion of

the bulk bands [56]. The relative sign between M and C1,2 qualifies the insulator as being topologically
non-trivial or trivial. ~vFM is the bulk gap of the two-band model. The bulk Hamiltonian can be
rewritten in compact form as:

H0(k) = ~vF
[
γ̂0M + γ̂iki

]
(59)

where γ̂0 = I2×2 ⊗ τz, γ̂1 = σx ⊗ τx, γ̂2 = −σy ⊗ τx γ̂3 = σz ⊗ τx. Note that these matrices satisfy the
Clifford algebra {γi, γj} = ηij , i.e., they are a set of Dirac matrices. This means that they can be rotated
as every well-educated set of Dirac matrices.

Other important symmetries that could be present are the particle-hole symmetry, Ξ, and the chiral
symmetry, Γ. Ξ = σx(−iτ y)K is an antiunitary symmetry, such that ΞTH(k)Ξ = −H(−k). The
chiral symmetry Γ = i · ΘΞ is a unitary transformation that changes the sign of the Hamiltonian
without reversing the sign of ~k . In the presence of a non-zero chemical potential, the Hamiltonian of
Equation (58) has neither the particle-hole symmetry, Ξ, nor the chiral symmetry, Γ. As Θ2 = −1,
Ξ2 = 0, Γ2 = 0, it belongs to the class, AII , of the Altland–Zirnbauer classification [57].

In Appendix C, we derive the boundary states for a flat surface orthogonal to the ẑ−axis, with the
simplifying assumption that C1,2 = 0 and that M changes sign at the boundary. This provides localized
states at the boundary, which decay exponentially with the same decay length 1/M on both sides of the
boundary. The simplifying assumption allows for an analytical treatment of the matching condition [29].
The reduced Hamiltonian for the boundary states conserves their helicity, ~σ · ~k.
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5. Possibility of Gapless Bound States at a Screw Dislocation in a 3D TI

In a 3D material, a screw dislocation can occur. The Volterra process for the creation of such a defect
requires cutting the material along a half plane. Next, the two free surfaces are twisted with a relative
displacement along the direction of the plane and glued back, so that the right-hand side is displaced
upward and the left-hand side is displaced downward, as shown in Figure 2. It has been shown that, in
a 3D TI with inversion symmetry, a screw dislocation of Burgers vector, ~b, harbors two gapless Dirac
modes, which propagate helically along the screw axis, but are localized in the radial direction, provided
the constraint:

Mν ·~b = π (mod 2π) (60)

is fulfilled [34]. Here, Mν = (ν1G1 + ν2G2 + ν3G3)) /2 is a time reversal invariant momentum (TRIM)
expressed on the basis of reciprocal lattice vectors (G1,G2,G3). (ν1, ν2, ν3) are the “weak topological
invariants”, which contribute in classifying the 3D TI [52]. One starts by deriving the Z2 variables
δ(Γi) = ±1 from the parities of the occupied bands. Here, Γi are the time reversal invariant k−vector
points in the Brillouin zone. By choosing appropriate gauges for the Bloch functions, it is possible to
obtain that a single one, δ(Mν), takes the opposite sign with respect to the others. In the case of Bi2Se3

discussed above, there is no such non-vanishing Mν point, and Mν is set equal to the Γ ≡ (0, 0, 0)

point. Hence, the constraint of Equation (60) cannot be fulfilled. As Bi is very close to a band inversion
transition at the L point, a good test material that can satisfy the constraint of Equation (60) is the strong
TI, Bi1−xSbx (with x ∼ 0.03), of topological invariants ν0 = 1 and (ν1, ν2, ν3) = (1, 1, 1) [58]. If ~b is
one lattice spacing along one of the three directions of Gi, let us say x̂3, the condition is fulfilled.

Figure 2. Volterra process for the screw dislocation (taken from [45]). In the picture, the
Burgers vector is one lattice spacing long and points downward.

In the case of the screw dislocation, the Burgers vector is oriented along the defect line, at difference
with the edge dislocation, which has the Burgers vector orthogonal to the defect axis. The change of
coordinates, describing a screw dislocation with~b = (0, 0,−b), is:

x1 = x1

x2 = x2

x3 = x3 − b

2π
arctan

x2

x1

(61)

The coordinates with overlined indexes refer to the local inertial set of coordinates, i.e., the xa can
be interpreted as the coordinates before the Volterra process takes place. A former x3 = const plane,
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existing before the creation of the defect, changes when the defect is created in such a way that the
x3 coordinate is displaced by b, when circulating of an angle θ = 2π around the vertical axis. The
corresponding tetrads are:

ea µ =

 1 0 0

0 1 0
b

2π
x2

x21+x22
− b

2π
x1

x21+x22
1

 (62)

while the inverse tetrads are:

e µ
a =


1 0 0

0 1 0

− b
2π

x2

(x21+x22)
b

2π
x1

(x21+x22)
1

 (63)

The only non-vanishing component of the torsion is T 3
12 = −bδ(~r), while the curvature vanishes, as

in the case of the edge dislocation. The rotation of the Dirac matrices gives (with ~vF = 1):

Hscrew(~k) = HMν (~k) + i
1

2πr
~γ · θ̂ ~b · ~∇ (64)

Here, HMν is the linearized ~k · ~p Hamiltonian in the vicinity of the Mν point. In the case of
Bi1−xSbx, the Time Reversal Invariant Momentum (TRIM) is one of the three equivalent LTRIMs
(which is (1, 1, 1) in the appropriate G vector basis), where the band inversion occurs. The HMν (~k)

in the ~k · ~p approximation, to first order in ~k, has been worked out in [58] and is unitarily equivalent
to the Hamiltonian of Equations (58) and (59) [59]. Strictly speaking, when choosing an approximated
wave function of the type eiMν ·~r Ψ(~r), where:

Ψ
(
r, θ, x3

)
= Φ(r, θ)eik3x

3

(65)

is the slowly varying part in cylindrical coordinates, the coordinates ~r = (r, θ) are in the flat reference
frame, as well as the polar axis (i.e., overlined variables xi). The Schrödinger equation for Φ(r, θ) is the
Dirac equation with an Aharonov–Bohm flux given by 2π Ω = Mν ·~b and eigenvalue E = E(k3):{

−i

[
~γ · r̂∂r +

~γ · θ̂
r

(∂θ − iΩ)

]
+ ~γ · ẑk3 +Mγ0

}
Φ(r, θ) = E Φ(r, θ) (66)

In case Mν ·~b = ±π, two helical states with gapless linear energy dispersion are bound to the screw
dislocation. Indeed, a zero energy solution of Equation (66) can be found, exponentially decaying away
from the dislocation core, with the antiperiodic boundary condition:

Φ(r, θ) = −Φ(r, θ + 2π) (67)

It follows that the full wavefunction eiMν ·~r Ψ(~r), when expressing x3 in terms of x3, acquires an extra
phase eiMν ·~b = −1, which compensates the antiperiodic boundary condition given above, due to the fact
that x3 has to be displaced by b.
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We explicitly derive Ψ. According to Equation (66) (k3 → k), the explicit equations to be solved are:

(E −M)ΨA(~r) = i ∂
∂z

ΨB(~r) + i eiθ
[
∂
∂r

+ i
r
∂
∂θ

+ 1
2r

]
ΨD(~r)

(E +M)ΨB(~r) = i ∂
∂z

ΨA(~r) + i eiθ
[
∂
∂r

+ i
r
∂
∂θ

+ 1
2r

]
ΨC(~r)

(E −M)ΨC(~r) = i e−iθ
[
∂
∂r
− i

r
∂
∂θ
− 1

2r

]
ΨB(~r)− i ∂

∂z
ΨD(~r)

(E +M)ΨD(~r) = i e−iθ
[
∂
∂r
− i

r
∂
∂θ
− 1

2r

]
ΨA(~r)− i ∂

∂z
ΨC(~r) (68)

The slowly varying function, Ψ, turns out not to be an eigenstate of the integer angular momentum,
m~. A solution of the system given above is:

Ψn ∝


(En +M)Kn−1/2(κr)

k Kn−1/2(κr)

0

−iκ Kn+1/2(κr) e−iθ

 e−i(n−1/2)θ e−ikx
3

(69)

The functions, Kν(κr), are the modified Bessel functions decaying at infinity with a length-scale κ−1

to be determined. The only normalizable solution is with n = 0, so that we have:

Ψ0,k;b ∝


(E0 +M)

k

0

−iM e−iθ

 K−1/2(κr) eiθ/2 e−ikx
3

(70)

with the eigenvalue: E2
0 −M2 = k2 − κ2. By posing κ2 = M2, the energy dispersion is gapless and

linear: E2
0 = k2. The solution satisfies antiperiodic boundary conditions in the θ variable, as required.

Note that the same result is obtained forM(k) = (M + C1k
2), provided we choose κ = |M + C1k

2|.
The state, which is time reversed with respect to Equation (70), is:

Ψ0,−k;−b ∝


0

iM eiθ

−(E0 +M)

−k

 K1/2(κr) e−iθ/2 eikx
3

(71)

These states have opposite helicity. At zero energy, i.e., with k = 0, Θ commutes with the
Hamiltonian, and one can construct eigenstates of zero energy from Equations (70) and (71), which are
mutually time reversed. This can be easily done by summing and subtracting Equations (70) and (71)
together, in the k → 0 limit:

Ψ0,p(r, θ) ∝ [eiθ/2, i eiθ/2,−e−iθ/2,−i e−iθ/2]T K1/2(κr)

Ψ0,m(r, θ) ∝ [eiθ/2,−i eiθ/2, e−iθ/2,−i e−iθ/2]T K1/2(κr) (72)

where:
Θ Ψ0,p = Ψ0,m (73)

In the class, AII , of the Altland–Zirnbauer [57] classification, the linear defect in 3D has a
corresponding topological invariant, Z2 [60]. The protected gapless modes, which are delocalized along
the ẑ−axis, can be combined in chiral form, because the left-chiral projector, ΠL = (1 − Γ)/2, and the
right-chiral projector, ΠR = (1 + Γ)/2, commute with Θ.
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6. Superconductive Proximity in a 3D TI and Bound States at an Axial Vortex

A superconductor in close contact with a normal metal induces Cooper pairing in it by proximity.
The bulk states located at the Fermi energy in the metal penetrate the superconductor, even when their
energy is below the energy of the superconducting gap, thanks to the Andreev reflection mechanism.
The matching at the boundary builds up a superposition of particles and holes in the metal, which are
quasiparticles nicknamed “bogoliubons”. A pairing order parameter is induced in the normal metal
within a distance from the boundary, which depends on whether transport in the metal is diffusive or
“clean” [61]. Proximity does not necessarily imply the opening of a gap in the metal, in particular when
the transparency of the boundary is high.

An undoped 3D TI, being a semiconductor, has a Fermi energy located inside the gap separating
the bulk bands. Therefore, in principle, bulk quasiparticle states cannot be involved in the proximity.
However, the interface of a TI hosts boundary states, whose energy dispersion is the Dirac cone
occupying energies within the band gap. The boundary acts as a semimetal of reduced dimension
and proximity can take place. However, the properties of the bogoliubons differ from those of the
topologically trivial metal, because orbital and spin degrees of freedom are strongly coupled in the Dirac
boundary states.

In the presence of a magnetic field, a vortex can be trapped, piercing the heterostructure in which
a 3D TI slab is sandwiched between two conventional superconductors. We assume that the S/TI/S
heterostructure, forming a slab laying in the x − y plane, with flat boundary surfaces at z = 0, L,
is immersed in a magnetic field parallel to the z−direction. The interest for this configuration has
been recently growing since the work by Fu and Kane [35], which predicts the possibility of binding a
Majorana zero energy quasiparticle state at the vortex in this geometry. This could be the elementary
brick for building a completely new architecture for quantum information [62–64]. It is interesting that,
while a vortex can be viewed as an axial defect, it is not constrained by features of the lattice symmetry,
due to its size. On the other hand, it adds in all cases an orbital angular momentum of π to the bogolubon.
This implies that zero energy quasiparticles bound to the vortex core automatically satisfy the required
periodic boundary conditions in the azimuthal angle, and the constraint of Equation (60) does not apply.
In this section, we report on results obtained about zero energy bound quasiparticle states that can form
in the core of the vortex at the boundary with the superconductors, both in the case of even and odd
parity proximity [41]. It is unclear whether the pairing induced in the TI is to be expected to have even
or odd parity. It has been proposed that, when doped with few percent of Cu, the Bi2Se3 becomes a
topological superconductor, undergoing the superconducting phase transition with an odd-parity order
parameter [65,66]. For this reason, we consider both possibilities, and we have found very different
results in the two cases.

Usually, proximity is described in the Nambu basis, of the kind: [(ψ↑, ψ↓), (ψ
†
↓,−ψ

†
↑)]

T ; and the
Hamiltonian takes the compact Bogoliubov de Gennes (BdG) mean field form:

HBdG(~k) =

(
ĥo ∆̂

∆̂† −ĥ∗o

)
(74)

Superconductive proximity induced by an even parity singlet pairing requires that ∆̂T
s (~k) = ∆̂s(−~k).

The odd-parity triplet pairing satisfies ∆̂T
p (~k) = −∆̂p(−~k) [67]. In the case of the two-band 3D TI,
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an 8 × 8 basis is required for the Hamiltonian of Equation (58), with two types of orbitals, labeled
generically with g/u, even/odd by inversion, respectively. The Pauli matrices, σa and sa, span the orbital
and spin space, respectively, while the Pauli matrices, τa, address the particle-hole sectors. In the even
parity, s-wave, singlet case, we define ∆s = 〈ψu↑ψu↓〉 = 〈ψg↑ψg↓〉 = −〈ψu↓ψu↑〉 = −〈ψg↓ψg↑〉, assumed
to be independent of the orbital type. This gives rise to a pairing mean field Hamiltonian:

Hs
pair = −i(∆ssyτ+ + h.c.) (75)

In the odd parity case, the pairing is chosen with zero spin projection along the spin quantization
axis, which is pinned to the z−axis, normal to the surface of the slab (polar ordering). This choice is
motivated by the expectation that the superconductive gap can vanish at the interface (z = 0, L) where
the Dirac states are located, if transparency is high. The polar pairing is described by:

Hp
pair = (∆pσysyτ+ + h.c.) (76)

where ∆p = 〈ψu↑ψg↓〉 = −〈ψg↑ψu↓〉 = −〈ψg↓ψu↑〉 = 〈ψu↓ψg↑〉 is the odd-parity order parameter. The
change in signs in the expectation values for ∆p arises from the fact that the operators act on a triplet
pair with zero spin projection along z. The choice of zero spin projection allows for a closer comparison
with the s-wave case.

We will choose different representation bases for the two symmetries. They are connected to the
Nambu basis by unitary transformations, but differ from it. This is convenient, as it can be shown that
the induced even and odd-parity proximities give rise to the same matrix form of the model Hamiltonian,
when the two different bases are adopted, each for the two different cases. We consider a vortex line of
charge q = ±1 piercing the TI, with its axis orthogonal to the boundary surface, and we use cylindrical
coordinates oriented along the z−axis.The Hamiltonian is (~vF = 1):

H=

(
H+ sz σz i∂z

sz σz i∂z H−

)
(77)

where, outside the vortex core, the Hamiltonian blocks, H±, read:

H±(r > ξo) =


∓M− µ i e−iθ

(
∂r − i

r
∂θ − q

2r

)
±∆ e−iqθ 0

i eiθ
(
∂r + i

r
∂θ + q

2r

)
±M− µ 0 ±∆ e−iqθ

±∆∗ eiqθ 0 ±M+ µ −i e−iθ
(
∂r − i

r
∂θ + q

2r

)
0 ±∆∗ eiqθ −i eiθ

(
∂r + i

r
∂θ − q

2r

)
∓M+ µ

 (78)

with:

M =

{
M + C2

(
∂2
r +

1

2r
∂r −

1

4r2

)
+ C1 ∂

2
z

}
(79)

(M > 0 and C1, C2 < 0). We have added the vector potential associated to the vortex, which, far away
from the vortex core, takes the form of a pure singular gauge:

Ar = 0, Aθ(r) = −1

r
∂θχ ; χ = qφ

θ

2π
(80)

(φ = hc/2e is the flux unit). The phase factor, eiqθ, breaks the TR invariance, which holds when ∆s is
real (∆p is purely imaginary).
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Equation (77) is appropriate for the even-parity superconducting correlations, when the basis is:

Bs ≡
[
ψg↑, ψu↓, ψ

†
g↓, −ψ

†
u↑ | ψu↑, ψg↓, ψ

†
u↓, −ψ

†
g↑

]T
(81)

while a unitary transformation, which changes the basis to:

Bp ≡
[
ψg↑, ψu↓, ψu↓

†,−ψg↑ †|ψu↑, ψg↓, ψg↓ †,−ψu↑ †
]T

(82)

transforms the model to describe the odd-parity pairing, provided ∆s is replaced with ∆p.
We now search for zero energy excitations corresponding to quasiparticles bound to the vortex.
When proximity induces s-wave , singlet superconductive correlations, Majorana quasiparticles

are bound to the vortex. The wavefunction decays exponentially, as exp(−|M ||z|), at the
boundary, so that two bound states are localized at the interface with each of the two topologically
trivial superconductors. The zero energy eigenstates are found by matching solutions inside and
outside the vortex core. Its boundary is defined as a circle of radius ξo ∼ ~vF/∆. An
analytic derivation of the quantum field in the two-band model can be given far away from
the vortex core in the limit of µ = 0 (mid-gap Majorana bound states (MBS)) [41]. The
two zero energy real fermion fields, localized far apart at the two boundary surfaces of the slab,
z ∼ 0+, L−, in the inside of the TI, outside the vortex core (r > ξo), take the form:

γ(z ∼ 0+) ∝ e−M z K1/2 (∆ r) ·
{[
e−i (1−q)θ/2 ψg↑ + ei (1−q)θ/2 ψg↑

†]
+i
[
ei (1−q)θ/2 ψu↑ − e−i (1−q)θ/2 ψu↑

†]} (83)

γ(z ∼ L−) ∝ e−M (L−z) K1/2 (∆ r) ·
{
−i
[
ei (1+q)θ/2 ψg↓ − e−i (1+q)θ/2 ψg↓

†]
+
[
e−i (1+q)θ/2 ψu↓ + ei (1+q)θ/2 ψu↓

†]} (84)

with λ ∼ |M |. Here, K±1/2 (wr) = e−wr/
√
wr are the modified Bessel functions, so that the excitations

are localized in the surface plane. The decay length scale is w−1 ∼ ξo. Inside the vortex core, the
normalizable solution requires an r−dependent order parameter, ∆s(r), together with the corresponding
vector potential, A(r), and should be matched with the one given previously at r = ξo.

Let us compare the two Majorana excitations of Equations (83) and (84). They mix both u and g
orbitals and involve opposite spin orientations. To understand the result, we note that, in the absence
of superconductive proximity, the p and h surface states at the two opposite boundaries, z = 0, L, have
exchanged chiralities. In the spinless case, this can be seen also in a simple, reduced model in which
chirality is the σx operator:

γ (r > ξo, z) ∝ eiσzϕ(r)/2 e−iσzθ/2 e−
r
ξo e

σx
~vF

∫ z µ̃(z′)dz′

[
1

±1

]
ψ (85)

where ϕ = θ is the phase of the order parameter and ψ is a real spinless fermion. The requirement
that the wavefunction decays both radially and inside the TI fixes the eigenvector of σx, with eigenvalue
±1, and the chirality of the state follows. At the two surfaces, the z convergency requires opposite
eigenvalues.

Now, let us assume the vortex charge to be q = 1. The Majorana of Equation (83), γ(z ∼ 0),
does not have any orbital angular momentum in the z−direction. It includes spin ↑, so that the total
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angular momentum mJ = 1/2. The Majorana of Equation (84), γ(z ∼ L), has one unit of orbital
angular momentum in the z−direction (because its p/h components have opposite chirality with respect
to those of γ(z ∼ 0) and its orbital momentum has to fit with the vorticity q = 1). It includes
spin ↓, so that the total angular momentum is again mJ = 1/2. It looks as if the vorticity of the vortex
has been split between the two MBSs having mJ = 1/2 each. This reminds one of the half quantum
vortex of Sr2RuO4 [68–70], as just one spin component acquires an orbital angular momentum. This
is remarkable as, notwithstanding the fact that the vorticity adds just orbital angular momentum, MBSs
are formed in a spin-dependent combination. On the other hand, in the presence of strong SO coupling,
just the total angular momentum projection along ẑ matters. This result is consistent with the so-called
“thick flux limit” of [71], when the magnetic field penetrates extensively into the bulk below the surface,
so that the bulk insulating gap is entirely restored. In that paper, however, the correspondence between
the opposite chiralities at the two surfaces is not mentioned.

States localized at a vortex core occur also when Cooper pairing induced by proximity in the
Hamiltonian of Equation (77) is odd-parity . The change of basis to the one of Equation (82) changes
the nature of the bound states trapped at the vortex singularity. They are not of the kind of the ones
given in Equations (83) and (84), because they are not MBSs. Instead, they are zero energy surface
Andreev bound states (SABS), decaying in an oscillatory fashion within the TI slab (z > 0) [72]. The
state involving just u orbitals takes the form:

ΨL

(
r > ξ̃o, θ, z > 0

)
∝ e−iκzH

(2)
1
2

(iwr) ·
{[
eiπ/4ei(1+q)θ/2ψu↓ + e−iπ/4e−i(1+q)θ/2ψ†u↓

]
+

+i
[
e−iπ/4e−i(1−q)θ/2ψu↑ + eiπ/4ei(1−q)θ/2ψ†u↑

]}
, (86)

ΨL

(
r < ξ̃o, θ, z > 0

)
∼ e−κ

′zF (w′r)
{[
ei(1+q)θ/2ψu↓ − e−i(1+q)θ/2ψ†u↓

]
+

+
[
e−i(1−q)θ/2ψu↑ + ei(1−q)θ/2ψ†u↑

]}
Outside the vortex core (r > ξ̃o), both κ and w are complex, so that the function decaying in z

has also an exponentially decaying factor (|κ| ∼
√
M/|C2|). The function of r is a Hankel function,

H
(2)
1/2(i wr), of complex argument, with an oscillating factor, as well as a decaying exponential factor

(=m{w} ∼ C1|∆p|/C2, where we have chosen the gauge in which ∆p is purely imaginary).
Inside the vortex core (r < ξ̃o), the amplitude F (w′r) ∼ H

(1)
1/2(w′r) + H

(2)
1/2(w′r) is a combination of

Hankel functions that converges to zero at the origin (i.e., the point where the order parameter vanishes).
In a “hard core” approximation, which does not account for the r-dependence of ∆p and ~A inside the
core, the value of w′ is fixed by matching the two solutions of Equation (86) at the core boundary, ξ̃o.
Inside the TI slab, the bound state decays exponentially along the vortex axis with a wavevector, κ′ ≈ |κ|.
These behaviors qualify the result as a SABS, which, by inspection, is not an MBS, nor an eigenstate of
Time Reversal (TR) and decays along the vortex line, with oscillations depending on |∆p|. It is easy to
check that the combinations given here in the asymptotic region out of the vortex core are L-chiral, i.e.,
they form the combinations: ∝

[
ψu↓ e

iθ/2 + i ψ†u↑ e
−iθ/2

]
and ∝

[
ψu↑ e

iθ/2 − i ψ†u↓ e−iθ/2
]
.

The partner state to the one given in Equation (86) involves the ψgσ field operators, in the R−chiral
mate combination, i.e.: ∝

[
ψg↑ e

iθ/2 + i ψ†g↓ e
−iθ/2

]
,∝

[
ψg↓ e

iθ/2 − i ψ†g↑ e−iθ/2
]
. These excitations

involve both spin components.
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Away from the mid-gap (µ 6= 0), fermionic excitations can be found, which correspond to circular
waves propagating at the interface inward or outward from the vortex singularity and merging into the
film by traveling across the slab, along the vortex line, with a radial localization length ~vF/|∆p|. These
states involve both u and g orbitals and have wavevector κ ∼

√
µ/|C1| [41].

There is no possibility for an MBS to exist, when proximity-induced pairing is odd-parity. The reason
can be found in the effective parity of the pairing, which is developed in the TI by proximity. It was
shown by Fu and Kane [35] that an even-parity superconductor inducing proximity in a TI acts on
Dirac fermions as an effective odd-parity pairing, giving rise to the MBS. Vice versa, an odd-parity
proximization can be expected to develop into an effective even-parity pairing, which does not give rise
to MBSs.

7. Summary and Final Remarks

The bulk of 3D TI exhibits an odd number of time reversal invariant wavevectors in the Brillouin
zone, in the vicinity of which the Hamiltonian can be expanded in the ~k · ~p approximation up to linear
terms only. Projection of these 3D Dirac points onto the appropriate surface gives rise to a 2D Dirac
cone dispersion for boundary states, which conserve helicity ~σ · ~k thanks to spin-orbit coupling and are
robust with respect to static non-magnetic disorder [73–76]. These properties make boundary states of
3D TI very attractive for applications in spintronics [77]. Conductance of graphene, which is a “weak”
2D TI, due to the presence of the two valleys centered at the two time reversal invariant points, K and
K ′, has been widely analyzed in these years, including weak localization corrections [78]. Topological
defects are also being studied in graphene [32,79–82].

In this work, we have shown that an approach similar to the one often used in graphene [83] can be
applied to discuss conduction at the boundaries of topological insulators. In the long wavelength limit
for Dirac electrons, it is possible to consider a topological defect as a metric distortion in curved space,
so that a rotation of the Gamma matrices and a spin connection inherited by the curvature modifies
the scattering properties of the carriers [45,84]. Far away from the defect, these modifications can be
accounted for by gauge fields. Short-range potentials due to local stress in the lattice can be included in
the Born approximation to the Dyson scattering equation. The t-matrix for the scattering of 2D Dirac
electrons and edge dislocation has been derived in Section 3.1.

To make a connection with reality, we have interpreted the results as the modeling of one single edge
dislocation in graphene for electrons belonging to one valley only, with no inter-valley scattering. In
a picture in which defects are considered as non-interacting and very dilute, a Boltzmann approach to
conductivity is acceptable, when averaging over their orientation. The contribution to the resistivity is
found to be, of course, proportional to the density of defects, but inversely proportional to the density of
carriers, in agreement with the measured resistivity. We have also derived the self-energy of the defect
connected with the stress involved in the rearrangement of the lattice in Section 3.3. This information
could be relevant to estimate the temperature at which the Boltzmann approach breaks down and a
defect-mediated phase transition to a disordered phase takes place. As we find a log-dependence of the
self-energy on the size of the dislocation, one could surmise that the transition is of Kosterlitz–Thouless
type, as in 2D crystal melting. In this case, a temperature scale is determined the stiffness of the lattice,
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βκ. Assuming βκuij ∼ 10~vF −1, where uij is the strain tensor and vF is the Fermi velocity [32], the
energy of the formation of such a defect would turn out to be of the order of tens of electron volts, leading
to various thousand of Kelvin [85]. However, the gauge theory cannot exclude cubic terms, which could
drive the phase transition to first order [86,87].

On the same lines, the corresponding topological defects in a 3D TI are the screw dislocations.
The odd Dirac point, which is responsible for the material being topologically non-trivial, is the best
candidate for hosting the branch point of a screw dislocation. Emphasis is put in our work on the fact
that the defect could harbor gapless helical electron states propagating along the dislocation axis. Again,
we approach the description of boundary states at a flat surface of a 3D TI and at the defect in the long
wavelength limit. We have shown that an analytic form of the bound state wavefunctions can be given
easily, because the dislocation acts as an effective flux in the 3D Dirac Hamiltonian. The gapless states
exist, provided the constraint on the Burgers vector of Equation (60) is satisfied [34]. TIs, like Bi2Se3

and Bi2Te3, which have the 3D Dirac point at Γ, cannot fulfill the constraint, while the alloy, Bi1−xSbx,
could. The constraint on the orientation of the screw dislocation would influence a statistical approach
to the proliferation of defects and thoroughly change the conduction properties, as well as the crystal
melting. To our knowledge, this topic has not been addressed yet in the literature.

When a 3D TI is sandwiched between two even-parity superconductors, a vortex piercing the structure
can host a zero energy bound state, which is a real fermion field. This is a Majorana bound state. There is
great excitement at present for the possibility of revealing Majorana bound states in Josephson junctions
between TI, in proximity with superconductors [88] and at vortices [66,89]. In this case, the constraint
of Equation (60) does not apply, and the reference to the TRIM, which originates the surface Dirac cone,
is unnecessary.

The conserved quantity is total angular momentum along the vortex axis due to SO. The two Majorana
at opposite surfaces have a total angular momentum of 1/2 along the vortex axis, and the sum matches
the unitary vortex orbital momentum (the “vortex charge”). However, it is remarkable that, because of
their opposite chirality, one of them has no orbital angular momentum and spin polarization up, while the
other one has spin angular momentum down, to be subtracted from one positive unity of orbital angular
momentum. Hence, opposite chiralities imply that the orbital angular momentum of the vortex fixes the
spin content of the Majorana fields. It is also interesting that, in the case the induced superconductivity
by proximity is of the odd-parity type, the zero energy states are Andreev bound states localized at the
free surface, with damped oscillations away from the surface.

An alternative route to realize in a controlled way structures with emerging MBS excitations could
be to resort to pertinently designed Josephson junction rings [88] and networks. It has been shown that,
by properly designing the network, it is possible to realize topological configurations [90–92], which
are expected to enucleate defects hosting MBSs [93,94], similar to the ones predicted at the interfaces
between a TI and a superconductor.
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Appendix

A.1. Phase Shifts and Cross-Section in the Scattering of an Ahronov–Bohm Flux

The scattering of an electron on an edge dislocation is analogous to the scattering off a
Aharonov–Bohm flux, α, [48]. An incoming plane wave of wavevector ~k:

e−ikr cosφ =
∑
m

imeimφ(−1)mJm(kr) (A1)

where φ = θr−θk is the angle between the direction of propagation and the one in real space, is scattered
by the A-B flux located at the origin of the frame. A solution of the Schrödinger equation:[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂φ
+ iα

)2

+ k2

]
ψ(r) = 0 (A2)

is:

ψ(r) =
∞∑

m=−∞

am e
imφJ|m+α|(kr) (A3)

When fixing the boundary conditions far away from the scattering center, we use the asymptotic
expansion of the Bessel functions, Jν(kr). Prior to the scattering event, we have to match the incoming
circular wave with the incoming asymptotic circular component of the solution:

incoming circular wave ∼ 1

2

√
2

πkr

∞∑
m=−∞

(−i)m eimφe−ikreim
π
2 ei

π
4 (A4)

incoming circular component of ψ ∼ 1

2

√
2

πkr

∞∑
m=−∞

am e
imφe−ikrei|m+α|π

2 ei
π
4 eiαθk (A5)

The matching requires that: am = e−i|m+α|π/2 e−iαθk . The same for the outgoing waves:

outgoing circular wave ∼ 1

2

√
2

πkr

∞∑
m=−∞

(−i)m eimφeikre−imπ/2e−iπ/4 + f(φ)
eikr√
r

(A6)

outgoing circular component of ψ ∼ 1

2

√
2

πkr

∞∑
m=−∞

eimφeikr e−2i|m+α|π/2 e−iπ/4 e−iαθk (A7)
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The outgoing wave is the superposition of the unscattered wave and of the one diffused with scattering
amplitude f(φ). The phase shift in the scattering is obtained by comparing the two outgoing plane waves
of Equations (A6) and (A7) :

δm = −π
2

(|m+ α| − |m|) (A8)

The scattering amplitude can be identified in terms of the phase shift as:

f(φ) =

√
1

2πk

∞∑
m=−∞

(−1)m
[
e2iδm − 1

]
eimφ (A9)

A.2. Green’s Function for Dirac Electrons Scattered by an External Aharonov–Bohm Flux

A.2.1. Green’s Function for Free Dirac Electrons

We first address the Green’s function for Dirac electrons propagating freely in two dimensions (2D).
The Green’s function for the complete 2D Dirac operator, which includes the time dependence, satisfies
the defining equation:

[γ0∂t + γi∂i]G0(x, x′) = −iδ(x, x′)I (A10)

where x ≡ (~r, t) and γ0 = −iσz, γ1 = σy, γ
2 = −σx. The Fourier transform, G0(~r, ~r ′;ω), defined by:

G0(x, x′) =

∫
dω e−iω(t−t′)G0(~r, ~r ′;ω) (A11)

satisfies:
[−σzω + γi∂i]G0(~r, ~r ′;ω) = −iδ(~r − ~r ′)I (A12)

according to Equation (A10). Multiplying both sides of the equation by σz, we obtain:

[ω + iσ · ∇]G0(r, r′;ω) = [ω −H]G0(~r, ~r ′;ω) = iδ(~r − ~r ′)σz (A13)

In the plane wave representation and circular coordinates, we obtain:

G0 (ρ, θρ;ω) = −
1

(π~vF )2

∫
d2k ei

~k·~ρ ω 1+ ~k · ~σ
ω2 − k2

= − 1

(π~vF )2

∫
d2k ei

~k·~ρ 1

ω2 − k2

(
ω k e−iθk

k eiθk ω

)
(A14)

where ρ = |r − r′| =
√
r2 + r′2 − 2rr′ cos(θr − θr′) and θρ is the corresponding angle. The prefactor

guarantees the equality with the δ−function at the right-hand side. The integration over the angle, θk, of
the matrix elements of Equation (A14) gives:

G0 (ρ, θρ;ω) = − 2πω

(π~vF )2

∫
kdk

ω2 − k2

(
J0(kρ) −iJ−1(kρ) e−iθρ

iJ1(kρ) eiθρ J0(kρ)

)
(A15)

The integral over the modulus of k is more cumbersome. When applying the residue theorem, the
circuit is closed at infinity in the complex p−plane. The contribution at infinity vanishes. As the poles
are on the real axis, just half of the poles has to be included. The integrals on the real axis are of the kind:∫ ∞

0

pdp Jν(pρ)

ω2 − p2
→ 1

2ω

[∫ ∞
0

pdp

ω − p
Jν(pρ) +

∫ ∞
0

pdp

ω + p
Jν(pρ)

]
(A16)

=
1

2ω

[∫ ∞
0

Jν(pρ)− (−1)1−ν
∫ 0

−∞
Jν(pρ)

]
pdp

ω − p
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where ν = 0, 1. J0(pρ) is even with respect to the change p → −p. Hence, the ν = 0 integral is
extended to the full real axis, p ∈ (−∞,+∞), and just the half pole survives as an exact result. The
ν = 1 integral cannot be dealt with like that, because J1(pρ) is odd. There is a contribution coming
from the integration along the imaginary axis that should be evaluated. However, as this contribution is
exponentially convergent far from the defect center, we shall drop it and keep just the half pole also for
the ν = 1 Bessel function. This choice corresponds to a semiclassical saddle point approximation in a
path-integral formalism [95,96]. Which one of the two poles, ω = sp (p > 0), is contributing depends
on the the sign of ω. In conclusion, the approximated result for r > r′ is:

G0 (ρ, θρ;ω) = − iω

(~vF )2

(
J0(ωρ) −isJ−1(ωρ) e−iθρ

isJ1(ωρ) eiθρ J0(ωρ)

)
, s = sign{ω} (A17)

This result is asymptotically sound. The density of state (including spin degeneracy) is:

− 1

2π
tr

∫
d2R =m {G0 (ρ = 0;ω)} =

ω

π(~vF )2
A (A18)

where A is the area. This is the correct result. It can be shown that Equation (A17) satisfies
Equation (A13). The asymptotic expansion of the Bessel functions with appropriate causality conditions
yields [97]:

lim
ρ→∞

G0 (ρ, θρ;ω) ∼ −ie
i(ωρ−π/4)

(~vF )2

√
2π|ω|
ρ

(
1 s e−iθρ

s eiθρ 1

)
(A19)

The spectral representation is also useful. Retaining just the half pole contribution, again, we have for
r > r′:

G0 (~r, ~r
′, ω) = −i ω

(~vF )2
∑
m

eim(θr−θr′ )

(
Jm(ωr) J∗m(ωr′) −is Jm(ωr) J∗m+1(ωr

′) e−iθr′

−is Jm+1(ωr)J
∗
m(ωr′) eiθr −Jm+1(ωr) J

∗
m+1(ωr

′) ei(θr−θr′ )

)
(A20)

The Bessel functions, being of integer order, are real. However, by keeping the star in the notation,
we intend to remind that, when r < r′, one has to exchange r ↔ r′ and θr ↔ −θr′ . The series could be
resumed by using Graf’s theorem, to recover Equation (A17).

A.2.2. Green’s Function with the Aharonov-Bohm Flux

The wavefunction in the presence of an A-B flux can be expressed through a Fourier series (φ = θr−θp
is the angle between ~p and ~r) as:

Ψs (r, θr) =
∑
m

eimφ
1√
2

(
um

s vm e
iθr

)
(A21)

where the functions, um(r), vm(r), solve the equation of an A-B flux line α at the origin (~vF = 1),
given by Equation (A2): [

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂φ
+ iα

)2

+ p2

]
ψ(r) = 0 (A22)
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They are:

um(r) =

∫
dφ ei[pr cosφ−(m+α)φ−αθp] = (−i)m+αe−iαθpJm+α(pr)

vm(r) =

∫
dφ ei[pr cosφ−(m+1+α)φ−αθp] = (−i)m+1+αe−iαθp Jm+1+α(pr) (A23)

Green’s function is (s = sign{ω}):

G (~r, ~r ′, ω) = − 1

(π~vF )2

∫
d~p

∑
m,m′,s

ei(mφr−m
′φr′ )

ω − sp
1

2

(
uoutm (r)

s voutm (r) eiθr

) (
uinm′

∗
(r′) s vinm′

∗
(r′) e−iθr′

)
(A24)

By imposing scattering causal conditions for r > r′, we take outgoing waves, uout(vout) ∼
Jm+0(1)+α(pr), and incoming waves, uin(vin) ∼ Jm+0(1)(pr

′).
Furthermore, in this case, Green’s function allows for the trivial integration of the angle, θp, because

nothing depends on the angle, θp. We get, for r > r′:

G (~r, ~r ′, ω) = − (−i)α
(π~vF )2

∫∞
0 pdp

∑
m,s

eim(θr−θr′ )

ω−sp
1
2

(
Jm+α(pr) J

∗
m(pr

′) is Jm+α(pr) J
∗
m+1(pr

′) e−iθr′

−is Jm+1+α(pr)J
∗
m(pr

′) eiθr Jm+1+α(pr) J
∗
m+1(pr

′) ei(θr−θr′ )

)
(A25)

Again, we can apply the Graf summation theorem with the condition r > r′:

Jν(ωρ)eiνχ =
+∞∑

m=−∞

Jm+ν(ωr)Jm(ωr ′)eim(θ−θ′) (A26)

to get:

G (~r, ~r ′, ω) = − (−i)α

2(π~vF )2
eiα(θ−θ

′)/2
∑
s

∫ ∞
0

pdp

ω − sp

(
Jα(pρ) −s e−i(θ−θ′) e−iθρ Jα−1(pρ)

−s eiθρ ei(θ−θ′) J1+α(pρ) Jα(pρ)

)
(A27)

where we have used the approximation θρ ≈ π + (θ + θ′)/2. When r < r′, we have to exchange r ↔ r′

and θr ↔ −θr′ .
For the scattering of a central potential, outgoing spherical waves for ω > 0 imply

that Jν(z)→ H
(1)
ν (z), and we can use the propertyH(1)

−ν (z) = eνπiH
(1)
ν (z). However, for z → 0,H(1)

ν (z)

has a cut on the negative real axis with a branch point at zero. The circuit is depicted in Figure A1. The
contribution of the quarter of the circle around the branch point at the origin vanishes for ω 6= 0. We
shall drop the integral and keep just the half pole with s = sign{ω} also in this case. Note that the
propagation of holes (ω < 0) requires that H(1)

ν (z) is substituted with H(2)
ν (z).

Figure A1. Integration path in the case of an edge dislocation.
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A.3. Simplified Derivation of Boundary States of a TI in the Long Wavelength Approximation

We can exhibit a simple analytical form of the electronic wavefunctions of a two-band TI in the
long wavelength limit, which is described by the model Hamiltonian of Equation (58) (dropping
h0−µ) [56], provided we make a few simplifying assumptions. To obtain localized states at the boundary,
the surface is assumed to be flat in the z = 0 plane, so that we can Fourier transform with respect to
the coordinates parallel to the surface. We put the chemical potential µ = 0 and drop all the second
order space derivatives appearing inM = M + C1 ∂

2
z + C2∂

2
‖ , for simplicity. The latter is a delicate

point, as the relative signs of M,C1, C2 qualify the material as topologically trivial or non-trivial and
allow the boundary wavefunctions to drop to zero inside the surface. However the model does not
loose its potential if the bulk gap, M , is taken to change sign at the boundary. We can interpret the
change of sign of M as the moving from a topologically trivial side to the topologically non-trivial side.
Boundary states will display their maximum at z = 0 and decay exponentially away from both sides of
the matching surface. In addition, just the amplitude of the wavefunction has to be matched at z = 0,
because the Hamiltonian is first order in the derivatives. We will adopt these simplifications, which allow
us to write down the localized solutions in a closed form, quite easily.

The two bands have opposite parity. The toy model Hamiltonian, close to the Γ point, derived from
Equation (58), takes the form:

H0

[
k‖, z

]
=
(
ψ†g↑ ψ

†
u↑ ψ

†
g↓ ψ

†
u↓

) 
M −i∂z 0 k−

−i∂z −M k− 0

0 k+ M i∂z

k+ 0 i∂z −M




ψg↑

ψu↑

ψg↓

ψu↓

 (A28)

Deep in the bulk, for ~k → −~k, the field, ψgσ(~k), is even, while the field, ψuσ(~k), is odd. The bulk
eigenfunctions correspond to the eigenvalues E = ±

√
M2 + k2 + k2

z , where k2 = k2
x+k2

y = k+k− with
k± = kx ± iky. They are:

∣∣∣E,~k, 1〉 =
1√
N


E +M

kz

0

k+

 eikzzeik‖·r‖ ,
∣∣∣E,~k, 2〉 =

1√
N


0

k−

E +M

−kz

 eikzzeik‖·r‖ (A29)

where N is the normalization.
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Localized states at the surface could be:

∣∣1+; k‖
〉

= 1√
N


M + E

iM sign(z)

0

k+

 e−M |z|eik‖·r‖ , with eigenvalue E = k

∣∣2+; k‖
〉

= 1√
N


0

k−

M + E

−iM sign(z)

 e−M |z|eik‖·r‖ , with eigenvalue E = k

∣∣1−; k‖
〉

= 1√
N


M + E

iM sign(z)

0

k+

 e−M |z|eik‖·r‖ , with eigenvalue E = −k (A30)

∣∣2−; k‖
〉

= 1√
N


0

k−

M + E

−iM sign(z)

 e−M |z|eik‖·r‖ , with eigenvalue E = −k

However, so as they stand, the wavefunctions are not continuous at z = 0. We have to implement
continuity at z = 0 to obtain physical states. Using the time reversal operator, Θ, and the parity operator,
P : {~r → −~r}, we note that:

PΘHΘ†P † = −H(−M) (A31)

Therefore PΘHΘ†P † is a good Hamiltonian for the other half space, z → −z, when M → −M .
However, the minus sign on the right-hand side of Equation (A31) implies that the two eigenvalues are
exchanged. Then, the matching condition is:

A
∣∣1+; k‖

〉
+B

∣∣2+; k‖
〉∣∣
z=0

= C
∣∣PΘ1−; k‖

〉
+D

∣∣PΘ2−; k‖
〉∣∣
z=0

, for E = k (A32)

A′
∣∣1−; k‖

〉
+B′

∣∣2−; k‖
〉∣∣
z=0

= C ′
∣∣PΘ1+; k‖

〉
+D′

∣∣PΘ2+; k‖
〉∣∣
z=0

, for E = −k (A33)

Apart from a factor eik‖·r‖ , Equation (A32) for E = k, becomes:

A


M + k

iM

0

k+

 e−Mz +B


0

k−

M + k

−iM

 e−Mz

∣∣∣∣∣∣∣∣∣
z=0+

= C


0

−k−
−M − k
iM

 eMz +D


M + k

iM

0

k+

 eMz

∣∣∣∣∣∣∣∣∣
z=0−

(A34)
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As the spinor with B is opposite to the one with C, the determinant vanishes, and the solution exists.
By inspection, we find: A = D = 1, B = −C = 1, so that:

∣∣surf,+; k‖
〉
∝


M + k

k− + iM

M + k

k+ − iM

 e−M |z| eik‖·r‖ , for E = +k (A35)

By exchanging k ↔ −k, we obtain the solution for E = −k:

∣∣surf,−; k‖
〉
∝


M − k
k− + iM

M − k
k+ − iM

 e−M |z| eik‖·r‖ , for E = −k (A36)

Note that, at the neutrality point (E = 0), the degenerate zero energy states have wavefunctions:

|surf,→; 0〉 ∝


1

i

−1

i

 e−M |z|, |surf,←; 0〉 ∝


1

i

1

−i

 e−M |z|, for E = 0 (A37)

They are time reversed states.
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