Supporting Information

Sample name	Nominal holmium content (%)	Diameter (nm)
Fe_3O_4	0	$7.24\ \pm 1.0$
Fe ₃ O ₄ -1.25Ho	1.25	$14.7\ \pm 1.7$
Fe ₃ O ₄ -2.5Ho	2.5	11.7 ± 1.0
Fe ₃ O ₄ –5Ho	5	$8.3\ \pm 0.7$
Fe ₃ O ₄ -10Ho	10	$10.2\ \pm 0.8$

Table S1. Diameter of the nanoparticles measured by transmission electron microscopy.

Figure S1. Transmission electron microscopy images of all different nanoparticle samples.

Figure S2. XRD diffraction spectra of the different Ho-doped nanoparticles. The crystal lattice planes are shown next to the corresponding peaks.

Figure S3. Comparison of the XRD spectra of Ho_2O_3 (COD REV22182 96-210-1513) (red drop-lines) and the 10% Ho-doped sample. No overlap is visible, indicating that no islands of Ho_2O_3 are formed within the nanoparticles. It is possible that pure Ho_2O_3 particles are formed during the synthesis, but these are washed away during the magnetic purification process.

Figure S4. Faraday rotation of the holmium-containing nanoparticles, measured in solution (2.5 mg/mL).

Figure S5. Faraday rotation of the holmium-containing nanoparticles, measured in a thin film. The polymethylmethacrylate film contained 10 mass% particles.

Figure S6. Fluorescence spectra of all nanoparticle samples measured in solution (5 mg/mL, excited at 480 nm). (a) 0% Ho; (b) 1.25% Ho; (c) 2.5% Ho and (d) 10% Ho.