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Abstract: Halloysite is an aluminosilicate clay that has been widely used for controlled drug 

delivery, immobilization of enzymes, and for the capture of circulating tumor cells (CTCs). 

Surface modification of halloysite by organosilanes has been explored to improve their 

properties. In this study halloysite clay nanotubes (HNTs) were functionalized by two 

different organosilanes: Trimethoxy(propyl)silane (TMPS), and Triethoxy(octyl)silane 

(EOS). Untreated and modified samples were characterized by scanning electron microscopy 

(SEM), X-ray diffractometry (XRD), thermogravimetrical analysis (TGA), and Fourier 

transform infrared spectroscopy (FTIR). Results showed a strong interaction of organosilanes 

with the chemical groups present in HNTs. Biocompatibility and cytotoxicity of these 
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nanomaterials were determined using C6 rat glioblastoma cells. Our results indicate that prior 

to functionalization, HNTs show a high biocompatibility and low cytotoxicity. However, 

HNTs functionalized with EOS and TMPS showed high cytotoxicity by inducing apoptosis. 

These results allow the identification of potential applications in biomedical areas for HNTs. 
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1. Introduction 

Halloysite nanotubes (HNTs) have been recently used due to their unique properties such as their hollow 

tubular structure, high surface area, surface characteristics, and high biocompatibility [1–6]. HNT tubules 

consist of a two layered aluminosilicate clay (Al2Si2O5(OH)4·2H2O) with an external diameter of 50–80 nm, 

lumen diameter of 10–15 nm, and length of 1000 nm [7]. The tubes have multilayer walls with positively 

charged Al–OH functional groups on the inner surface, and with negatively charged Si–OH functional 

groups on the outer surface [8]. These characteristics make HNTs a great absorbent for both cationic and 

anionic molecules [1–5]. Furthermore, their nanosized lumen enables entrapping a range of active agents 

such as macromolecules, and proteins [9]. The advantages of these nanoparticles compared to carbon 

nanotubes, which have been extensively studied for a wide range of applications, are that HNTs are not 

toxic for the human body nor hazardous for the environment, and have lower manufacturing costs [7]. 

For these reasons HNTs have been studied for diverse biomedical applications, including inexpensive 

drug encapsulation [8,10–12], as a template or nanoreactor for biocatalyst [13], as well as for use in 

personal care and cosmetics [14]. Zhai et al. [15] demonstrated that HNTs can also be used to immobilize 

enzymes, such as the α-amylase and urease with the objective of extending their catalytic lifetime. This 

study showed that the immobilized enzymes had more than 90% of activity due to the presence of HNTs 

after 15 days. Moreover, HNTs have shown to be successful for enhanced isolation and capture of 

circulating tumor cells (CTCs) in blood [16–18]. For example, Hughes et al. [17] designed a microscale 

flow device for isolating CTCs where the addition of a HNT coating improved capture purities. Targeted 

drug delivery to CTCs has also being achieved with HNT-liposome coated surfaces [19,20], thus 

reducing the probability of metastasis and chemotherapeutic dosages, as shown by Mitchell et al. [20]. 

HNTs may be modified either with salts or organosilanes [21] in order to improve the interaction with 

polymer matrices [22–24]. It has been proved that coating HNTs with organic molecules on its surface 

may reduce agglomeration due to its interaction with organic media. According to Gironès et al. [25], 

organosilanes are widely used because of their low cost and availability. Yuan et al. [8] modified HNTs 

with γ-Aminopropyltriethoxysilane (APTES) by direct grafting of the organosilane onto the surface 

hydroxyl groups. Similarly, Shi et al. [26] functionalized HNTs with APTES to use them as carriers of 

therapeutic gene antisense oligodeoxynucleotides (ASODNS). Due to the large aspect ratio, good 

biocompatibility, and high mechanical strength of the modified HNTs, it was demonstrated that these 

nanotubes are a promising vector for gene therapy applications. 

In this study HNTs were functionalized with two different organosilanes: Trimethoxy(propyl)silane 

(TMPS), and Triethoxy(octyl)silane (EOS), and characterized by scanning electron microscopy (SEM), 

X-ray diffractometry (XRD), thermogravimetrical analysis (TGA), and Fourier transform infrared 
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spectroscopy (FTIR). The biocompatibility and cytotoxicity of these materials was determined using C6 

rat glioblastoma cell cultures. SEM, FTIR, TGA, and cytotoxicity results from the untreated and modified 

HNTs were previously presented at the First International Electronic Conference on Materials [27]. 

2. Experimental Method 

2.1. Materials 

HNTs, Trimethoxy(propyl)silane (TMPS), and Triethoxy(octyl)silane (EOS) were purchased from  

Sigma-Aldrich (St. Louis, MO, USA). Analytical grade acetone from CTR (Monterrey, Mexico) was also used 

for sample preparation. Collagen from calf skin, acetic acid, and Phosphate buffered saline (PBS) were obtained 

from Sigma-Aldrich. Dulbecco’s Modified Eagle’s medium (DMEM) medium, fetal bovine serum (FBS),  

L-glutamine, trypsin, and penicillin-streptomycin are from Life Technologies (New York, NY, USA). 

2.2. Functionalization of HNTs 

HNTs were functionalized with two different organosilanes, namely Trimethoxy(propyl)silane, and 

Triethoxy(octyl)silane. Functionalization was carried out by mixing in a flask ball 10 g of HNTs, 50 mL 

of acetone, and 2 mL of organosilane material. The samples were heated at 50 °C for 48 h in order to 

eliminate unreacted materials. Finally, the suspensions were vacuum filtered to obtain a solid phase. 

2.3. Characterization Methods 

FTIR-ATR spectra were obtained with a Perkin Elmer SPECTRUM 400 spectrometer (Waltham, 

MA, USA) using a ZnSe trapezoidal shaped ATR element. Sample spectrum and background were 

acquired with the coated ATR element and the clean ATR element, respectively. The spectra were 

acquired with a resolution of 4 cm−1 and 16 scans. An FEI Nova NanoSEM 200 scanning electron 

microscope (SEM) (Hillsboro, OR, USA), with an acceleration voltage of 15 kV, and secondary electron 

detector under vacuum, was used to characterize the morphology of the untreated and functionalized 

HNTs. The Energy-dispersive X-ray spectroscopy (EDS) elemental analysis was performed using an 

INCA X-Sight (Abingdon, UK). XRD analysis was performed by an Empyrean PANalytical 

diffractometer (Boulder, CO, USA) with an X’Cellerator detector in a continuous mode scanning with a 

start angle of 30.000°, and end angle of 100.000°, a step size of 0.02, and time per step of 1 s.  

An X-ray tube copper wavelength (λ) of 1.5405 was used, at a voltage of 45 kV, and current of 40 mA. 

Decomposition temperatures of samples were determined by thermogravimetrical analysis (TGA) with 

a TA Instruments SDT Q600 (New Castle, DE, USA). All samples were heated al 10 °C/min from room 

temperature (25 °C) to 850 °C under 100 mL/min nitrogen purge. 

2.4. Cell Culture 

C6 Rat glioblastoma cells were obtained from American Type Culture Collection (cat. no. CCL-107, 

Manassas, VA, USA). The cell line was cultured at 37 °C under recommended conditions in tissue  

culture-treated plastic dishes (Corning) with DMEM medium supplemented with 10% FBS,  

2 mM L-glutamine, 100 U/mL of penicillin, and 100 μg/mL streptomycin. 
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2.5. Cytotoxicity Analysis 

Materials were autoclaved for 15 min at 100 °C, followed by a 30 min drying cycle. Then, they were 

left to cool, and stored at room temperature (25 °C). 

Cell culture-treated 96-well fluorescence microplates (Corning, cat. no 3916, Corning, NY, USA) 

were covered with a 0.05 mg/mL solution of collagen in 0.1 M of acetic acid overnight. After this 

incubation step, the wells were washed 3 times with phosphate buffered saline solution (PBS, 0.1 M 

phosphate buffer, 0.9% w/v sodium chloride, pH 7.2). After washing, 20,000 C6 cells were plated per 

well, and incubated overnight to reach 60% confluence. At this moment, the different treatments (see 

Table 1) were administered, and cells were incubated overnight. Cytotoxicity and apoptosis assays where 

then performed using the ApoTox-Glo Triplex assay (Promega, cat. no. G6320, Fitchburg, WI, USA) 

following the manufacturer’s recommendations. 

Assays were read in a GloMax automated plate fluorometer (Promega) at 402 nm/505 nm 

(excitation/emission) for cell viability, and at 485 nm/520 nm for cytotoxicity assessments. 

Table 1. Experimental groups used to evaluate cytotoxicity of halloysite clay nanotubes 

(HNTs) derivatives. 

Reaction Cells Collagen HNTs HNTs–TMPS HNTS–EOS

Control X – – – – 
Collagen X X – – – 

HNTs/Collagen X X 0.05% – – 
HNTs–TMPS/Collagen X X – 0.05% – 
HNTs–EOS/Collagen X X – – 0.05% 

X: indicate the presence of a component; –: indicate absence. 

A control group was included to evaluate base-line cell mortality at 80% confluence. Collagen was 

included in all the groups exposed to nanomaterial derivatives. Nanomaterials were first re-suspended 

as colloidal suspensions at 5% (w/v) in cell culture medium, and then stirred prior to diluting to final 

concentrations of 500 µg/mL in fresh medium before adding the mixture to the cell cultures. 

The results obtained from cytotoxicity tests were analyzed using Sigma Stat 3.5 program (SYSTAT, 

San Jose, CA, USA). Data were statistically analyzed with a one-way ANOVA test, and Bonferroni 

multiple comparisons post-hoc test. 

3. Results and Discussion 

3.1. Characterization Results 

Figure 1 depicts the FTIR spectrums of HNTs, HNTs–TMPS, and HNTs–EOS. The vibrational mode 

at 2924 cm−1 on Figure 1b and Figure 1c corresponds to the methyl and methylene groups (area marked 

with a circle), that are not present in HNTs, confirming the chemical interaction with Al–O or Si–O 

functional groups of HNTs. The HNTs–TMPS and HNTs–EOS show some signals due to HNTs, such as 

the deformations of Al–O–Si and Si–O–Si at 536 and 462 cm−1, respectively, the O–H groups of the 

inner hydroxyl groups at 909 cm−1. Compared to HNTs no other characteristic signals are detected in 

HNTs–TMPS or in HNTs–EOS. 
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Figure 1. FTIR images of (a) HNTs; (b) HNTs–Trimethoxy(propyl)silane (TMPS);  

(c) HNTs–Triethoxy(octyl)silane (EOS). 

 

SEM images of HNTs, with a diameter of 20–135 nm and various lengths, are shown in Figure 2. 

Micrographs show that HNTs (Figure 2a), HNTs–TMPS (Figure 2b) and HNTs–EOS (Figure 2c) have 
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no significant structural changes, showing only particles formed in fibers or wires with nanometric sizes. 

This is confirmed by XRD diffractograms, as shown in Figure 3. 

Figure 2. SEM images of (a) HNTs; (b) HNTs–TMPS; (c) HNTs–EOS. 

 

Table 2 depicts the EDS analysis results in wt%. This test proved that the major constituents for the 

HNTs, HNTs–TMPS, and HNTs–EOS were Al, Si, and O. The carbon content is not included because 

the sample particles were supported on a carbon ribbon.  

Table 2. Energy-dispersive X-ray spectroscopy (EDS) analysis results. 

Material O (wt%) Al (wt%) Si (wt%)

HNTs 61.84 18.48 19.69 
HNTs–TMPS 60.85 19.22 19.94 
HNTs–EOS 62.57 19.92 17.51 

Figure 3 presents the diffractograms obtained by XRD of the three samples (HNTs, HNTs–TMPS, 

and HNTs–EOS), showing no significant differences between them. In the three solids the following 

phases were identified: Halloysite-7A, and Halloysite-14A. Furthermore, the phases of SiO2 and 

Al(OH)3 were indexed. The three solids are composed basically of two polymorphs of the bilaminar clay 

(1:1) dioctahedral Halloysite, in the presence of SiO2 and Al(OH)3. Thus, it is concluded that during the 

process of functionalization, a modification of the chemical structure of Halloysite is not appreciated. 

Table 3 shows the weight loss (%) at 200–320 °C for functionalized and untreated HNTs obtained by 

TGA. The higher weight loss shown from HNTs–EOS compared to HNTs–TMPS is consistent with the 

higher hydrocarbon chain of the octyl group from EOS. This also supports the strong chemical 

interaction of the organosilanes with the Si–O and Al–O groups of HNTs. The remaining materials at 

800 °C (~81%) are oxides of aluminum and silicon, compounds present in HNTs. 
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Figure 3. Diffractograms of (a) HNTs; (b) HNTs–TMPS; (c) HNTs–EOS. 

 



Materials 2014, 7 7777 

 

 

Table 3. Weight loss by thermogravimetrical analysis (TGA) of HNTs and functionalized HNTs. 

Sample 
Weight Loss in TGA,  

200–320 °C (%) 
Difference Relative to 

HNTs (%) 
HNTs 1.86 – 

HNTs–TMPS 1.94 0.08 
HNTs–EOS 2.04 0.18 

3.2. Cytotoxicity Results 

Figure 4 shows the cytotoxic and apoptotic effects of unmodified and organosilane functionalized HNTs. 

Figure 4. Cytotoxic and apoptotic effects of HNTs derivatives. Organosilane derivatives of 

HNTs (TMPS, EOS) increase cell mortality after 24 h exposure (a) These cytotoxic effect is 

mediated by a pro-apoptotic activity; (b) Unmodified HNTs do not show a statistically 

significant increase in cytotoxicity although they do increase apoptosis, albeit at a lower level. 

* denotes p < 0.01. 

 

Unmodified HNTs do not appear to have cytotoxic effects after a 24 h exposure period in C6 glioma 

cell cultures. However, TMPS- and EOS-functionalized HNTs increased cell mortality after incubating 

under the same conditions (Figure 4a). These cytotoxic effects are due to an increase in apoptosis,  

which is also observed in cultures exposed to unmodified HNTs (Figure 4b). It is possible that HNTs 

activate pro-apoptotic signaling in C6 cells, which can be enhanced by organosilane functionalization, 

leading to increased cell death after 24 h only by exposure to these derivatives.  
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This cytotoxic effect could take longer exposure times to be appreciated with unmodified HNTs and it 

is necessary to perform further experiments to determine if this is the case. Moreover, evaluation on other 

cell types is necessary in order to determine whether induction of apoptosis is cell-type specific or not. 

Previous studies by Vergaro et al. [6] showed that both non-functionalized HNTs and  

APTES-functionalized HNTs appear to be well tolerated by breast cancer cell (MCF-7) cultures on 

concentrations up to 75 μg/mL, with a decrease in cell vitality at higher concentrations. Our results show 

that at 500 μg/mL organosilane functionalization of HNTs increase pro-apoptotic activity that leads to 

enhanced cytotoxic effects, however non-functionalized HNTs at the same concentration appear to be 

biocompatible. Differences in the cytotoxicity observed in our study could be due to the effect of the 

chemical nature of the organosilane derivatives we used, or on the other hand, from the different 

approaches used to determine cytotoxicity: Vergaro et al. [6] used the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) reduction assay, which is dependent on cell metabolism. Reduction 

of MTT can be altered by a number of factors that do not lead to apoptosis, including, but not limited to, 

disruptors of mitochondrial function and inhibitors of cell proliferation with no cytotoxic effects [28], 

while our assays determine the release of cytosolic proteases and the level of activation of the caspase 

pathway [29]. It would be interesting to evaluate if further functionalization with large biomolecules or 

therapeutic drugs could revert the cytotoxic activity of the organosilane derivatives. 

4. Conclusions  

Functionalization of HNTs was achieved by modification with TMPS and EOS organosilanes. 

Characterization by FTIR and TGA showed the strong interaction of organosilanes with the chemical 

groups present in HNTs. This functionalization may be useful to improve the properties of HNTs for 

several applications, including drug encapsulation and delivery, biocatalysis, and for nanocomposites 

with enhanced mechanical properties. Cytotoxicity of untreated and functionalized HNTs was characterized. 

Results showed that at the selected concentration HNTs showed to be a highly biocompatible material, 

however, functionalization by selected organosilanes exhibited high cytotoxicity, inducing cell death  

by apoptosis. 
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