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Abstract: Three symmetric alkylamino-substituted perylene bisimides with different n-alkyl 

chain lengths (n = 6, 12, or 18), 1,7-bis-(N,N-dialkylamino)perylene bisimides (1a–1c), 

were synthesized under mild condition and were characterized by 1H NMR, 13C NMR and 

high resolution mass spectroscopy. Their optical and electrochemical properties were 

measured using UV-Vis and emission spectroscopic techniques as well as cyclic 

voltammetry (CV). These compounds show deep green color in both solution and solid 

state, and are highly soluble in dichloromethane and even in nonpolar solvents such as 

hexane. The shapes of the absorption spectra of 1a–1c in the solution and solid state were 

found to be almost the same, indicating that the long alkyl chains could efficiently prevent 

intermolecular contact and aggregation. They show a unique charge transfer emission in 

the near-infrared region, of which the peak wavelengths exhibit strong solvatochromism. 

The dipole moments of the molecules have been estimated using the Lippert–Mataga 

equation, and upon excitation, they show larger dipole moment changes than that  

of 1,7-diaminoperylene bisimide (2). Moreover, all the dyes exhibit two irreversible  

one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane 

at modest potentials. Complementary density functional theory calculations performed on 

these chromophores are reported in order to rationalize their electronic structure and 

optical properties. 
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1. Introduction 

Derivatives of perylene bisimide (PBI) have continuously attracted significant attention due to their 

applications in molecular electronic devices, such as light-emitting diodes [1–5], LCD color filters [6,7], 

organic field-effect transistors (OFETs) [8–13], light-harvesting arrays [14,15], photovoltaic cells [16–25], 

molecular wires [26,27], and photochromic materials [28,29]. PBIs have also been utilized as building 

blocks to construct supramolecular or artificial photosynthetic systems [30–33]. These organic molecules 

are advantageous due to their high molar absorptivities, high photochemical and optical stabilities, 

reversible redox properties, ease of synthetic modification and excellent thermal stability [34–55].  

The electronic characteristics of PBIs can also be fine-tuned by introducing different substituents at the 

bay-positions (1,6,7,12-positions) of the conjugated perylene core. Based on these rules, a number of 

perylene bisimide derivatives with either electron-withdrawing or electron-donating groups have been 

reported in the literature, including: (a) perfluoroalkyl-substituted PBIs [56,57]; (b) cyano-substituted 

PBIs [58,59], (c) nitro-substituted PBIs [60–62]; (d) ferrocenyl-substituted PBIs [63,64],  

(e) aryl-substituted PBIs [65,66], (f) boryl-substituted PBIs [67]; (g) alkyl-substituted PBIs [68];  

(h) piperidinyl-substituted PBIs [69–71], (i) pyrrolidinyl-substituted PBIs [72–74]; (j) amino-substituted 

PBIs [75,76], (k) alkylamino-substituted PBIs [77–79], (l) alkoxy-substituted PBIs [80–84];  

(m) hydroxy-substituted PBIs [85,86], etc. 

To date, a promising strategy for introducing substituents onto the PBI core is bromination or 

chlorination of perylene dianhydride. Subsequently, replacement of these halogens is readily executed 

by traditional substitution reactions or by metal-catalyzed cross-coupling reactions. However, both of 

these methods are usually accompanied by extensive debromination [77] and stringent reaction 

conditions such as high temperatures, and absence of oxygen and water. In an effort to expand the 

scope of PBI-based chromophores available for designing systems for colorful dyes and self-assembly, 

we synthesized a series of blue dyes based on 1,7-diaminoperylene bisimides [76]. We herein report on 

the introduction of different long alkyl chains of 1,7-diaminoperylene bisimide (2) affording 

chromophores (1a–1c) that are deep green in color and that readily undergo two irreversible  

one-electron oxidations and two quasi-reversible one-electron reductions. 

2. Experimental Section 

2.1. General 

The starting materials such as perylene-3,4,9,10-tetracarboxyldianhydride, acetic acid, 

cyclohexylamine, cerium (IV) ammonium nitrate (CAN), tin (II) chloride dihydrate (SnCl2.2H2O),  

N-methyl-2-pyrrolidinone (NMP), tetrahydrofuran (THF), sodium hydride (NaH), 1-iodohexane 

(C6H13I), 1-iodododecane (C12H25I), and 1-iodooctadecane (C18H37I) were purchased from Merck 
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(Whitehouse Station, NJ, USA), ACROS (Pittsburgh, PA, USA) and Sigma–Aldrich (St. Louis, MO, 

USA). Solvents were distilled freshly according to standard procedure. Column chromatography was 

performed using silica gel Merck Kieselgel si 60 (40–63 mesh). 1H and 13C NMR spectra were 

recorded in CDCl3 on a Bruker 400 MHz NMR spectrometer (Palo Alto, CA, USA). Mass spectra 

were recorded on a VG70-250S mass spectrometer (Tokyo, Japan). The absorption and emission 

spectra were measured using a Jasco V-570 UV–Vis spectrophotometer (Tokyo, Japan) and a Hitachi 

F-7000 fluorescence spectrophotometer (Tokyo, Japan), respectively. Cyclic voltammetry (CV) was 

performed with a CH instruments (Austin, TX, USA) at a potential rate of 200 mV/s in a 0.1 M 

solution of tetrabutylammonium hexafluorophosphate (TBAPF6) in dichloromethane. Platinum and 

Ag/AgNO3 electrodes were used as counter and reference electrodes, respectively. 

2.2. Synthesis 

2.2.1. Perylene Bisimide (4) 

A suspension of perylene dianhydride (900 mg, 2.3 mmol), cyclohexylamine (570 mg, 5.8 mmol), 

and acetic acid (500 mg, 8.3 mmol) in 50 mL of N-methyl-2-pyrrolidinone was stirred at 80 °C under 

nitrogen for 8 h. After the mixture was cooled to room temperature, the precipitate was isolated by 

filtration, washed with 200 mL of MeOH, and dried in a vacuum. The crude product was purified by 

silica gel column chromatography with eluent CH2Cl2 to afford 4 (950 mg, 75%). Characterization 

data: 4: 1H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 8.0 Hz, 4H), 8.60 (d, J = 8.0 Hz, 4H), 5.05 (m, 2H), 

2.58 (m, 4H), 1.91 (m, 4H), 1.76 (m, 6H), 1.36–1.46 (m, 6H). MS (FAB): m/z (relative intensity) 555 

(M+, 100); HRMS calcd. for C36H31N2O4 555.2284, found 555.2290. 

2.2.2. Synthesis of 1,7-Dinitroperylene Bisimide (3) 

A mixture of perylene bisimide 4 (900 mg, 1.6 mmol), cerium (IV) ammonium nitrate (CAN)  

(2.4 g, 4.4 mmol), nitric acid (0.1 M, 6.0 mL) and dichloromethane (150 mL) was stirred at 25 °C 

under N2 for 48 h. The mixture was neutralized with 10% KOH and extracted with CH2Cl2. After 

solvent was removed, the crude product was purified by silica gel column chromatography with eluent 

CH2Cl2 to afford 3 (837 mg, 80%). Characterization data: 3: 1H NMR (400 MHz, CDCl3) δ 8.78  

(s, 2H), 8.67 (d, J = 8.0 Hz, 2H), 8.28 (d, J = 8.0 Hz, 2H), 4.99 (m, 2H), 2.51 (m, 4H), 1.92 (m, 4H), 

1.74 (m, 6H), 1.46 (m, 4H), 1.36 (m, 2H); MS (FAB): m/z (relative intensity) 645 (M+H+, 100); 

HRMS calcd. for C36H29O8N4 645.1985, found 645.1981. 

2.2.3. Synthesis of 1,7-Diaminoperylene Bisimide (2) 

Tin chloride dihydrate (1.5 g, 7.2 mmol) and 3 (0.8 g, 1.2 mmol) were suspended in 60 mL of THF, 

and stirred 20 min. The solvent was refluxed with stirring for 6 h at 80 °C. THF was removed at the 

rotary evaporator, and the residue was dissolved in ethyl acetate and washed with 10% NaOH solution 

and brine. The organic layer was dried over anhydrous MgSO4 and the filtrate was concentrated under 

reduced pressure. The crude product was purified by silica gel column chromatography with eluent 

ethyl acetate/n-hexane (2/3) to afford 2 (595 mg, 85%). Characterization data: 2: 1H NMR (400 MHz, 

CDCl3) δ 8.87 (d, J = 8.4 Hz, 2H), 8.43 (d, J = 8.4 Hz, 2H), 8.14 (s, 2H), 5.04, (m, 2H), 4.94 (s, 4H), 

http://en.wikipedia.org/wiki/Pennsylvania
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2.61 (m, 4H), 1.93 (m, 4H), 1.74 (m, 6H), 1.36–1.54 (m, 6H); MS (FAB): m/z (relative intensity) 585 

(M+H+, 100); HRMS calcd. for C36H33O4N4 585.2502, found 585.2504. 

2.2.4. General Procedure for Alkylation (1a–1c) 

A mixture of solution of 2 (410 mg, 0.70 mmol), sodium hydride (97%, 200 mg, 8.00 mmol) and 

dry THF (60 mL) was stirred at 0 °C under N2 for 30 min. Alkyl iodide (4.20 mmol) was then added 

and the resulting mixture was stirred for 8 h. The resulting mixture was diluted with 15 mL of water 

and extracted with CH2Cl2. The crude product was purified by silica gel column chromatography with 

eluent ethyl acetate/n-hexane (1/2) to afford 1a (1b or 1c) in 75% yield. Characterization data: 1a:  
1H NMR (400 MHz, CDCl3) δ 9.21 (d, J = 8.0 Hz, 2H), 8.45 (s, 2H), 8.38 (d, J = 8.0 Hz, 2H),  

5.03 (m, 2H), 3.45 (m, 4H), 3.15 (m, 4H), 2.57 (m, 4H), 1.87 (m, 4H), 1.15–1.75 (m, 44H),  

0.82 (t, J = 6.4 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 164.51, 164.21, 148.51, 135.42, 130.32, 128.21, 

125.31, 124.29, 122.90, 122.74, 122.63, 121.10, 53.77, 52.54, 31.42, 29.17, 27.46, 26.89, 26.60, 25.52, 

22.49, 13.90; MS (FAB): m/z (relative intensity) 921 (M+H+, 100); HRMS calcd. for C60H81O4N4 

921.6256, found 921.6250. Selected data for 1b: 1H NMR (400 MHz, CDCl3)δ 9.20 (d, J = 8.4 Hz, 2H), 

8.45 (s, 2H), 8.37 (d, J = 8.4 Hz, 2H), 5.04 (m, 2H), 3.46 (m, 4H), 3.17 (m, 4H), 2.60 (m, 4H),  

1.87 (m, 4H), 1.12–1.75 (m, 92H), 0.85 (t, J = 6.5 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 164.40, 

164.06, 148.46, 135.32, 130.25, 128.13, 125.25, 124.23, 122.81, 122.70, 122.59, 121.05, 53.71, 52.43, 

31.81, 29.53, 29.45, 29.24, 29.21, 29.12, 27.46, 27.16, 26.55, 25.47, 22.59, 14.01; MS (FAB): m/z (relative 

intensity) 1258 (M+H+, 100); HRMS calcd. for C84H129O4N4 1258.0014, found 1258.0004. Selected data 

for 1c: 1H NMR (400 MHz, CDCl3)δ 9.19 (d, J = 8.4 Hz, 2H), 8.45 (s, 2H), 8.38 (d, J = 8.4 Hz, 2H),  

5.04 (m, 2H), 3.45 (m, 4H), 3.15 (m, 4H), 2.60 (m, 4H), 1.87 (m, 4H), 1.14–1.74 (m, 140H),  

0.86 (t, J = 6.4 Hz, 12H); 13C NMR (100 MHz, CDCl3) δ 164.45, 164.12, 148.51, 135.39, 130.32, 128.20, 

125.30, 124.30, 122.89, 122.76, 122.66, 121.12, 53.77, 52.51, 31.91, 29.68, 29.52, 29.34, 29.27, 29.19, 

27.53, 27.23, 26.60, 25.53, 22.66, 14.07; MS (FAB): m/z (relative intensity) 1595 (M+H+, 100); HRMS 

calcd. for C108H177O4N4 1595.3803, found 1595.3815. 

3. Results and Discussion 

3.1. Synthesis 

Scheme 1 depicts the chemical structures and synthetic routes of symmetric 1,7-dialkylamino 

substituted PBIs (1a–1c). Synthesis starts from an imidization [87] of perylene dianhydride (5) by 

reaction with cyclohexylamine (C6H11NH2). The dinitration can then be achieved by a reaction of 

perylene bisimide (4) with cerium (IV) ammonium nitrate (CAN) and HNO3 under ambient 

temperature for 48 h [60], giving 1,6- and 1,7-dinitroperylene bisimides in high yields of ca. 80%.  

The regioisomeric 1,6- and 1,7-dinitroperylene bisimides can be successfully separated by high 

performance liquid chromatography (HPLC). Pure 1,7-regioisomer (3) can also be obtained through 

repetitive crystallizations. The reduction of 1,7-dinitroperylene bisimide (3) by tin (II) chloride 

dihydrate (SnCl2.2H2O) in refluxing THF obtained 1,7-diaminoperylene bisimide (2). Finally,  

three 1,7-dialkylamino substituted perylene bisimide derivatives (1a–1c) with different n-alkyl chain 

lengths (n = 6, 12, or 18) can be synthesized by the alkylation of 2 with the corresponding alkyl 
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halides. These compounds show deep green color in both solution and solid state, and are highly 

soluble in dichloromethane (Figure 1) and even in nonpolar solvents such as hexane. The symmetric 

structure of 1,7-bis-(N,N-dialkylamino)perylene bisimides (1a–1c) can be verified by the presence of 

three signals (one singlet and two doublet signals) at δ 8.3–9.3 ppm in the 1H NMR spectrum, which 

indicates that there are only three different kinds of protons in the conjugated perylene core (Figure 2). 

Detailed synthetic procedures and product characterization are provided in the Experimental Section 

and Supplementary Materials (Figures S1–S6). 

Scheme 1. The synthetic route for 1a–1c. 

1a–1c
 

Figure 1. Solubility of 1a–1c in dichloromethane (25 °C). 

1a–1c
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Figure 2. 1H NMR (400 MHz, CDCl3) spectra of 1a. 

 

3.2. Optical Properties 

Figure 3 shows the steady state absorption spectra of the green dye 1a, the blue dye 2, and the red 

dye 3 in dichloromethane. The spectra of 1b and 1c can be found in the Supplementary Materials 

(Figures S7 and S8). The absorption spectrum of 1,7-dinitroperylene bisimide (3) is nearly identical 

with the spectrum of the non-substituted perylene bisimide (4), but they do not show fluorescence [60]. 

On the other hand, the reduction of 3 to 2 switches the substituents from electron-withdrawing nitro 

groups to electron-donating amino groups and causes a distinct red shift. The spectra of 1,7-diamino 

substituted (2) and 1,7-dialkylamino substituted (1a–1c) PBIs are dominated by very broad absorption 

bands that cover a large part of the visible spectrum (350–800 nm). These broad bands are typical for 

perylene bisimide derivatives N-substituted at the bay-core positions, due to charge transfer  

absorption [77]. The longest wavelength absorption band of 1,7-diaminoperylene bisimide (2: 620 nm) is 

red-shifted relative to that of 1,7-dinitroperylene bisimide (3: 515 nm), but it is blue-shifted relative to 

that of 1,7-dialkylaminoperylene bisimide (1a: 698 nm). It appears that the inductive effect of the alkyl 

groups in 1a–1c causes an additional red shift. Additionally, the longest wavelength absorption band of 

1a–1c exhibits a red shift when the solvent polarity increases (Table 1), which is consistent with 

previous studies [75]. 
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Figure 3. Normalized absorption spectra of 1a, 2, and 3 in dichloromethane solution. 

 

Table 1. Summary of optical absorption and emission properties of 1a–1c in  

various solvents. 

1a/1b/1c λabs (nm) a λem (nm) a Stokes shift (nm)  Φ b × 102 

cyclohexane 667/670/670 711/714/716 44/44/48 3.03/4.74/3.14 

diethyl ether 675/676/676 726/725/726 51/46/51 0.44/0.80/0.92 

ethyl acetate 687/688/687 741/740/740 57/54/55 0.22/0.41/0.42 

dichloromethane 698/702/701 755/758/758 52/55/54 0.20/0.40/0.41 

acetonitrile 699/703/703 760/760/761 61/56/57 0.25/0.26/0.26 

a Measured at 2 × 10−5 M; b Determined with N,N’-dioctyl-3,4,9,10-perylenedicarboximide as reference [31]. 

Figure 4 depicts the steady state emission spectra of 1a in solvents of varying polarity, where those 

of 1b and 1c can be found in the Supplementary Materials (Figures S9 and S10). Unlike the small shift 

in absorption spectra, the fluorescence spectra of 1a–1c are largely red-shifted if there is any increase 

of the solvent polarity, which indicates strong intramolecular charge transfer characteristics for the 

excited states of 1a–1c (Table 1). Using the well-established fluorescence solvatochromic shift  

method [88], we measured the stabilization of the excited-states of 1a–1c and compared these results 

to those of 2. The change of magnitudes for dipole moments between ground and excited states, i.e., 

ge 


, can be calculated by the Lippert–Mataga equation and expressed as: 
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Figure 4. Normalized emission spectra of 1a in various solvents. 

 

The plot of the Stokes shift fa    as a function of f  is sufficiently linear for 1a–1c (Figure 5). 

Accordingly, ge 


 values can be estimated as 7.9 D, 9.1 D and 9.7 D for 1a–1c. These values 

indicate that the 1,7-dialkyamino-substituted PBIs (1a–1c) have larger dipole moment changes than 

that (7.4 D) of the 1,7-diamino-substituted compound (2). 

Figure 5. Lippert–Mataga plots for 1a (blue line), 1b (green line), and 1c (red line).  

The solvents from left to right are (1) cyclohexane; (2) diethyl ether; (3) ethyl acetate; (4) 

dichloromethane, (5) acetonitrile. 
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3.3. Quantum Chemistry Computation 

To gain better insight into the molecular structures and electronic properties of 1a–1c, quantum 

chemical calculations were performed using density functional theory (DFT) at the B3LYP/6-31G** 

level. Figure 6 shows the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied 

molecular orbitals (LUMOs) of 1a and 2. The HOMO of all amino-substituted PBIs (1a–1c and 2) is 

delocalized chiefly on the amino group and the perylene core, while the LUMO is extended from the 

central perylene core to the bisimide groups. Table 2 summarizes the calculated and experimental 

parameters for perylene bisimide derivatives 1a–1c. Obviously, the HOMO/LUMO energy levels of 

1a–1c and 2 are higher than those of 3 and 4, which can be explained by the fact that the amino 

substituent is a strong electron-donating group and hence increases both the HOMO and LUMO 

energy levels. Furthermore, the calculated HOMO–LUMO band gap energies of 1a–1c are in good 

agreement with the experimental data (Table 2). 

Figure 6. Calculated frontier orbitals for 1a and 2. The upper structures show the lowest 

unoccupied molecular (LUMOs) and the lower ones show the highest occupied molecular 

orbitals (HOMOs). Methyl groups replace the hexyl groups for clarity. 

 

DFT calculations also demonstrate that the ground-state geometries of the perylene core have 

different core twist angles (Figure 7 and Table 2), i.e., approximate dihedral angles between the two 

naphthalene subunits attached to the central benzene ring; these are ~17.53° and ~17.54° for 1a, 

~17.55° and ~17.57° for 1b, ~17.58° and ~17.59° for 1c, ~19.21° and ~19.43° for 2, and ~17.02° and 

~17.12° for 3, and all are larger than those of 4 (~0.00°). As a whole, the core twist angles of the 

diamino-substituted PBIs (1 and 2) are slightly larger than that of the dinitro-substituted compound (3). 
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Figure 7. DFT (B3LYP/6-31G**) geometry-optimized structures of 1a (left) and 2 (right) 

shown with view along the long axis. For computational purposes, methyl groups replace 

the cyclohexyl groups at the imide positions. 

 

Table 2. Calculated and experimental parameters for perylene bisimide derivatives. 

Compound HOMO a LUMO a Eg 
a Eg 

b μg 
c μe 

d Twisting angle (°) 

1a −5.24 −3.12 2.12 1.76 2.9 10.8 17.53, 17.54 

1b −5.24 −3.12 2.12 1.76 3.0 12.1 17.55, 17.57 

1c −5.23 −3.11 2.12 1.77 3.0 12.7 17.58, 17.59 

2 −5.33 −3.05 2.28 2.14 2.6 7.8 19.21, 19.43 

3 −6.57 −4.11 2.46 2.40 – – 17.02, 17.12 

4 −5.94 −3.46 2.48 2.38 – – 0.00, 0.00 

a Calculated by DFT/B3LYP (in eV); b At absorption maxima (Eg = 1240/λmax, in eV); c Ground-state dipole 

moment (calculated by DFT/B3LYP, in Debye); d Excited-state dipole moment (in Debye). 

3.4. Electrochemical Properties 

Figure 8 shows the cyclic voltammograms of 1a–1c. These dyes undergo two irreversible  

one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest 

potentials. Table 3 summarizes the redox potentials and the HOMO and LUMO energy levels 

estimated from cyclic voltammetry (CV) for 1a–1c. It is apparent that both the first oxidation and the 

first reduction potentials are shifted toward more negative (positive) values with introducing strongly 

electron-donating (electron-withdrawing) groups onto the perylene core, while both the HOMO  

and LUMO energy levels increase (decrease) with the trend. The HOMO/LUMO energy levels of  

1a, 1b, 1c, and 2 are estimated to be −5.25/−3.49, −5.23/−3.47, −5.22/−3.45, and −5.39/−3.25 eV, 

respectively. The HOMO–LUMO energy gaps of 1a–1c are found to be almost the same, which 

indicates that different N-alkyl chain lengths do not significantly affect the band gap energies. 
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Figure 8. The cyclic voltammograms of 1a (blue line), 1b (green line), and 1c (red line) 

measured in dichloromethane solution with ferrocenium/ferrocene as an internal standard, 

at 200 mV/s. 

 

Table 3. Summary of half-wave redox potentials, HOMO and LUMO energy levels for 

perylene bisimide derivatives. 

Compound E+
1/2 

a E2+
1/2 

a E−
1/2 

a E2−
1/2 

a HOMO b LUMO b 

1a 0.62 0.82 −1.06 −1.22 −5.25 −3.49 

1b 0.60 0.77 −1.04 −1.20 −5.23 −3.47 

1c 0.59 0.77 −1.02 −1.19 −5.22 −3.45 

2 0.79 1.17 −1.15 −1.24 −5.39 −3.25 

3 c − − −0.09 −0.34 −6.75 −4.35 

4 c − − −0.46 −0.76 −6.36 −3.98 

a Measured in a solution of 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) in dichloromethane 

versus SCE (in V); b Calculated from EHOMO = −4.88 – (Eoxd −EFc/Fc+), ELUMO = EHOMO + Eg; c Estimated 

versus vacuum level from ELUMO = −4.44 – E(1). 

3.5. Stacking Behaviors of Dyes in Solution and Solid State 

Figure 9 depicts the absorption spectra recorded for thin drop-cast films of 1a–1c. The shapes of the 

absorption spectra of 1a–1c in solid state and in solution are found to be almost the same in view of 

wavelength range (absorption of up to 800 nm for 1a–1c) and peak positions, which indicates that it is 

difficult for 1a–1c to form π-aggregates. Thus, we can ascertain that the long alkyl chains not only 

largely increases the solubility of 1a–1c compared with 2, but also efficiently reduces intermolecular 

contact and aggregation. 
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Figure 9. Normalized absorption spectra of 1a–1c in neat film. 

 

4. Conclusions 

We have successfully synthesized three green dyes based on 1,7-dialkylamino substituted  

PBIs (1a–1c). All the new PBI dyes are highly soluble in dichloromethane and even in nonpolar 

solvents such as hexane. The shapes of the absorption spectra of 1a–1c in solution and solid state are 

found to be virtually the same, which indicates that the long alkyl chains can efficiently prevent 

intermolecular contact and aggregation. They exhibit a unique charge transfer emission in the  

near-infrared region, of which the peak wavelengths exhibit strong solvatochromism. Upon excitation, 

they show larger dipole moment changes than that of 2; the dipole moments of these compounds have 

been estimated using DFT calculations and the Lippert–Mataga equation. In addition, they undergo 

two irreversible one-electron oxidations and two quasi-reversible one-electron reductions in 

dichloromethane at modest potentials. Research on their applications to near-infrared fluorescence 

imaging [89–91] is currently in progress. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1996-1944/7/11/7548/s1. 
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