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Abstract: By molecular dynamics simulations, we investigated the transport of charged
polymers in applied electric fields in confining environments, which were straight cylinders
of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly
and, also, the counterions and coions of added salt. The electrophoretic velocities of charged
chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface
friction were calculated. We found that the velocities were higher if counterions were moved
away from the polymeric domain, which led to a decrease in hydrodynamic friction. The
topology of the surface played a key role in retarding the motion of the polyelectrolyte and,
even more so, in the presence of transverse electric fields. The present study showed that a
possible way of improving separation resolution is by controlling the motion of counterions
or electrolyte friction effects.
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1. Introduction

Experiments and computer simulations show that charged chains in free solution under an external
applied electric field migrate with the same electrophoretic velocity independent of the chain size [1]
(except for very small rod-like polyions). To further derive an analytical expression for the
electrophoretic velocity, the charge density within the polymer domain must be calculated and, also,



Materials 2013, 6 3008

the hydrodynamic friction due to the solvent [2]. Typically, two interesting limits are considered. First,
in the limit of a completely permeable coil to the solvent molecules, which flow unperturbed through
the polymer coil, the fluid resistance is proportional to the degree of polymerization, or chain length
N . In the second limit, the polymer coil is viewed as an impenetrable sphere (of radius Rs), with a
very large local segment density. The fluid resistance is that of Stokes’ law, which means that friction is
proportional to chain size [3] and scales linearly with Rs.

For the electrophoretic velocity v, in the limit of small electric potentials and neglecting
relaxation effects (the counterions surrounding the charged polymer are not subject to convection),
Hermans and Fujita [4,5] obtained an analytical expression as a result of the porous sphere model, which
included the dependency on the electric field E, the radius of the porous sphere Rs, the internal segment
density νm = 3N/4πR3

s , the hydrodynamic shielding parameter K2
H = 2νm/3η, the fluid viscosity η,

the Debye length κ−1, and the fixed charged density of the polyion ρf . It was assumed that the fluid
velocity at an arbitrary position generated by applied force at the origin could be replaced in the Oseen
relation by its average value over a spherical surface. We remark here that in strong confinements this
cannot be strictly applicable, since there, the fluid flow velocity is highly non-isotropic. In the particular
limit of completely permeable coils (i.e., KHRs → 0) the electrophoretic velocity is v = ρfE/νmγ,
where γ is the friction coefficient. This means that the mobility of a polyion is equal to the mobility of a
segment. The other limit of a macromolecule behaving as a compact sphere (i.e., KHRs → ∞) leads to
the following expression, v = 2ρfR

2
se

−p/(3ηp2)Γ(p)coshp, where p = κRs and Γ(p) = p2/(3 + p2), in
agreement with Henry’s theory [6]. If relaxation effects are also taken into account, then, an expression
for the electrophoretic velocity, which is dependent on the electric conductivities inside and, respectively,
outside the polymeric domain, has been obtained by Longworth and Hermans [7]. The inclusion of
relaxation effects makes the electrophoretic velocity dependent upon the degree of polymerization, but
the effect is thought to be very small.

Furthermore, Katchalsky et al. [8] worked out an analytical expression for the friction coefficient of
the translational motion of the polymer, if the chain conformation is not Gaussian. The friction has quite
a complicated dependence on the chain length, and it is not only the sum of segmental frictions, as for
the case of freely-drained polymers. On the other hand, as we mentioned in the beginning, experimental
results show that the mobility of the chains µ = v/E, or µ = Qeff/ξ, if we denote by Qeff the effective
charge of the polyion, does not depend on chain length N . Two of the most restrictive conditions were
the averaging of the hydrodynamic interactions, which works well for near equilibrium transport, and
the use of linearized Poisson-Boltzmann equation, if the polyions are weakly charged.

A modern review of these effects of electroosmosis and counterion penetration on
electrophoresis of positively charged spherical permeable particles has been recently presented by
Bhattacharyya and Gopmandal [9]. Using numerical techniques, the authors showed good agreement
with previous theories, due to Hermans and Fujita and, more recent, results by Keh and Chen [10]. The
electrical force and the hydrodynamic drag along the flow direction has been calculated by integrating
on the surface of the particle the Maxwell stress tensor and hydrodynamic stress tensor. While this
approach has been applied to spherical particles, its extension to arbitrary particle shapes, as for the case
of confinement, is an attractive alternative to full molecular dynamics simulations.
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Another recent review on DNA molecules in confinement is presented in [11]. Experiments on
electrophoresis of DNA molecules in artificial nano-channel matrices are reported by Wang et al. [12].
The authors find that the mobility of the strongly confined DNA depends on the degree of confinement.
At strong confinement, it decreases with chain length, as is the case of gel electrophoresis, and increases
at weaker confinement. Conformation dependence of DNA electrophoretic mobility in a converging
channel is shown by Liao et al. [13]. Similar findings are presented in [14], including the case of pulse
applied electric fields or numerical investigations in [15].

From these works, it is clear that the balance between the electrostatic forces, the hydrodynamic
drag due to the solvent and the induced pressure field determine the motion of the polyions. It is our
aim to investigate these effects in more detail and, in particular, for the case of confinement. Here, the
macroscopically observed linear relationship between friction force and contact area can be extended
to the nanoscale, with the contact area being proportional to the number of interacting atoms across
the contact. There are, however, interesting effects related to surface friction, as we shall see below, if
surface roughness forbids the stretching of the chains. Related experimental work showing a reduction of
fluid friction atop undulating surfaces is presented, for example, by Vlachogiannis and Hanratty [16] and
more recent mesoscopic simulations of pressure-driven fluid flow in periodically grooved microchannels
by Kasiteropoulou [17].

Figure 1. Cross-section schematic illustration (from top to bottom) of constant radius (6σ)
and variable diameter straight cylinders of increasing surface undulations. The depth of
surface undulations is constant, 25% of the cylinder radius. P0 denotes the combination
of straight cylinders and parallel applied electric fields E⃗∥, T0 denotes the combination of
straight cylinders and both parallel and transverse applied fields E⃗|| + E⃗⊥, etc.
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In the present simulations, the shape of the confinement is either a straight cylinder or a cylinder with
periodically varying diameter. The applied field can have: a longitudinal component E⃗∥, in the axial
direction only or both a longitudinal and a transverse component E⃗∥ + E⃗⊥. In Figure 1, we present a
schematic representation of the geometries. We briefly answer here the question of why do we need
such a setup? First of all, the component E⃗∥ is the driving field, which has the same role as a pressure
gradient [18]. Second, the transverse component E⃗⊥ enforces a separation of electroosmotic flows of
counter ions and ions of added salt. We showed earlier that such separation improves resolution [19].
In the present study, we go a step further and estimate quantitatively electrolyte friction coefficients and
fluid flow velocities inside the charged polymers. The surface undulations are introduced in order to
understand the interrelation between geometry shape and electrolyte friction.

2. Method

The charged polymers are bead-spring models consisting of N beads, each carrying a unit
negative electric charge and connected by a finitely extensible nonlinear elastic (FENE) potential,
UFENE = −(1/2)kR2

0log(1 − (r/R0)
2), with spring constant k = 7kBT/σ

2, and maximum extension,
R0 = 2.4σ, where σ is the unit length and kBT is the unit energy. To simulate salt conditions, we
added monovalent counterions with a concentration of 0.0291σ−3 and also coions, such that the system
is electrically neutral. All charged monomers interact with each other through Coulomb interactions,
UC = kBT lB/r, where we set lB = 1σ, which is the Bjerrum length of the solution. The distance
between charged groups on the polyelectrolytes is b ≈ 0.93σ, which means that the charge density is
ξ = lB/b ≈ 1 and condensation of counterions does not occur [20]. All the particles (polymer or fluid
monomers, counterions, coions) are modeled as spheres that interact by purely repulsive Lennard-Jones
(LJ) potential, ULJ = 4ϵLJ((σ/r)

12 − (σ/r)6), which is cut at (2σ)1/6 and shifted to zero. Here, we
choose ϵLJ = 1kBT . The walls of the confinement are made of uncharged monomers, which are
assigned fixed positions in space. The length of the simulation box is much larger than the contour length
of the charged chain. For example, we choose a minimum cylinder length of 565σ and a maximum of
approximately 2×565σ for the longest chain. In all cases, the number density of counterions (and coions)
was changed accordingly to the set value of 0.0291σ−3. Similarly, for any length of the simulation box,
the number density of fluid monomers was fixed at 0.82σ−3. Periodic boundary conditions are imposed
in one direction only, along the cylinder axis. The fluid monomers are explicitly modeled as spherical
particles and interact with all the other particles through the Lennard-Jones potential. We choose the
same radius for all particles. The number density of fluid monomers is set to 0.82σ−3. We use a
Nosé-Hoover thermostat. In all studied cases, the applied longitudinal electric field is E∥ = 1 and
the transversal field is E⊥ = 1, in units of kBT/(eσ). We note here that for the chosen concentration of
free charges, the Debye length is λD = 1/

√
4π × lB × 2× 0.0291 = 1.17σ. This characteristic length

scale of the system becomes less defined for the case of transverse fields where there is a separation of
flows of counterions and coions of salt and the system is not homogenous. The time step used in the
simulations is τ = 0.008 in units of σ

√
m/kBT , and the mass of each particle is unity. All physical

quantities are, therefore, given in reduced Lennard-Jones units.
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The radius of the uniform straight cylinder is 6σ, and the depth of surface undulations is 25% of the
cylinder radius; the minimum cylinder radius is 4.5σ and the maximum is 7.5σ (Figure 1). The surface
undulations are sinusoidal waves of fundamental frequency ω0 = 2π/L, where L = 57.11σ. Geometries
P2 and T2 have frequency ω2 = ω0; P4 and T4 have frequency ω4 = 2ω0; P12 and T12 have frequency
ω12 = 6ω0; P16 and T16 have frequency ω16 = 8ω0.

The hydrodynamic friction force, F⃗H , experienced by a charged polymer monomer is proportional to
the difference between the velocity of the bead, v⃗, and the velocity of the fluid, v⃗f , at the location of the
bead, F⃗H = −ξ(v⃗ − v⃗f ). The beads of the polyion are hydrodynamically interacting with each other,
and the flow at the position of, say, bead i include perturbations due to the other beads, counterions
and coions of added salt. In our simulations, the solvent is explicit, and therefore, the fluid velocity
is obtained by averaging the instantaneous velocities of solvent monomers around each bead, i. The
friction forces are, thus, position- and configuration-dependent.

In Figure 2, we show how the local fluid velocity around an arbitrary monomer of the charged chain
is computed. The calculation proceeds as follows: we index all monomers of the charged chain from one
to N . We set, then, a distance r, which is the radius of a spherical domain A1, around each monomer,
i = 1, N . After this, we make a list of all fluid monomers contained in all volumes A1, which were
drawn around each monomer, i = 1, N , within distance r, from the polyelectrolyte. In this list, some
fluid monomers may appear twice, because the spherical volumes A1 overlap. We identify, then, all
unique fluid monomers contained in all volumes A1, of distance r from the polyelectrolyte. Since the
velocities of all fluid monomers are known, we compute the time averages for distances between r and
r + δr, where δr is a small parameter of the order of σ. The final result for a chain with N = 180

monomers, for some geometries, is shown in Figure 3. The fluid velocities are in the reference frame of
the laboratory and projected on the z-axis (the direction of the longitudinal field). As expected, at large
distances from the polyion the relative velocities are close to zero, while the largest values are in the
immediate vicinity of the charged polymer, where the fluid is mostly perturbed. The averages are taken
every 1000 time steps, while the total number of time steps for each chain length and each geometry is
about 107 steps.

Figure 2. Schematic illustration of fluid control volume, A1, around an arbitrary monomer of
a charged chain, which has instantaneous velocity v⃗i. The local fluid velocity at the position
of monomer i is noted v⃗f .
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Figure 3. The axial component of the fluid velocity around the polyion as a function of
radial distance r, for N = 180. The legend notation is the same as in Figure 1.
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By plotting, for example, the average fluid velocity, vf = vf (r), and the number of counterions
contained in a spherical shell of radius r, as a function of distance r from the center of the macroion,
Chatterji and Horbach [21] were able to estimate the role of effective charges in the electrophoresis of
highly charged colloids.

With respect to the role played by electrolyte friction effects, which are retardation effects due to the
counterions flowing in the opposite direction to the polyelectrolyte and slow coions flowing alongside
the charged polymer, we estimate these retardation forces, of electric nature, from Schurr’s expression
for the static friction of a colloidal macroion [22]. Assuming that the fixed point charge on a bead of
the polymer is qi, each of these charges interact with each other and with the free ions through Coulomb
forces, F⃗C(r⃗i, t) = qi/(4πϵ0ϵ)

∑n
j=1(qj/|r⃗ij|2)r⃗ij , where qj are point charges representing monovalent

counterions and salt ions. The distance between qi and qj is noted with r⃗ij = r⃗i − r⃗j; ϵ0 and ϵ are the
permittivity of the free space and, respectively, the relative permittivity of the solvent. In Schurr’s theory,
it is assumed that the fluctuating force on the polyion due to the small ions is completely uncorrelated
with that due to the solvent, and therefore, the fluctuating ionic force contributes an independent additive
contribution on top of the Stokes friction. The electrolyte friction is obtained from the time integral of
the auto-correlation function of Coulomb forces:

ξC = 1/(kBT )

∞∫
0

⟨F⃗C(0) · F⃗C(t)⟩dt (1)

Such theoretical developments are quite powerful and show an excellent good agreement with
experiments. Moreover, Schurr’s theory is parameter-free. The detailed calculation of electrolyte friction
in Equation (1) is as follows: at an arbitrary time, t, for each charged polymer monomer, i = 1, N , we
choose an arbitrary distance, r, and draw a control volume, A1, around each monomer of the charged
chain, similar to the problem of estimating the local fluid velocity (Figure 2). Further, we calculate the
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relative distances between the free ions contained in the respective volume A1, and the monomer i, which
allows us to estimate the Coulomb forces F⃗C(r⃗i, t) on each monomer i = 1, N , where r⃗i is the coordinate
of monomer i. We define monomeric friction coefficients from the time integral of the auto-correlation
function of Coulomb forces as follows:

ξiC = (1/kBT )

∫ ∞

0

⟨(F⃗C(r⃗i, t)− F⃗ av
C (t)) · (F⃗C(r⃗i, 0)− F⃗ av

C (0))⟩dt (2)

where F⃗ av
C = (1/N)

∑N
i=1 F⃗C(r⃗i, t) is the average Coulomb force exerted on the polyelectrolyte at time,

t, by the free ions. The total electrolyte friction is the average of individual coefficients:

ξC =
1

N

N∑
i=1

ξiC (3)

In Figure 4, we show the electrolyte friction as a function of distance r, for N = 180, and the plateau
values ξC , at large r for the other chain lengths. We apply the same formalism, also, when a transverse
electric field is superimposed on the driving longitudinal electric field. We remark here that the term
under the integral in Equation (2) has a fast exponential decay in time, but also presents a long time tail
that decays as t−3/2, which is an indication of hydrodynamic memory effects [23].

3. Results and Discussion

Here, we consider equal longitudinal and transverse electric fields, i.e., |E⃗∥| = |E⃗⊥| = 1 in LJ units
and fixed ionic strength of the buffer solution. Only the length N of the charged chains and the number of
undulations per wavelength are varied (Figure 1). The measured electrophoretic velocities of the charged
chains are presented in Figure 5. Two observations are most important.

First, in parallel fields (geometries P0–P16), all chains with N > 30 have more or less the
same electrophoretic velocity. It appears, therefore, that by introducing surface undulations, the
electrophoretic velocities decrease in value, but remain independent of N . It can be straightforwardly
assumed that in these cases, the hydrodynamic, electrolyte and surface friction forces all scale with the
same power of N .

The second observation concerns the effect of the transverse electric field. It appears that in nearly
smooth cylinders with both longitudinal and transverse electric fields (geometries T0 and T2), there is
a slight increase in electrophoretic velocities, at least up to chain lengths N < 100. Perhaps more
remarkable, in geometries T0 and T2, the electrophoretic velocities are higher than in geometries P0 and
P2, while in geometries T12 and T16, the velocities are lower than in geometries P12 and P16 (Figure 5).

To explain this effect, we note first that in transverse fields, there is a separation of electro-osmotic
flows of counterions and coions of salt. We show these two distributions in Figure 6.
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Figure 4. (Top) Electrolyte friction ξC as a function of distance r from the polyelectrolyte
(N = 180) for limiting cases of smooth and, respectively, wavy surfaces, in parallel
(geometries P0, P16) and in parallel with perpendicular applied fields (geometries T0, T16).
(Bottom) Plateau values (large r) of electrolyte friction ξC as a function of chain length N

for the same geometries, P0, T0, P16 and T16.
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This separation effectively creates two fluid streams, each flowing in opposite direction to each
other. The polyelectrolytes swim in the fluid stream created by the coions of added salt. Because it
is mostly surrounded by coions, which flow in the same direction, there are less counterions heading in
the polyelectrolyte way, and therefore, there is less retardation from counterions. The conclusion is that
a transverse field always makes polyelectrolytes move faster. This can be seen, for example, in Figure 4.
The electrolyte friction in T0 is smaller than in P0. Similarly, the electrolyte friction in T16 is smaller
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than in P16. This means that electrolyte friction effects alone predict the inequalities, vT0 > vP0 and
vT16 > vP16 . However, this is not true. Only vT0 > vP0 is true, and vT16 > vP16 is false.

Figure 5. Electrophoretic velocities of charged chains of length N in uniform (index “0”)
and variable diameter straight cylinders (indices “2”, “4”, “12” and “16” are in the increasing
order of the number of undulations per wavelength, as shown in Figure 1). (Top) The
constant applied electric field has both longitudinal and transverse components. (Bottom)
The constant applied electric field is parallel to the symmetry axis.
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Figure 6. (a) Contour plot of average number density distribution of counterions and
(b) coions of added salt in a cross-section perpendicular to the axis of the cylinder geometry,
T12. The applied field has both a longitudinal, E⃗∥, and a transversal component, E⃗⊥;
(c) Similar contour plots of average number density distribution of polymer chain monomers
(in the largest section area) in longitudinal fields and (d) in both longitudinal and transversal
applied fields; (e) Similar distribution of fluid monomers in geometry, T12. In the vicinity of
the walls, the monomers arrange themselves in layers.
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It can be further assumed that in geometries with a high number of surface undulations, the surface
friction plays a predominant role in retarding the motion of the charged chains. In this respect, we
calculated the average number of contacts between polyions monomers and the walls of the confinement
(Figure 7). As expected, the number of contacts is higher in cases where the perpendicular field pushes
the charged chains onto the walls of the confinement than in cases where there is no transverse field.
This means that surface friction effects alone would give the inequalities, vT12 < vP12 and vT16 < vP16 .
While this is true, surface friction cannot explain why vT0 > vP0 . It may also appear unexpected that
the number of contacts with the walls decreases when the number of undulations increases (compare, for
example, geometries T0 and T16 in Figure 7). In these situations (T12, T16), the chains shrink compared to
geometries T0 and T2 and cannot stretch in the direction of motion. The number of contacts is therefore
reduced. The average relative extensions |zmax − zmin| of the chains in the z-direction, where zmax and
zmin are the z-coordinates of the leftmost and rightmost monomers, are shown in Figure 8.

Figure 7. Average number of contacts with the walls, normalized by chain length N as a
function of geometry (see Figure 1). The top curve is for applied fields with both longitudinal
and transversal components, and the bottom curve is for fields parallel to the symmetry axis.
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Considered separately, electrolyte friction and surface friction forces cannot predict the full correct
order of velocities, vT16 < vP16 < vP0 < vT0 . Hydrodynamic friction alone cannot predict it either. The
fluid velocity around the polyion (N = 180) as a function of the radial distance r in smooth and wavy
geometries was shown in Figure 3. It is readily understood that in geometry T0, the fluid is partially
trapped inside the polymeric domain (at r → 0, vzfluid approaches vN=180), which means that from
a hydrodynamic point of view, the transverse field makes the charged chains less porous to the fluid
flow. This means that their hydrodynamic friction is reduced, because the hydrodynamic friction is
proportional to the difference between the polyelectrolyte velocity and the local fluid velocity. In other
words, the transversal field perturbs the free-draining property of the chains by moving the counterions
away from the polymeric domain. We assume that this effect can explain the apparent increase in
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velocities in Figure 5 for geometries T0 and T2. On the other hand, as the number of undulations
increases, the hydrodynamic resistance also increases, either in longitudinal or in transverse fields. It
follows that electrolyte, hydrodynamic and surface friction effects are necessarily linked together and
responsible for the observed velocities of the polyelectrolytes in confinement. If we restrict ourselves
to smooth cylinder geometries, we can use the above understanding of the effect of transversal fields
in order to improve separation resolution. For example, the applied field can be set to E⃗∥ + E⃗⊥ for an
arbitrary time interval and then switched to −E⃗∥ for the same time interval. The scenario corresponds
to pulsed longitudinal and transversal fields. The average velocities are shown in Figure 9 and are, in a
first order approximation, equal to the mean of velocities, v(E⃗∥+ E⃗⊥) and v(−E⃗∥), taken from Figure 5,
geometries P0 and T0. It is clear that above N = 30, separation can be achieved up to the longest chain
length. Such calculations are a work in progress and will be detailed in a future publication.

Figure 8. Projections of charged chain extension on the z-axis, normalized by average bond
length b, and chain length N , as a function of chain size (for legend, see Figure 1).
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Figure 9. Average electrophoretic velocities as a function of chain length, N , for the case of
pulsed transverse fields and pulsed longitudinal fields. During the first half of the pulse, the
driving field is E⃗∥ + E⃗⊥, while in the second half of the pulse, the field is switched to −E⃗∥.
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4. Conclusions

We carried out molecular dynamics simulations of the electrophoresis of charged chains in cylinder
geometries with smooth walls and undulations. The depth of the undulations with respect to the cylinder
diameter has been kept constant, and only the wavelength has been varied. The driving electric field has
been either constant and along the main axis of the cylinder geometry or a superposition of transversal
and longitudinal fields. The transversal component offered, naturally, a way of controlling electrolyte
friction, because it led to a separation of electro-osmotic flows of counterions and ions of salt. The
electrolyte friction was found to be generally lower than in longitudinal fields only, because counterions
were partially removed from the vicinity of the polyion, and thus, the counter electroosmotic flow was
reduced. On the other hand, the removal of counterions led to a partial trapping of fluid monomers,
which changed hydrodynamic friction, with the final result that in transversal fields, the polyelectrolytes
were less permeable to the fluid flow. This effect resulted in a reduction in hydrodynamic friction.
Surface undulations, however, slowed down the velocities, even in the presence of a transversal field.
From a practical point of view, the present study shows that a series or combination of smooth channels
with undulating surfaces, with longitudinal or transversal fields, may offer a way of accelerating
or decelerating the motion of charged chains in confinement. The ultimate goal of such computer
experiments, where one factor influences another, is to better understand the dynamics of the counterions
and their role in electrophoresis.
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