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Abstract: Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core 

supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core 

structures. Structural comparisons of the two forms of catalyst were made using 

transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron 

spectroscopy (XPS), and methanol oxidation activity compared using CV and 

chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core 

structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C 

catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers 

improved Pt usage efficiency in direct methanol fuel cells. 
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1. Introduction 

Increasing Methanol oxidation in direct methanol fuel cells affords an important alternative fuel 

source for future energy requirements [1]. In the search for efficient electrocatalysts that offset CO 

poisoning of the Pt-based anode, binary [2,3] or ternary [4,5] metallic systems in the form of alloys or 

core-shell structures have shown considerable promise for methanol oxidation. Among these catalysts, 

the PtNi bimetallic alloy has received much attention [6,7]. It was reported that the rate of methanol 

oxidation is depended on factors such as: the amount of second metal content, the degree of its 

alloying with Pt, electrode pretreatment, and the type of supporting substrate [8–11]. To form  

core-shell PtNi structures is an efficient way to improve the performance, not only in the activity of 

catalyst but also in the utilization of Pt [12–14]. The Sotiropoulos group found that a Ni core with a Pt 

shell nanocatalyst resulted in moderate improvement of methanol oxidation activity during  

medium-term experiments [15]. Moreover, the Li group reported that the porous Ni@Pt core-shell 

nanotube arrays showed markedly enhanced methanol oxidation activity and stability compared to 

commercial Pt/C catalysts [16]. However, the above-mentioned studies did not investigate the effect of 

thickness of the shell and core structure on catalytic activity. 

Pt shell thickness in the Pt shell-core structure has been found to effect methanol oxidation activity 

in other catalysts [17,18]. The Sung group examined Ir core size, finding that smaller core sizes 

produced greater catalytic activity than larger [19]. Also, the use of an amorphous structured metal 

core, compared to a crystalline core, improved catalytic activity in a Fe-core/Pt-shell catalyst for 

ammonia borane oxidation [20]. These reports thus indicate that both the thickness of shell, and the 

size and crystallinity of the core, can influence catalyst activity. However, reports on factors effecting 

core-shell catalyst activity are far fewer than those on factors effecting alloys such as, the synthesis 

method, the metal ratio and the alloying degree. 

In the present study, catalysts containing an outer Pt shell with an inner Ni core supported on 

carbon were prepared with either amorphous or crystalline Ni cores (denoted as Pt-NiA/C and Pt-NiC/C 

respectively) through modification using a two-step method. Pt-NiA/C was found to be more active 

toward methanol oxidation catalyst than Pt-NiC/C. 

2. Results and Discussion  

Figure 1 shows the XRD patterns of NiA/C, NiC/C, Pt-NiC/C and Pt-NiA/C nanoparticles. For 

comparison, the XRD pattern of a home-made Pt/C sample is also displayed as the vertical dot line. 

The first peak located at ~24.8° in all the XRD patterns is associated with the carbon support. For 

NiA/C (pattern a, Figure 1) the slight peak at 2θ values of 42°~48° suggests that the Ni is amorphous [21]. 

For the NiC/C (pattern b, Figure 1), all of the peaks match well with Bragg reflections of the standard 

face-centered cubic (fcc) structure (ICDD file No.: 04-0850, space group: Fm3m (225)), the four peaks 

at 2θ = 44.5°, 51.8°, 76.3° and 92.8° can be assigned to their characteristic (111), (200), (220) and 

(311) indices [22,23].  

After depositing Pt on Ni nanoparticles via a reduction reaction, both Pt-NiC/C (pattern c, Figure 1) 

and Pt-NiA/C (pattern d, Figure 1) had diffraction peaks at 39.8°, 45.8°, 67.4° and 81.5°, which can be 

assigned to (111), (200), (220) and (311) planes of the Pt-shell, suggesting that the structure of Pt 



Materials 2013, 6 2691 

 

 

layers was not affected by the structural difference of Ni nanoparticles. For Pt-NiC/C (pattern c, 

Figure 1), well separated diffraction peaks suggest the presence of different phases. Diffraction peaks 

at 44.5° and 51.8° agreed with a metallic Ni structure assigned to the Ni-core. In contrast, the XRD 

pattern for Pt-NiA/C (pattern d, Figure 1) lacked the corresponding Ni diffraction peaks. In addition, 

the diffraction angle phases of the shell and core for Pt-NiC/C and Pt-NiA/C did not shift to obviously 

higher angles or lower angles than those for Pt/C (see the dot line) and Ni/C, indicating that no alloy 

phase was formed. 

Figure 1. X-ray diffraction patterns of (a) NiA/C; (b) NiC/C; (c) Pt-NiC/C and (d) Pt-NiA/C; 

the vertical dot lines correspondent to the positions of diffraction peaks for the home-made 

Pt/C sample. 

 

X-ray photoelectron spectroscopy (XPS) technique is a useful tool to study changes in the 

electronic structure of different surface preparations and compositions [24]. The regions of Pt 4f in the 

XPS spectrum of Pt-NiC/C and Pt-NiA/C are shown in Figure 2. The energy separation between Pt 4f7/2 

and 4f5/2 is ca. 3.3 eV, which also adheres to the reference value [25]. Compared with the binding 

energy of Pt 4f of Pt-NiC/C, that of Pt-NiA/C shifts to the lower binding energy, which is likely 

contributed from lattice strain on the Pt shell and charge transfer between Ni atoms and Pt atoms [26]. 

The above result thus shows that the Pt-NiC/C and Pt-NiA/C had different electronic structure. 

In order to evaluate the composition of Pt species, the spectra were fitted as two pairs of 

overlapping Lorentzian curves. Figure 3 shows Lorentzian curves of the Pt 4f region spectrum of  

Pt-NiC/C and Pt-NiA/C, which could be deconvoluted into three pairs of doublets. In the Figure 3a, the 

most intense doublet (at 71.3 and 74.6 eV) listed in Table 1 is the signature of metallic Pt, and the 

theoretical ratio of peak areas is 4:3 for the Pt 4f7/2 and 4f5/2 lines respectively. The second and weaker 

doublet (at 72.4 and 75.7 eV), with binding energy at 1.1 eV higher than Pt(0), could be assigned to the 

Pt(II) oxidation state species in PtO and Pt(OH)2 [27,28]. The third doublet, which is the weakest in 

intensity and at even higher binding energy (at 73.6 and 76.9 eV), was most likely caused by a small 

amount of Pt(IV) residue on the surface [29]. For Pt-NiC/C, the peak positions of the Pt 4f 

correspondent to the different valence were listed in Table 1. A comparison of the relative areas  
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(Table 1) of integrated intensity of Pt(0), Pt(II), and Pt(IV) showed that the Pt on the surface of  

Pt-NiA/C was predominately metallic (53.0%). The Pt 4f7/2 spectrum (Figure 3a) of Pt-NiC/C also 

identified the presence of Pt(0), Pt(II) and Pt(IV), and the Pt on the surface of Pt-NiC/C catalyst was 

also predominately metallic. 

Figure 2. Pt 4f X-ray photoelectron spectroscopy (XPS) spectra of the Pt-NiC/C and  

Pt-NiA/C catalysts. 

 

Figure 3. Lorentzian curves of Pt 4f XPS spectra of the Pt-NiA/C (a) and Pt-NiC/C (b) 

catalysts respectively. 

  

Figure 4 shows representative transmission electron microscopy (TEM), high-resolution TEM 

(HRTEM) images and EDS spectrum of Pt-NiC/C and Pt-NiA/C respectively. It can be seen that the  

Pt-NiC and Pt-NiA nanoparticles were highly dispersed on the carbon support with narrow size 

distribution. By counting one hundred particles, the average particle size of Pt-NiC/C and Pt-NiA/C was 

approximately 3.2 nm and 3.4 nm respectively. The selected-area electron-diffraction (SAED) pattern 

(inset of Figure 4a,d) of Pt-NiC/C and Pt-NiA/C catalysts showed a ring-like pattern with many spots, 
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revealing that they indexed to planes of polycrystalline Pt. The similar SAED results for Pt-NiC/C and 

Pt-NiA/C again further suggests that the structure of Pt shell was similar for the two catalysts. 

Table 1. Chemical States, binding energy, and area ratio of Pt-NiC/C and Pt-NiA/C 

catalysts by XPS. 

Samples Items 
Pt 4f7/2 

Pt(0) Pt(II) Pt(IV) 

Pt-NiC/C 
Binding energy (eV) 71.4 72.5 74.1 

Area ratio (%) 49.6 29.2 21.2 

Pt-NiA/C 
Binding energy (eV) 71.3 72.4 73.6 

Area ratio (%) 53.0 28.0 19.0 

Figure 4. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM) 

images and EDS spectrum of Pt-NiC/C (a–c) and Pt-NiA/C (d–f) catalysts, respectively. 

Inset of (a) and (d) show the selected area electron diffraction (SAED) patterns of Pt-NiC/C 

and Pt-NiA/C catalysts. 

 

Figure 4b,e shows the HRTEM images of Pt-NiC/C and Pt-NiA/C. The measured distance between 

the two nearest atom rows for Pt-NiC/C and Pt-NiA/C was ca. 0.22 nm, which is close to the (111) 

interplanar distance of pure Pt (0.23 nm), suggesting a Pt shell formed on the Ni nanoparticles. At the 

same time, the reduction in the interplanar distance of Pt in Pt-NiC/C and Pt-NiA/C, compared to pure 

Pt, most likely results from the strain effect on the Pt shell from the Ni core. From the EDS spectrum, 

Figure 4c,f, the presence of C, Pt, and Ni elements were confirmed, and the atomic ratio of Pt/Ni of  

Pt-NiC/C was 1:1.92, similar to that of Pt-NiA/C (1:1.93), the metal loading for the two catalysts is ca. 

35%, which was also confirmed by ICP analysis. 
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Figure 5 shows cyclic voltammograms for Pt-NiA/C and Pt-NiC/C after stabilization (20 cycles) in a 

N2-saturated 0.5 mol L
−1

 H2SO4 solution at a scan rate of 50 mV s
−1

. There are three characteristic 

potential regions of polycrystalline Pt on both Pt-NiA/C and Pt-NiC/C: the hydrogen adsorption and 

desorption region (−0.2 to 0.1 V vs. Ag/AgCl), double layer plateau region (0.1~0.5 V vs. Ag/AgCl), 

and the formation and reduction of surface metals oxide (0.5~1.0 V vs. Ag/AgCl). The coulombic 

charge for hydrogen adsorption (QH) is used to evaluate the electrochemical surface area (SESA) of the 

electrocatalysts using Equation (1) [30], in which m represents the platinum loading (g) on the 

electrode, QH is the charge for hydrogen desorption electro-oxidation in microcoulomb (C), and C is 

the charge required to oxidize a monolayer of H2 on the catalyst, its value is 0.21 mC cm
−2

. 

 (1) 

SESA of the Pt-NiA/C and Pt-NiC/C were 106.1 and 89.5 m
2
 gPt

−1
 respectively. The larger SESA of the  

Pt-NiA/C was slightly larger than that of the Pt-NiC/C catalyst. 

Figure 5. Cyclic voltammograms of Pt-NiA/C and Pt-NiC/C catalysts in 0.5 mol L
−1

 H2SO4 

solution under N2 atmosphere at room temperature; Scan rate: 50 mV s
−1

. 

 

Table 2. Forward peak current density (If), and reverse peak current density (Ib), for ethanol 

oxidation on different Pt-based catalysts recorded in 0.5 mol L
−1

 H2SO4 + 0.5 mol L
−1

 

CH3OH solution. 

Samples If (A mgPt
−1

) Ib(A mgPt
−1

) 

Pt-NiA/C 0.378 0.448 

Pt-NiC/C 0.334 0.435 

CVs were used to characterize catalytic activity in 0.5 mol L
−1

 H2SO4 + 0.5 mol L
−1

 CH3OH 

solution (Figure 6). Typical features of methanol oxidation were observed: two oxidation peaks, 

corresponding to the oxidation of methanol and intermediates, which occurred at ca. 0.68 and 0.46 V, 

respectively. The peak current densities are listed in Table 2 showing that Pt-NiC/C < Pt-NiA/C. The 

onset potential of methanol oxidation on Pt-NiA/C was lower than that on Pt-NiC/C. These results show 

Cm

Q
S H

ESA



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that the amorphous structure of Ni in Pt-Ni/C improves electrocatalytic capability for methanol 

oxidation over that of crystalline Ni in Pt-Ni/C. 

Figure 6. Cyclic voltammograms of the Pt-NiA/C and Pt-NiC/C catalysts in 0.5 mol L
−1

 

H2SO4 + 0.5 mol L
−1

 CH3OH solution saturated by N2 at room temperature with scan rate 

of 50 mV s
−1

. 

 

Figure 7. Chronoamperometric curves for methanol oxidation at 0.6 V vs. Ag/AgCl on  

Pt-NiA/C and Pt-NiC/C in 0.5 mol L
−1 

CH3OH + 0.5 mol L
−1

 H2SO4 solution at  

room temperature. 

 

The superiority of the Pt-NiA/C was further confirmed by chronoamperometry tests (Figure 7) 

recorded at a constant potential of 0.6 V at room temperature. The oxidation current decreased 

continuously for all the catalysts, most likely due to the formation of intermediate and poisoning 

species, such as COads, CH3OHads, COOHads, and CHOads, during the methanol oxidation reaction [31]. 

The steady-state current density of Pt-NiA/C was higher than that of the Pt-NiC/C over the entire testing 
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time, indicating that the Pt-NiA/C catalyst had the best electrocatalytic activity towards the oxidation of 

methanol. The residual current densities of Pt-NiA/C and Pt-NiC/C after 1000 s were 0.087 A mgPt
−1

 

and 0.039 A mgPt
−1

, respectively. 

In summary, the electrochemical results showed that Pt-NiA/C had higher methanol oxidation 

activity than Pt-NiC/C. Due to the higher corrosion resistance of NiA than NiC, a more uniform and thin 

Pt shell is expected to form on the surface of NiA nanoparticles, and hence result in the higher  

Pt-Ni interaction [32]. The stronger Pt-Ni interaction in Pt-NiA/C likely also results in a decrease of 

adsorption energy of poisoning CO species allowing their efficient removal from the surface of  

Pt-NiA/C [33]. 

3. Experimental Section 

3.1. Preparation of Carbon-Supported Crystalline and Amorphous Ni nanoparticles  

NiC/C nanoparticles were synthesized using 304.0 mg nickel (II) chloride hexahydrate (NiCl2·6H2O) 

dissolved in a solution containing 25 mL ultrapure water and 25 mL ethanol, to which 413.4 mg of 

sodium citrate was then added with stirring. The solution was adjusted to pH 14 by addition of 5 wt % 

KOH/EG solution. Pretreated carbon black Vulcan XC-72R (300 mg) was added to the mixture under 

stirring, followed by addition of 10 mL of hydrazine hydrate. The mixture was transferred to a  

Teflon-lined autoclave container and heated at 120 °C for 4 h. The final product was collected by 

filtration, washed with ultrapure water (until the filtrate wash water reached pH 7), and finally dried 

under vacuum at 323 K for 12 h.  

NiA/C nanoparticles were prepared as reported previously [14]. Here, 413.4 mg sodium citrate was 

added to 35 mL of ethylene glycol (EG) and stirred for 0.5 h. Then 304.0 mg Nickel (II) chloride 

hexahydrate (NiCl2·6H2O) was added to the above solution and stirred for 20 min to completely 

dissolve the mixture. The pH value of solution was adjusted to 9~10 by addition of a 5 wt % KOH/EG 

solution with stirring. Pretreated carbon black Vulcan XC-72R (300 mg) was added and the solution 

was mixed in a flask using ultrasonic stirring, followed by heating at 433 K for 20 h. The final product 

was cooled, collected by filtration and washed with ultrapure water until the wash water read pH 7. 

The NiA/C nanoparticles were finally dried at 323 K for 12 h under vacuum. 

3.2. Preparation of Pt-NiC/C and Pt-NiA/C Catalysts 

Pt shell deposition onto the surface of Ni/C nanoparticles was carried out as follows: 3.32 mL of 

20 mg mL
−1

 chloroplatinic acid (H2PtCl6·6H2O) aqueous solution and 30 mL ethylene glycol (EG) 

were added to a flask, and the pH value was adjusted to 9~10 using 5 wt % KOH/EG solution. Then, 

100 mg of either NiC/C or NiA/C powder was added to the flask and the mixture was stirred for  

6 h at 433 K. The final products were cooled and collected by filtration, washed with ultrapure water, 

and dried under vacuum at 323 K for 12 h, the obtained products were denoted as Pt-NiC/C and  

Pt-NiA/C, respectively. 
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3.3. Characterization 

X-ray diffraction (XRD) patterns of the catalysts were recorded on a Shimadzu XD-3A (Japan), 

using filtered Cu-Kα radiation. Transmission electron microscopy (TEM) measurements were carried 

out on a JEM-2010 Electron Microscope (Japan) with the acceleration voltage of 200 kV. X-ray 

photoelectron spectroscopy (XPS) (Phi-5702 America) with a monochromatic Al Kα X-ray source  

(hν =1486.6 eV) was used. The chemical composition of the samples was determined by an IRIS 

advantage inductively coupled plasma atomic emission spectroscopy (ICP-AES) system (Thermo, 

America) and energy dispersive X-ray analysis (EDX) coupled to TEM. 

Electrochemical measurements were carried out on a CHI650d electrochemical work station. A 

common three-electrode electrochemical cell was used, in which the counter and reference electrodes 

were a platinum wire and an Ag/AgCl (3 mol L
−1

 KCl) electrode, respectively. The working electrode 

i.e., the catalyst-film electrode, was prepared as follows: 5 mg of catalyst was dispersed ultrasonically 

in 1.00 mL Nafion/ethanol (0.25% Nafion) for 15 min. 8 μL of the dispersion was transferred onto  

the glassy carbon disk (5 mm in diameter) using a pipette and then dried in the air. Then, the  

working electrode was prepared. The catalysts were characterized by cyclic voltammetry (CV) and 

chronoamperometry (CA) tests at room-temperature. Before each measurement, the solution was 

purged with high purity N2 for at least 10 min to ensure O2 free measurements. All current densities 

reported in this article were normalized to the electrode surface area (SEAS). 

4. Conclusions 

Carbon-supported Pt-Ni/C catalysts with either amorphous or crystalline Ni cores were synthesized 

and characterized. The XRD results showed that neither amorphous nor crystalline Ni structure as a 

seed crystal affected the structure of the Pt shell. However, the Pt-Ni interaction was different, as 

shown by the shift of Pt 4f XPS. Electrochemical results indicate that Pt-NiA/C has greater methanol 

oxidation activity than Pt-NiC/C, mainly because of the decrease in adsorption energy toward CO 

species owing to the stronger Pt-Ni interaction in the Pt-NiA/C catalyst. Thus, controlling the 

crystallinity of the core metal affords a promising approach to improve the catalytic activity of  

core-shell-structure catalysts. 
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