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Abstract: In the present study, room temperature mechanical properties of pure 

magnesium, Mg/ZrO2 and Mg/(ZrO2 + Cu) composites with various compositions are 

investigated. Results revealed that the use of hybrid (ZrO2 + Cu) reinforcements in Mg led 

to enhanced mechanical properties when compared to that of single reinforcement (ZrO2). 

Marginal reduction in mechanical properties of Mg/ZrO2 composites were observed mainly 

due to clustering of ZrO2 particles in Mg matrix and lack of matrix grain refinement. 

Addition of hybrid reinforcements led to grain size reduction and uniform distribution of 

hybrid reinforcements, globally and locally, in the hybrid composites. Macro- and  

micro- hardness, tensile strengths and compressive strengths were all significantly 

increased in the hybrid composites. With respect to unreinforced magnesium, failure strain 

was almost unchanged under tensile loading while it was reduced under compressive 

loading for both Mg/ZrO2 and Mg/(ZrO2 + Cu) composites. 

Keywords: metal matrix composites; microwave sintering; mechanical properties; 

microstructure; scanning electron microscopy; X-ray diffraction 
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1. Introduction 

Magnesium is the lightest metallic construction material which is ~35% lighter than aluminum. 

Owing to its low density, magnesium offers high specific mechanical properties. In addition, 

magnesium has other favorable advantages including high damping capacity, high dimensional 

stability, good machinability, good electromagnetic shielding characteristics and recyclability. With 

these beneficial properties, magnesium becomes an attractive material for manufacturing lighter 

components/products for diverse applications. In practical and commercial applications, magnesium is 

mostly used in the form of alloys [1,2]. With the advent of composite technology, researchers have 

also made extensive studies on the development of high performance magnesium composites. 

Magnesium composites that were synthesized mostly contained micron-sized particles comprising of 

ceramic reinforcements such as carbides, oxides, nitrides and borides and metallic reinforcement such 

as Ti, Cu and Ni [3–6]. While the strengths in magnesium composites can be improved using micron 

particles, the ductility was inevitably decreased. Previous studies [7–11] on magnesium nanocomposites 

showed the ability of nano particulate reinforcements on enhancing strength and/or ductility of 

magnesium. Commonly, the nanocomposites are synthesized using single ceramic [7–9] or metal 

reinforcements [10,11]. Reviews of work on particle reinforced magnesium based nanocomposites can 

be found in recent publications by Dieringa [12] and Ferguson et al. [13]. In addition, recent investigations 

were also made on the magnesium composites containing hybrid particle reinforcements [14–21]. 

Hybrid reinforcements were prepared by using different combinations such as “ceramic + ceramic”, 

“ceramic + CNT” and “ceramic + metal” in Mg matrix. Among those combinations, as reported in the 

previous investigations [12–21], “ceramic + metal” hybrid reinforcements in Mg matrix offered the 

best improvement in mechanical properties in the related composite systems.  

Accordingly, the present study focused on the synthesis of magnesium composites using single 

(ZrO2) and hybrid (ZrO2 + Cu) reinforcements in nano length scale. The aim is to investigate the effect 

of addition of nano ZrO2 and different combination of hybrid reinforcements on the mechanical 

properties of pure magnesium. Materials synthesis was carried out using the microwave assisted 

powder metallurgy route. Characterizations on microstructure, hardness, tensile and compressive 

properties were done on the extruded samples. Particular emphasis was placed to study the effect of 

single and hybrid reinforcements on the variation in microstructure and mechanical properties of 

magnesium. Furthermore, the use of different extrusion ratio on the properties of Mg/ZrO2 composite 

was also investigated. 

2. Results and Discussion 

2.1. Grain Size and Reinforcement Distribution  

Grain size measurement results from Table 1 show that there was no significant change in grain size 

when ZrO2 reinforcement was present in Mg matrix regardless of the amount of the reinforcement 

being added. It was realized that, especially for fine particle reinforced composites, grain refinement 

can only be achieved by using a sufficiently high amount of the reinforcement particles in the matrix 

material [22]. However, it can be noticed from the current results that matrix grain refinement not only 

depends on the amount of the reinforcement but also on the particle distribution (Table 1 and Figure 1). 
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When the ZrO2 content increased from 0.3 to 1.0 vol % in Mg matrix, the reinforcing particles tend to 

form larger clusters/agglomerates maintaining the same distribution pattern without dispersing them 

throughout the matrix (Figure 1a,b). This indicates that the uniformity of particle distribution is 

insufficient to provide the grain size reduction in all Mg/ZrO2 compositions. Consequently, the grain 

size in Mg/ZrO2 composites remained the same when compared to that of Mg. Also, applying high 

extrusion ratio (from 20.25:1 to 26:1) has no effect on the grain size variation showing the similar 

grain size in case of Mg/1.0ZrO2 composite. But the use of increased extrusion ratio provided better 

reinforcement distribution as indicated by the smaller space between the clustered nanoparticles shown 

in Figure 1c. In case of Mg/(ZrO2 + Cu) hybrid composites, a significant reduction in grain size was 

observed. The reduction was about one third when compared to that of pure Mg and Mg/ZrO2 

composites. This indicates the usefulness of copper as hybrid reinforcement assisting in the matrix 

grain refinement. Having limited solid solubility in magnesium, the presence of copper causes Mg2Cu 

intermetallics formation [10,16,23]. The existence of more obstacles (ZrO2, Cu and Mg2Cu 

intermetallics) can effectively pin the grain boundary which contributes to the grain size reduction in 

the hybrid composites. Unlike Mg/ZrO2 composite, reinforcement distribution was globally finer with 

increasing presence of second phases in Mg/(ZrO2 + Cu) composites as observed in the micrograph 

(Figure 1). The morphology of the Mg/ZrO2 material shows a more or less continuous film of 

clustered/agglomerated ZrO2 nanoparticles at the grain boundaries, whereas in the Cu-containing 

composite the ZrO2 film is discontinuous and punctuated with Cu particles. In case of Mg/ZrO2 

composite, the ZrO2 particles were mostly in the clustered/agglomerated form with minimal particle 

dispersion within the matrix (Figure 2a). 

Table 1. Results of grain size and hardness measurements. 

Materials (vol %) 
Grain size Macrohardness Microhardness 

(µm) (HR15T) (HV) 

Mg 25 ± 7 44.7 ± 1.0 42.0 ± 1.6 
Mg/0.3ZrO2 24 ± 7 46.3 ± 0.9 40.0 ± 1.0 
Mg/0.6ZrO2 29 ± 3 46.0 ± 2.0 41.6 ± 2.1 
Mg/1.0ZrO2 25 ± 4 44.1 ± 0.7 42.1 ± 1.9 

Mg/1.0ZrO2 *
 23 ± 6 41.8 ± 0.8 39.9 ± 1.4 

Mg/(0.3ZrO2 + 0.7Cu) 9 ± 2 57.9 ± 1.3 47.6 ± 1.0 
Mg/(0.6ZrO2 + 0.4Cu) 11 ± 3 61.1 ± 0.6 50.2 ± 0.9 

* Extrusion ratio of 26:1 was used for this composite. 

2.2. XRD Analysis  

Figure 3 shows the X-ray diffraction patterns of Mg and Mg composites. In case of Mg/1.0ZrO2 

composites, an additional peak of ZrO2 was revealed when compared to Mg and Mg/(ZrO2 + Cu) 

composites. In case of Mg/(ZrO2 + Cu) composites, the peak related to ZrO2 was not present. 

However, the peaks matching to Cu and Mg2Cu were found in the XRD patterns. From the related 

studies [9,24], the peaks related to the ceramic reinforcement particles which are in nano length scale 

do not generally appear in the composites. This is due to either the amount of reinforcement being too 

small (less than 2 vol %) to be detected by the XRD diffractometer or the presence of fine 
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2.3. Hardness  

Hardness measurement results in Table 1 show a minimal change in both macro- and  

micro- hardness values in the case of pure Mg and Mg/ZrO2 composites. Results suggest that the 

presence of single ZrO2 reinforcement is ineffective in increasing hardness of Mg matrix. This may 

primarily be attributed to poor reinforcement distribution of ceramic reinforcements. To achieve high 

hardness level in the composites, clustering of second phases is not preferable due to a number of facts 

including larger intercluster spacing and the weak bonding among brittle ceramic particulates at the 

clustered particles region. No variation in hardness can also be attributed to the similar grain size 

between Mg and Mg/ZrO2 composites. On the other hand, an improvement in both macro- and  

micro- hardness was observed in the hybrid composites when compared to both Mg and Mg/ZrO2 

composites. This may primarily be attributed to the grain refinement resulting from the distribution of 

second phases (Table 1 and Figure 1). The presence of hard Mg2Cu intermetallics can additionally 

provide an increase in hardness level of Mg matrix [27].  

2.4. Tensile Properties  

The results of room temperature tensile properties are shown in Figure 4 and summarized in  

Table 2. Not only the presence but also the increasing amount of ZrO2 reinforcement shows no effect 

on the variation of 0.2% yield and ultimate tensile strengths showing similar strength levels of pure Mg 

and composite samples. In fact, the strengths in Mg/0.3ZrO2 and Mg/1.0ZrO2 composites tend to 

decrease when compared to pure magnesium. Presence of clustered ZrO2 particulates in Mg matrix 

(Figures 1a,b and 2a) could be the prime reason for this decrement. The reduction in strengths 

originates from weak adhesion among ceramic particulates within clusters and/or between matrix and 

clustered particulates [4,28]. This also indicates the lack of load transfer from the matrix to ceramic 

reinforcement clusters and thus yielding in the Mg/ZrO2 composites follows the matrix yielding 

behavior that contains defects. The use of high extrusion ratio (20.25:1 to 26:1) provides improvement 

in both 0.2% yield and ultimate tensile strengths to some extent. This is in line with the improved 

reinforcement distribution in Mg/1.0ZrO2 composite with the use of higher extrusion ratio, 26:1 

(Figure 1c). However, a significant strength increment was not achieved due to partial break down of 

reinforcement clusters [29] and lack of grain refinement after applying high extrusion ratio (26:1) in 

Mg/1.0ZrO2 composition. Expecting to acquire better tensile properties, Cu was added as hybrid 

reinforcement to Mg/ZrO2 compositions. To fix the total reinforcement amount to be 1 vol %,  

0.7 vol % and 0.4 vol % Cu were added to the Mg/0.3 vol % ZrO2 and Mg/0.6 vol % ZrO2 

compositions, respectively. From the tensile test results (Table 2), a significant improvement in both 

0.2% yield and ultimate tensile strengths were observed in the hybrid composites. The improvement in 

strengths can mainly be attributed to: (a) the combined presence of ZrO2, Cu and additional Mg2Cu 

intermetallics; (b) effective load transfer from matrix to the reinforcements/second phases conforming 

uniform reinforcement/second phase distribution; (c) grain refinement as indicated earlier in Table 1. 

The reduction in grain size is primarily responsible for strength improvement in magnesium hybrid 

composites. Additionally, the strength increment may be supported by the effective load transfer 
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mechanism. Irrespective of enhanced tensile strengths shown by the hybrid composites, failure strain is 

similar to that of pure Mg and Mg/ZrO2 composites. 

Figure 4. Representative stress-strain curves of Mg and Mg composites. 

 

Table 2. Results of tensile properties. 

Materials (vol %) 0.2% YS (MPa) UTS (MPa) Failure Strain (%)

Mg 111 ± 7.8 177 ± 10 9.0 ± 2.2 
Mg/0.3ZrO2 84.8 ± 8.0 139 ± 7.5 8.1 ± 1.6 
Mg/0.6ZrO2 117 ± 11 182 ± 14 9.4 ± 2.7 
Mg/1.0ZrO2 97.8 ± 6.3 158 ± 12 8.6 ± 2.2 

Mg/1.0ZrO2 *
 122 ± 7.7 188 ± 5.9 10 ± 1.3 

Mg/(0.3ZrO2 + 0.7Cu)  196 ± 16 249 ± 7.5 8.2 ± 1.1 
Mg/(0.6ZrO2 + 0.4Cu)  139 ± 22 193 ± 21 11.4 ± 2.9 

* Extrusion ratio of 26:1 was used for this composite. 

2.5. Tensile Fractography  

Tensile fractographs can be seen in Figure 5. From the failure analysis, the same fracture features 

revealing rough fracture surfaces and cleavage fracture were observed in pure Mg and Mg/ZrO2 

composites. Owing to HCP crystal structure, magnesium’s deformability is limited due to the lack of 

sufficient slip activity. Although the size of clustered reinforcements was in micron length scale, 

premature failure was not observed in the Mg/ZrO2 composites observing similar failure strain when 

compared to magnesium (Table 2). This is different from micron size particle reinforced magnesium 

composites in which failure strain reduction was commonly found when compared to that of 

unreinforced magnesium. The premature failure in these composites is mainly due to the debonding 

between the matrix and reinforcement particles, and rapid particle cracking [4]. In the current study, 

there were two possibilities for Mg/ZrO2 composite eventual failure: (a) the matrix failure could 

control the fracture behavior in the composites observing the similar fracture features and (b) failure 

due to intergranular cracking initiated from micro-cracking of the reinforcement clusters at the grain 

boundary (Figure 5b). In case of hybrid composite, fine and homogenous fracture features were 
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3.3. Microstructure Characterization 

Microstructural characterization studies were conducted to determine the grain size and distribution 

of reinforcements. OLYMPUS metallographic optical microscope, Scion Image Analyzer and 

HITACHI S-4300 Field Emission Scanning Electron Microscope (FESEM) equipped with energy 

dispersive X-ray spectroscopy (EDS) were used for this purpose.  

3.4. X-ray Diffraction Studies 

X-ray diffraction analysis was carried out on the polished extruded Mg and Mg composite samples 

using automated Shimadzu LAB-X XRD-6000 diffractometer. The samples were exposed to CuKα 

radiation (λ = 1.54056 Å) at a scanning speed of 2 °C/min. The Bragg angle and the values of the 

interplanar spacing (d) obtained were subsequently matched with the standard values for Mg, ZrO2, Cu 

and related phases. 

3.5. Mechanical Testing 

The mechanical behavior of both monolithic and composite samples was quantified in terms of 

hardness, tensile and compressive properties. Macrohardness measurements were made using Future-Tech 

FR-3 Rockwell Type Hardness Tester. The test was conducted under conditions of 2 s dwell time and a 

test load of 15 kgf using steel ball indenter (1.588 mm) in accordance with ASTM E18-02. Microhardness 

measurements were performed on the magnesium matrix of the polished samples using Shimadzu-HMV 

automatic digital microhardness tester. The test was done using a Vickers indenter under a test load of 

25 gf and a dwell time of 15 s in accordance with the ASTM standard E384-99. 

The tensile properties of the as-extruded monolithic magnesium and its composite counterparts 

were determined in accordance with procedures outlined in ASTM standard E8M-01. The tensile  

tests were conducted on round tension test specimens (5-mm gage diameter and 25-mm gage length) 

on MTS 810 automated servo-hydraulic mechanical testing machine at a crosshead speed set at  

0.254 mm/min. 

Compression tests were performed on cylindrical monolithic and composite samples according to 

ASTM E9-89a using MTS 810 automated servo-hydraulic mechanical testing. Extruded rod of 8 mm 

diameter was cut into 8 mm length samples for compression tests to provide the aspect ratio (l/d) of 

unity. Samples were tested at a strain rate of 5 × 10−3 min−1 and the compression load was applied 

parallel to the extrusion direction.  

3.6. Fracture Behavior 

To investigate the failure mechanism during tensile and compressive loadings, the tensile and 

compressive fractured surfaces of pure Mg and its composite specimens were characterized using 

scanning electron microscope (SEM).  
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4. Conclusions  

The major conclusions are as follows: 

1. Magnesium based nanocomposites and hybrid composites can be successfully synthesized 

using microwave sintering assisted powder metallurgy approach. 

2. The formation of ZrO2 reinforcement clusters in Mg matrix resulted in the lack of grain refinement 

in all Mg/ZrO2 composite compositions. On the other hand, the use of hybrid reinforcements  

(ZrO2 + Cu) realized significant grain size reduction in magnesium hybrid composites. 

3. Both macro- and micro-hardness, tensile, and compressive strengths were improved only in the 

Mg/(ZrO2 + Cu) hybrid composites primarily as a result of their finer grain size. 

4. Tensile failure strain remained the same whereas compressive failure strain was decreased in 

all composites when compared to pure Mg. 

5. Tensile failure analysis revealed the similar rough fracture features in the case of Mg and 

Mg/ZrO2 composites. Refined fracture features were observed in the hybrid composite. 

6. Under compressive loading, the presence of shear bands was minimally observed from the 

fracture surfaces of Mg and Mg/ZrO2 composites. In case of hybrid composite, a large amount 

of shear band formation was observed.  
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