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Abstract: A new local ab initio molecular dynamics method, namely elongation molecular 
dynamics (ELG-MD) is proposed for highly efficient simulations of aperiodic polymer 
systems. ELG-MD combines the elongation method (ELG) with the Gear predictor 
corrector (GPC) algorithm of molecular dynamics simulation. In this method, the local 
gradients acting on the atom’s nucleus in the active region are calculated by the ELG 
method while the equations of the nucleus’s motion are solved by the GPC algorithm. In 
this work, the first application of this ELG-MD method is described to investigate the 
stable conformation of polyglycine with surrounding water molecules. The water effects on 
the structure of polyglycine are examined. The ELG-MD simulations show that the 
formation of the polyglycine helix is strongly induced by the hydrogen bonds observed in 
two types of H-bond rings. 
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1. Introduction 

Computer simulations on biological macromolecules have been a hot area for numerous theoretical 
studies describing biological processes at the molecular level. One of the popular treatments for this 
purpose is the classical molecular dynamics simulation method in which empirical interatomic 
potential functions are used. However, it is not so accurate because of the treatment of constant atom 
charges. On the other hand, in ab initio molecular dynamics (AIMD), the electronic structure, energy 
and forces of the system are directly computed based on quantum mechanics theory. However, the 
number of atoms one can handle in the quantum mechanical treatment is much smaller than the 
number of atoms in a biological system because of the limitation of computer resources. The 
elongation (ELG) method has proved to be an efficient method for calculating the electronic structure 
of large aperiodic polymers with high accuracy at the ab initio level [1–6]. In addition, the analytical 
energy gradients can be calculated by the ELG method and have been successfully used for the 
geometry optimization of a series of polymers [7]. Based on these developments, we here propose a 
new efficient AIMD method named Elongation-MD (ELG-MD) by combining the elongation method 
with the dynamics algorithm. The ELG-MD method makes it possible to efficiently analyze the 
mechanisms of chemical reactions by considering dynamics even for huge random polymers such as 
biomaterials. For the first application of the ELG-MD method to confirm its effectiveness, we selected 
polyglycine as a target system; polyglycine is representative of the simplest peptide and widely 
investigated both experimentally and theoretically. 

Polyglycine (Gly)n, containing n residues, forms the backbones of amino acids, peptides and 
proteins without side chains and their functional groups [8]. Therefore, the investigations on (Gly)n are 
important to the understanding of a wide range of biological systems. In particular, the  
three-dimensional structure is one key factor for the biological activities of a peptide, and hydrogen 
bonds play important roles in stabilizing the secondary structure of peptides [9]. In general, hydrogen 
bonds (H-bonds) can be generated both intramolecularly and intermolecularly in the system. In the 
former case, the H-bonds are formed between many different functional groups in the peptide, but in 
the latter case the H-bonds are formed between polar groups of the peptide and the surrounding solvent 
molecules such as water molecules. For a β strand, the hydrogen bonds are formed by the N–H groups 
in the backbone of one β strand with the C=O groups in the backbone of the adjacent β strands. For an 
α helix, each hydrogen bond is formed by the N–H group of an amino acid with the C=O group of the 
amino acid four residues earlier. On the conformation of polyglycine, Ohnishi et al. demonstrated that 
polyglycine in solution exhibits a strong preference for an extended conformation when polymerized in 
short segments as the intermediate in the extension between a β strand and an α helix [10]. Which kind 
of hydrogen bond will stabilize this extended conformation of polyglycine in aqueous solution? The 
hydration effects via direct hydrogen bonds between water molecules and the peptide backbone can be 
expected. Here we applied the ELG-MD method to investigate the intermolecular H-bonds effects on 
conformation stability when (Gly)n is polymerized with water molecules. This application deals with 
the conformation change of (Gly)n under the explicit consideration of water molecules, and the AIMD 
simulation in which energies and forces are generated by the ELG method at each time step. 

This paper is organized into four sections. In Section 2, we briefly introduce the ELG formalism 
including energy and gradient calculations, after that we present a description of the ELG-MD method. 
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In Section 3, we introduce the structure of model molecules, i.e., polyglycine with water molecules. In 
the same section we analyze the equilibrium structures of polyglycine and their energetic stability. 
Final conclusions are collected in Section 4. 

2. Methodology 

2.1. Elongation Method 

The elongation method can be considered as a procedure for theoretical polymerizations on 
computers [1–3]. We present a brief overview of the procedures (see also the flowchart in Figure 1). 

Figure 1. Flowchart of the elongation method illustrated using polyglycine with water 
molecules. The canonical molecular orbital (CMO) and region localized molecular orbital 
(RLMO) indicate canonical and regional localized molecular orbitals, respectively. 
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First, the polymer chain is divided into several monomers, and then a suitable size of monomers as 
a starting cluster is selected. A and B regions are defined for the starting cluster, where the A region is 
the frozen region assumed to be the side furthest away from the chain propagation point, and the B 
region is the active region near the propagation point. The canonical molecular orbitals (CMOs) of the 
starting cluster are solved by the conventional Hartree-Fock self-consistent-field (HF-SCF) procedure.  

Second, the CMOs are converted to localized MOs (LMOs) over the A or B regions. We define the 
interacting space as the B region with an attacking molecule, and the A region is furthest away from 
the interaction spot. The localization procedure is explained in the reference [2]. The obtained LMOs 
are localized in a special region over several units, and are different from those by Ruedenberg’s [11] 
or Boys’s [12] localization method that provide LMOs localized on a bond. Thus, we name the 
obtained orbitals as region localized molecular orbitals (RLMOs). By using the RLMOs, the density 
matrix can be expressed by 

( ) ( ){ } ( ) ( ){ } B   A     B   A    CMO
RLMO

CMO
RLMO

RLMO
CMO

RLMO
CMO

RLMO LLPLLD ++=  (1) 

where L indicates the transformation matrix between CMO and RLMO. P is the diagonalized matrix in 
which the degenerates 2 and 0 are given as the eigenvalues for occupied and vacant spaces, 
respectively. The DRLMO is actually identical to P because the transformation matrix L is defined under 
the freedom that comes from the non-uniqueness of the coefficients owing to the degeneracy within all 
the occupied orbitals and all the vacant orbitals. In other words, the occupied and vacant spaces are not 
mixed with each other by Equation (1). Therefore, the diagonalized density matrix P is invariant under 
the unitary transformation. By this feature, we can make preferable RLMOs suitable for local 
interaction during the polymerization process. 

Third, at the elongation step, the attacking monomer (M) is attached to the terminal of the B region. 
Because the A region is far away from the M region, the interaction between them is negligible. Thus, 
the ELG HF equation is solved self-consistently only for the localized orbital space including the B 
and M regions. After the new CMOs of the B and M regions are obtained, the new CMOs are localized 
into new frozen (A′) and active (B′) regions. Then a new attacking monomer (M’) is attached. The 
above procedures are repeated step by step until the electronic structure of the target system 
is obtained. 

2.2. Elongation Gradient Calculation 

In HF approximation, the total energy of a closed-shell system can be written as 
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respectively. We can obtain the first derivative (gradient) of the total energy E by the analytic 
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where Q is the energy-weighted density matrix defined as 

∑
2

2=
 N   

i
i i i C C    Q νμμν ε  (4) 

A detailed description of how to obtain gradient calculations with the elongation method was 
presented in a recent paper of our group [7]. We sketch this method out here. Because the elongation 
method is based on AO basis, the density matrix by the ELG method is almost the same as the density 
matrix in Equation (3) for the conventional calculation except for the third term Qνμ. In each elongation 
step, the HF equations are solved only for the interacting space including the B and M regions. After 
the ELG-SCF procedure, the molecular orbitals of the B and M regions are transformed from RLMO 
to AO basis for calculating the gradient in Equation (3). First, we combine RLMO

AC  with MO
M BC  to 

construct the coefficient matrix for the whole system, MOC , where the RLMO
AC  and MO

M BC  denote the 
coefficients of the frozen region (A) from the previous ELG steps and interacting space (B + M) from 
the ELG-SCF calculation in the present ELG step, respectively. The ε matrix can be calculated by 
CMOFCMO, but the ε is not diagonal any more. Therefore, we can get the AO based energy-weighted 
density matrix Q for the ELG-HF method by 

∑
2

=
 N   

j i
j i j ii C C n   Q νμμν ε  (5) 

where n is the occupancy number matrix corresponding to the density matrix in the MO representation, 
in this matrix degenerate 2 is given for the occupied space and degenerate 0 is for the vacant space. 

2.3. Elongation Molecular Dynamics 

We can straightforwardly combine the ELG method with the MD algorithm to construct the  
ELG-MD method in the following manner. Newton’s equation of motion is solved by calculating the 
ELG gradients on the fly using 

ELG
2

2

  -  
 d
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rmF ∇==  (6) 

The time evolution of the atomic nuclei is performed according to the fourth order Gear predictor 
corrector (GPC) algorithm [14,15]. The GPC is one of the most widely-used algorithms in molecular 
dynamics simulations. In general, any time-dependent property can be estimated from a Taylor series 
expansion. In the predictor stage of the GPC, therefore, the atomic coordinate vector rp can be 
expanded in the Taylor series in the time step Δt: 
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The atomic velocity vector vp and the acceleration vector ap could be updated by the other 
appropriate expansions similar to Equation (7), respectively. We here define the first, second, and third 

derivative of r as v = 
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Although we get a set of predicted vectors from these procedures, they are not correct because of 
their truncation errors. Thus, all the vectors are corrected in the corrector stage of GPC. From the new 
predicted coordinates, we can actually calculate the accelerations ac. The difference between ac and ap, 
i.e., Δa, are used to correct the predicted value. 

)( - )(  )( ttattatta pc ∆+∆+=∆+∆  (11) 

)(  )(  )( 0 ttactrttr pc ∆+∆+=∆+  (12) 

)(  )(  )( 1 ttactvttv pc ∆+∆+=∆+  (13) 

For example, suitable values of c0 and c1 for the fourth-order GPC algorithm are 19/120 and 3/4, 
respectively. In a similar way, the other vectors can be also corrected.  

As mentioned above, the ELG method is similar to the procedure for the theoretical synthesis of 
polymers. When the attacking monomer (M region) approaches the B region, the structure of the 
interacting space (B and M regions) will change because of the interaction between them. In contrast, 
the frozen region (A region) is far away from the M region and thus we can presume there is no 
interaction between the A region and the M region. Therefore, the structure of the A region will not 
change any more when M approaches B. For this reason, in the ELG-MD calculation, we only perform 
molecular dynamics on the interacting space in the last step of ELG-MD. For the previous ELG steps, 
only energy calculations are carried out. The flowchart of the ELG-MD method is presented in  
Figure 2. On the right side of Figure 2, it is shown that the A, B and M regions are renewed for the 
next elongation step after localization, so A denotes a different region in a different elongation step, as 
do B and M. All the procedures of the ELG-MD method were implemented with the GAMESS 
program package [16]. 

3. Results and discussion 

A (Gly)14 peptide in β-strand conformation with 14 water molecules was selected as a model system 
to test and demonstrate the ELG-MD method (Figure 3). For the first testing calculation for ELG-MD, 
we did not consider more water molecules around polyglycine. One reason was to save computing 
time, another reason is that for the central fragment of the glycine molecule, one side including C=O 
and N–H groups is hydrophilic and these two groups can form a hydrogen bond ring  
C7(C=O···H–O···H–N) (shown in Figure 4b) with one water molecule, it is not easy to add more water 
molecules forming hydrogen bonds with these two groups in this area because of space limitation. 
Another side including the CH2 group is hydrophobic. Here, the notation Cn (X···H–O···Y) represents 
the hydrogen bond ring structure consisting of n atoms enclosed by the H–O group of the adjacent 
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water molecule. The (Gly)14 is divided into seven units ((Gly)2 for each unit), and assigned A, B, and 
M1~M3 regions as shown in Figure 3. The simulation in the present article has two stages. 

Figure 2. The flowchart of the elongation molecular dynamics (ELG-MD) method. The 
“Energy and Density (B + M)” means that the energy and density of the B + M region are 
obtained with the contribution from the A region. 

 

Figure 3. Polyglycine (Gly)14 in β-strand conformation with 14 water molecules. (Gly)14 
are divided into A, B, M1, M2 and M3 regions for the ELG-MD procedures. The notations 
A and B do not correspond to those in Figure 2.  

 

First, we need a stable conformation of A, B, M1, and M2 regions to create a more real surrounding 
for the new attacking monomer (M3 region) before investigating the structure of (Gly)14 including the 
A, B, and M1~M3 regions. Several research groups have devised experiments for measuring β-sheet 
stability with various peptides, and they found polyglycine has a low β-sheet propensity [17–20]. 
Therefore, to find a more reasonable conformation than β-sheet conformation, the conventional AIMD 
simulation was performed for the A, B, M1 and M2 regions (other than the M3 region). In the AIMD 
simulation, the energies and forces were obtained at the HF level of theory with the STO-3G basis set. 
The time step is set as 0.5 fs and we perform in total 5 ps simulation (10,000 steps). The temperature of 
the system is associated with the classical kinetic energy and the constant temperature (298 K) is 
achieved by the algorithm proposed by Berendsen et al. [21]. Figure 4a shows the equilibrium 
structure obtained by the simulation. It was found that the conformation of A, B, M1 and M2 
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significantly changed from a β-sheet type to a quasi-α-helix type in which the structure is more 
outstretched than α-helix. In general, α-helix forms a right-handed helix and every N–H group in the 
backbone donates a hydrogen bond to the C=O group of the amino acid belonging to four residues 
earlier (I + 4 → i hydrogen bonding) [22]. Our results in Figure 4a show that the right-handed helix is 
induced by two kind of hydrogen bond rings, that is, C7(C=O···H–O···H–N) in Figure 4b and 
C9(C=O···H–O···H–N) in Figure 4c. C9(C=O···H–O···H–N) shows that the H–O group of the water 
donates two hydrogen bonds to the C=O and N–H groups of the backbone for instance.  

Figure 4. (a) The structure of the A, B, M1 and M2 regions of (Gly)14 in a quasi-α-helix 
conformation as the initial structure for ELG-MD simulation. Panels (b) and (c) show two 
types of H-bond ring. The dotted lines in the panels denote hydrogen bonds.  

 

Second, for the ELG-MD calculation, there are four calculation steps including starting cluster (A 
and B regions), the first elongation step (A, B and M1 regions), the second elongation step (A, B, M1 
and M2 regions) the third elongation step (A, B, M1, M2 and M3 regions). Energy calculations are 
carried out for the first three steps, and MD only performed for the last step. In the last step, we 
presume that a new monomer M3 (β form) furthermore attacks the propagating site of the M2 region of 
the structure obtained above. Therefore, the initial structure for the ELG-MD method consists of the  
A + B + M1 + M2 equilibrium structure (quasi-α form) and an additional M3 region (β form). The 
M1~M3 region of the initial structure is shown in Figure 5. Because we are interested in the structure 
variation of M3 and the associated regions such as the M1, M2 regions, the MD treatment in the  
ELG-MD procedure is applied only for the interacting space in the last elongation step, that is, the 
M1~M3 region while the A and B regions are frozen. For the dynamics part of the ELG-MD 
calculation, we used the same setting as conventional AIMD simulation.  

To know the efficiency of the ELG-MD method, 2.5 ps (5000 steps) simulation was performed by 
both ELG-MD and conventional AIMD for the initial structure in Figure 5. The total wall clock time is 
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206,362.3 s (ELG-MD) and 298,391.3 s (conventional AIMD), respectively. Because the ELG-MD is 
a local MD method, its efficiency is obviously higher (about 31%) than the conventional AIMD. 
Furthermore, the potential energies (HF energies) of the entire system can be compared between the 
two treatments (see Figure 6). 

Figure 5. The initial structure of the M1, M2 and M3 regions (atoms from 62 to 143). C60 
and O61 belong to the B region.  

 

Figure 6. Fluctuations of the Hartree-Fock energy of (Gly)14 with 14 water molecules  
in the simulation at 298.15 K: (a) ELG-MD simulation; (b) conventional ab initio  
MD simulation.  
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From Figure 6a we can see the HF energy decreases quickly for the ELG-MD method which relaxes 
only a local region of the polymer. In the ELG-MD calculation, the structure of the A and B regions is 
automatically frozen when the M3 region attaches, which is different from the conventional AIMD 
which treats the whole system at the same time. Because the freedom of the ELG-MD calculation is 
much less than conventional AIMD, it is much easier for the ELG-MD method to get the energy 
convergence. Figure 6b shows the fluctuations of the Hartree-Fock energy calculated by conventional 
AIMD. The energy increases during 900 fs, and then the energy begins to decrease slowly. That is to 
say, it is hard to get the energy equilibrium in a short period of time in the conventional AIMD. It also 
should be stressed that the energy of ELG-MD is lower than that of conventional AIMD at 2500 fs. 
From 2000 to 2500 fs, the average total energy is −3982.4664 Hartree for ELG-MD while  
−3982.4245 Hartree for AIMD. When the new monomer attaches to the propagating site of the M2 
region, it will mainly affect the structure of the M1 and M2 regions because the A and B regions are far 
away from the M3 region (the distance between them is about 10 Å). Therefore, we only focus on the 
conformation variation of the attacking monomer (M3) and its vicinity (M1 and M2) under the 
assumption that the A and B regions have no interactions with the M3 region. 

To check the accuracy of the ELG-MD, we performed 0.5 ps (1000 steps) conventional AIMD 
calculation for the polymer with fixing of the atoms in the A and B regions in the same manner as with 
the ELG-MD calculation. We compared the structures of them in each simulation step. Figure 7a 
shows the root-mean-square deviation (RMSD) of the backbone part (M1~M3) of the structure between 
the ELG-MD and conventional AIMD with fixing the atoms. The maximum value of RMSD with 
0.00695 Å is considerably small. This shows that the two structures agree well in each simulation step.  

Figure 7. (a) Root-mean-square deviation (RMSD) of the molecular structure between 
ELG-MD and conventional ab initio MD with fixing of the same atoms; (b) Superimposed 
structures at 500 fs. (Red: conventional AIMD. Blue: ELG-MD).  
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As shown in Figure 7b, the two structures at 500 fs (1000 steps) calculated by the two methods are 
almost the same as each other. Hence, it can be concluded that the trajectories of the two simulations 
have essentially the same quality, and the structure obtained by the ELG-MD simulation is credible. 

Now, we performed 5 ps (10,000 steps) ELG-MD simulation for the (Gly)14 peptide starting from 
the initial structure in Figure 5 to investigate the conformation variation from the viewpoint of the  
H-bond effects between peptide and water molecules. It should be noted that the frozen region (A and 
B) is not shown in Figure 5 because the coordinates of the frozen regions are fixed. As mentioned 
above, in the initial structure the M3 region has β-strand confirmation and the other region  
A + B + M1 + M2 has quasi-α-helix conformation. All of the H-bonds in the initial structure are of the 
C7(C=O···H–O···H–N) type. We measured all of the H-bond lengths during the simulation to examine 
the configuration change. We assigned these H-bonds into eight groups according to their locations. 
The changes in the atomic distances of these H-bonds are shown in Figure 8. 

Figure 8a shows that the H-bonds (H63···O64 and H66···O71) near the curve region in the helix are 
relatively stable throughout the simulation. Figure 8c–g show that the number of H-bonds is always 
maintained at two in these areas. In addition, the variation of H-bonds only occurs between O of the 
backbone’s C=O group and the two H atoms of the water molecule in the vicinity induced by the 
rotation of the water molecule. Figure 8b shows that the H-bond of H75···O81 changed to that of 
H76···O81 at 3330 fs (Figure 9a), and a new H-bond O61···H75 in C9(C=O···H–O···H–N) type is 
observed at 4300 fs (Figure 9b). Then, it was found that the H-bonds H76···O81 and O61···H75 
became stable after 4300 fs. The formation of new C9(C=O···H–O···H–N) type H-bonds implies that 
the helix structure of this area becomes more stable and more compact than the initial structure. The 
variations of H-bonds in the tail region of the peptide are more active than the other regions as shown 
in Figure 8h. After 4300 fs, the H135···O141, H135···O121 and H136···O121 distances have a 
downward trend, but the H136···O141distance increases in contrast. This implies that the H-bond of 
H136···O141 gradually changes to H135···O141, and it has a tendency to form a new H-bond 
H136···O121 in the C9(C=O···H–O···H–N) type as shown in the snapshot at 5000 fs (Figure 10c). The 
snapshot structures of interacting space (M1, M2 and M3) and the entire peptide at 5000 fs are shown in 
Figure 10a,b, respectively. All the C7(C=O···H–O···H–N) type H-bonds in the peptide interacting space 
are stable during the simulation. On the other hand, a new H-bond ring in the C9(C=O···H–O···H–N) 
type is formed in front of the interacting space, and the structure of the tail region has the  
tendency to form another H-bond ring of the C9(C=O···H–O···H–N) type. The H-bonds in the  
C9(C=O···H–O···H–N) type can cause the distortion of the structure leading to the forming of a helix 
conformation. It can be concluded that the β-strand conformation included in the interacting space (M3 

region) is transformed into a helix conformation due to the newly formed H-bonds. 
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Figure 8. Fluctuations of the H-bond distances between peptide and water molecules in the interacting space (5 ps ELG-MD simulation). The 
numbering of the atoms is shown in Figure 5. M1, M2 and M3 denote the M1 region, M2 region and M3 region shown in Figure 5 respectively. 
More details of the H-bond distances in Panel b and h are shown in Figures 9 and 10, respectively.  
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Figure 9. Snapshot of H-bond rings in the M1 region at (a) 3330 fs and (b) 4300 fs.  

 

Figure 10. Snapshot at 5000fs of (a) entire peptide (Gly)14. Atoms from 1 to 61 belong to 
the frozen region; atoms from 62 to 143 belong to the active region; (b) Interacting space 
(M1, M2 and M3); and (c) H-bond. 
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It is a big challenge to understand the interactions in biomolecules at the atomic level with the 
surrounding water molecules because of their transient character and the inhomogeneity of H-bonding 
in liquid water [23]. Here, we have proposed a new kind of theoretical investigation on the interactions 
between peptide and explicit water molecules, and have been able to show the H-bond effects on the 
conformation transformation of the peptide as a first AIMD application. 

4. Conclusions and Prospects 

In this study, we presented the theoretical framework of the ELG-MD method and applied it to 
polyglycine (Gly)14 with 14 water molecules. Firstly, we tested ELG-MD over a short period of time 
and compared the results with those of conventional AIMD. We found from the comparison that the 
efficiency of ELG-MD is higher than the conventional AIMD method (about 31%). In addition,  
ELG-MD can easily be used to obtain the energy convergence of the system by treating only the local 
interacting space. The two methods produced similar trajectories with fixing of the same atoms. The 
advantage on efficiency and accuracy demonstrates the effectiveness of our ELG-MD method. 
Secondly, we performed 5ps (10,000 steps) ELG-MD simulation for this system. It was found from the 
simulation that the β-strand conformation in the (Gly)14 can be transformed into a random helix 
conformation by forming new H-bonds with the surrounding water molecules. 

Although ELG-MD is not a full molecular dynamics, it can perform simulation in the active region 
which we are interested in, at the end of a polymer. In chain growth polymerization, the new monomer 
molecules add onto the active site on a growing polymer chain. The ELG-MD method is suitable for 
this kind of simulation. Many chemical reactions in biomolecular systems are similar to this process 
such as peptide chain elongation, the binding between inhibitor and enzyme etc. Although ELG-MD 
can only handle very simple quasi-one-dimensional systems at this stage, three-dimensional ELG-MD 
for more complicated real biomolecular systems is in progress [24].  
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