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Abstract: The goal of this study was to analyze the effects of cellulose fibers loading by 

precipitation in-situ of calcium carbonate over the properties of printing paper obtained 

from mixtures of the softwood and hardwood fibers. The effects of fibers with in-situ 

loading were analyzed comparatively with conventional paper loading respectively, by 

adding precipitated calcium carbonate into fiber stock. The effectiveness of the methods 

was evaluated by various analyses and investigations: calcium carbonate content, Scanning 

electron microscope (SEM) images, X-ray diffraction, optical and mechanical properties of 

the paper sheets. The evaluation of the effects on paper properties led to the conclusion 

that, at the same filler content, the in-situ loading method gives higher opacity and 

brightness than conventional methods. The utilization of cellulose fibers with in-situ 

loading as additive, shown as a modification of the ratio between fibers with in-situ loading 

and fibers without loading, regardless of whether they are softwood or hardwood fibers, 

allowed us to optimize printing paper properties, especially regarding the relationship 

between optical and strength properties. 
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1. Introduction 

Methods for incorporating fillers within pulp fibers have been the subject of extensive  

research [1,2]. The fillers are selected to serve different papermaking objectives, mainly to enhance the 

optical and printing properties of paper and, sometimes, to reduce the production costs by partial 

substitution of fibrous materials [3,4]. Due to the shifting trend from a conventional acid to a 

neutral/alkaline papermaking medium, the use of calcium carbonate as a filler is a reality in the 

production of writing and printing papers, representing over 90% of filler consumption for these paper 

grades. The fillers with a high brightness degree allow papermakers to use fiber pulps with lower 

brightness, which leads to economical bonuses due to the lower price, as well as to a lower ecological 

impact, by reducing the consumption of chemicals during pulp bleaching [5,6]. It has been found that 

paper with higher filler concentrations can be dried more quickly and the solid content of the paper 

leaving the pressing section is increased. Additionally, mineral fillers tend to be less expensive than 

wood pulp fibers by weight, so an increase in filler content reduces the cost of the raw materials [7]. 

Conventional filler loading of paper consists in the dosing and uniform distribution of filler 

particles into fiber suspension, which further are incorporated in paper structure by retention during 

wet-web formation. One of the main problems of this method is low filler retention into the paper sheet 

since a large part of the filler particles are passing through the forming wire into the process water. 

Poor retention means inefficient use of fillers and high loading of wastewater [8–10]. 

Generally, at increased paper loading levels, the limits are set primarily by an accompanying 

reduction of paper stiffness and insufficient strength properties (tensile strength, tear resistance, 

internal bond and surface strength). That is why the filler content is limited in the case of paper grades 

with low basis weight or with high mechanical pulp content, due to an unacceptable decrease of the 

mechanical resistance indices [11,12]. 

Thus, paper structure should be altered in such a way that desirable paper properties are maintained. 

Both pigments and cellulose materials need to be used effectively in order to achieve the desired 

properties at increased levels of filler. New developments such as precipitated fillers and pigments are 

known to offer new opportunities to improve paper properties [13–15]. 

Literature data [16–21] evidence various benefits of the in-situ loading method, such as: 

improvements in the optical and strength properties of the paper; decreasing the environmental impact 

in papermaking by lowering the process of water loading as a result of high filler retention, and by 

reducing the energy consumption for the pulp stock preparation and waste water treatment. Previous 

research concerning the solutions for in-situ loading of the printing paper [22–24] lead to developing a 

method consisting of the direct precipitation of the calcium carbonate into the wall and lumen of  

pulp fibers. 

The present study aims at analyzing the effectiveness of method for in-situ precipitation of calcium 

carbonate as an additive for printing paper. 
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2. Experimental 

2.1. Materials 

The materials used in this study were:  

- slush pulp made from bleached kraft pulp of resinous and hardwood, refined refined in Valley 

Hollander at 30° SR (Schopper-Riegler degree); 

- calcium chloride (for analysis); 

- sodium hydroxide (for analysis); 

- carbon dioxide (compressed CO2 cylinder) as chemicals for generation in situ loading by 

calcium carbonate precipitation. 

Chemical reactives were used in order to obtain the following materials:  

- precipitated calcium carbonate (CCP) [25,26] for conventional loading (by direct addition of 

calcium carbonate to cellulose fiber suspension); 

- cellulose of resinous with in-situ loading by calcium carbonate precipitation; 

- cellulose of hardwood with in-situ loading by calcium carbonate precipitation. 

2.2. Methods and Procedures 

Refining of the pulp fibers was made under standard conditions for the Valley Hollander. The 

process was controlled by measuring the refining degree of the Schopper-Riegler instrumentation. The 

final refining degree was established at 30° SR for all series of the experiment. (30° SR) 

Direct generation of calcium hydroxide in the pulp suspension and carbonation with carbon dioxide 

under pressure was based on the following reactions: 

CaCl2 + NaOH → Ca(OH)2 (1) 

Ca(OH)2 + CO2 → CaCO3 (2) 

The pulp fibers, refining to 30° SR, were dried to 30% consistency and treated under agitation with 

calcium chloride with concentration and volume known (notated V1c1). Pulp treated with a solution of 

calcium chloride was dried in order to reach to the consistency of 30%, and filtrate (V2) was analyzed 

by titration of the calcium ion content. Based on this analysis, we calculated the quantity of calcium 

retained in the pulp fiber (V1c2). Depending on the quantity of calcium ions retained, the calculated 

sodium hydroxide was necessary for the formation of calcium hydroxide to be added to the  

pulp fiber under stirring. For Ca
2+

 ions, the reaction underlying its determination by titration with 

complexone III is:  

Ca
2+

 + H2Y
2−

 → CaY
2−

 + 2H
+
 (3) 

Calcium complex formed is stable in strongly basic medium (pH > 11), and for detecting the end of 

the titration, using murexide as the indicator. Ca
2+

 content of the sample for analysis, expressed in  

gCa
2+

/L is calculated with [27]:  

     

 
     

    
  

 

   

    
  
       (4) 
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where: n is the volume of complexone III, used in the titration (mL);     
  —titer complexone III 

solution (g/mL); v—volume of the solution analyzed (mL). 

After treating pulp with sodium hydroxide solution, it was dehydrated and centrifuged to a 

consistency of 15%. Then it was carbonated with carbon dioxide at a pressure of 9 atm in a reactor 

with stirring for 2 h. Finally, the fiber pulp with in-situ filling is washed in order to remove the extra 

chemicals unreacted and the calcium carbonate not fixed in the pulp fibers wall and/or lumen. 

The calcium carbonate content of the handsheets obtained from both unwashed and washed pulps 

does not significantly differ from that of filter pads. Practically, the formation of handsheets by water 

drainage from a diluted suspension (0.3 g/L) on forming wire has a similar effect as the washing process. 

Conventional loaded fibers stock was prepared by the dosing and uniform distribution of 

precipitated calcium carbonate into refined pulp suspension under stirring; the dosage of calcium 

carbonate was established at 40% after several retention tests to obtaining paper handsheets with the 

same content of calcium carbonate as those of in-situ loaded fiber pulp (around 9.5%). 

The pulp stock was characterized by:  

- water retention value (WRV-g/g) determined by centrifugation of stock samples (consistency of 

10%) under a force of 3000 g, time of 10 min [28] and reporting the water content to dry 

material of the sample; 

- hydrodynamic specific surface area (m
2
/g) measured on Brecht apparatus [10]. 

Making paper sheets in laboratory and their characteristics: paper sheets were made on the former 

Rapid-Köthen, at constant grammage of 70 g/m
2
 and after conditioning (24 h at 23 °C and 50% UR) 

they were analyzed regarding: 

- calcium carbonate content, according with Tappi Standard-T41320 [29]. 

- opacity and brightness measured with spectrophotometer L&W Elrepho 2000 [10]. 

- strength properties-breaking length of paper (Lr [Km]), measured with the Instron 

instrumentationn; burst factor (kPa m
2
/g) measure with the Schopper-Dale instrumentation [30].  

- air permeability, measured by the DL-WEB apparatus at a 1 Kpa pressure [30]. 

X-ray diffraction patterns of calcium carbonate particulates were obtained on a D8 ADVANCE, 

Bruker-AXS apparatus, equipped with a transmission type goniometer, using nickel-filtered, CuKα 

radiation (λ = 1.5418 Å) at 36 kV; the goniometer was scanned stepwise every 0.10° from 10° to 60° 

in the 2θ range; X-ray diffraction was performed only for paper sheets obtained from washed pulps. 

The lumen loaded and in-situ synthesized pulp samples were analyzed by Scanning electron 

microscope (SEM) (VEGA/TESCAN instrument). 

2.3. Experimental Program 

Experimental program (Figure 1) consists of three series of experiments: A—different pulp 

compositions: resinous fibers with in-situ loading/hardwood fibers without filling (RIS/H);  

B—different pulp compositions: hardwood fibers with in-situ loading/resinous fibers without filling 

(HIS/R); C—different pulp compositions: (resinous fibers with constant addition of 40% calcium 

carbonate precipitated/hardwood fibers) (Reference-RCCP/H). 
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Figure 1. Experimental program for the three series of pulp with different composition. 
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3. Results and Discussion 

3.1. Characterization of Paper Paste 

Figures 2 and 3 show specific surface area (SSA) evolutions and water retention value (WRV) 

depending on pulp composition for the three series of experiments. The specific surface area of  

in-situ loaded fibers’ stock and that of those with loaded fibers increases with the addition of fibers 

without filling. The biggest increase is made by increasing the addition of hardwood fibers without 

filling in relation to in-situ loaded fibers of resinous. The results can be explained by the fact that the 

hardwood pulp without filling has the biggest specific surface area, also increasing the retention of 

calcium carbonate precipitated over the resinous pulp surface (see Figure 4). 

Figure 2. Specific surface area in relation with pulp composition. 
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Figure 3. Water retention value (WRV) in relation with pulp composition. 
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Water retention value is always lower for the paper paste with a higher content of in-situ loading 

fibers, because calcium carbonate shown in a cell’s wall and at fiber surface has a lower affinity for 

water molecules. As fiber quantity without filling increases, water retention number increases due to 

reduction in calcium carbonate content. 

Figure 4. CaCO3 content (a) and retention level of CaCO3; (b) in relation with pulp composition.  

 

(a) (b) 

3.2. Characteristics of Paper Sheets Obtained in Laboratory 

Fiber pulp was used for obtaining paper sheets in standard laboratory conditions, which  

after conditioning were tested for a series of physical-mechanical characteristics. Because  

physical-mechanical characteristics are influenced by the filling material content and retention 

mechanism, those will also be discussed depending on those parameters. 
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3.2.1. Retention of Calcium Carbonate and Structural Properties 

Figure 4 shows that, with the no filling addition of pulp, the calcium carbonate content lowers, 

which is expected because effective addition is reduced at each series of experiments. Starting with the 

same calcium carbonate content for the first recipe (100/0) we notice that lowering the calcium 

carbonate content is twice as big for the conventional loading compared with in-situ loading. 

This is explained by lowering the retention level, as is shown in Figure 3, at the same time as 

reducing calcium carbonate addition and increasing the content of fine material (pulp of hardwood). 

Increasing the addition of pulp without filling, compared with the addition of pulp with in-situ loading, 

leads in the first place to increase of retention level, and, at higher addition of over 70%, the addition 

level decreases. 

The examination of the SEM images (Figure 5a–c) evidenced the presence of calcium carbonate 

crystals within both lumen and fiber wall pores. The results also indicated that the crystallization of 

CaCO3 occurs with the formation of calcite microcrystals of specific shape. 

Figure 5. Scanning electron microscope (SEM) images of paper samples, obtained by 

conventional and respectively, in-situ loading with precipitated calcium carbonate of 

resinous and hardwood paper. (a) In-situ loading—resinous; (b) in-situ loading—hardwood; 

(c) conventional loading—resinous.  

   

(a) (b) (c) 

SEM images show that between the two types of pulp with in-situ loading (RIS and HIS) there are 

no significant differences regarding the calcium carbonate contents, but values of air permeability 

(Figure 6) show significant structural differences. 

Resinous pulp with in-situ loading leads to open structures, with higher air permeability than pulp 

of hardwood, which in turn has higher permeability than pulp of resinous with conventional loading. 

Evolution of air permeability clearly indicates that in-situ loading fibers could be effectively be used as 

additive control of porosity of printing paper. 
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Figure 6. Evolution of air permeability of paper in relation with paper composition. 
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ratio of the peak heights at 29.3° (104), specific to calcite, and of the peak heights at 22.5° (002), 

specific to cellulose, was established. Experimental data were obtained by repetitive acid washings of 
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Following this, two acid washing steps led to complete dissolution of calcium carbonate from the 
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correlation (R
2
 = 0.9971), that could be used to estimate the calcium carbonate content, based on a 

standard curve and diffraction intensity ratio measurements. 

Figure 7. X-ray diffraction patterns of paper samples obtained by in-situ loading method. 

 

Figure 8. Correlation between ratio of I104/I002 diffraction intensity and ash content of 

paper samples filled in-situ and washed with an acid solution. 
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exclusively to the brightness of powder pulp, which is lower for resinous. At the same time, this 

explanation is also sustained by the fact that differences disappear by increasing the percent of pulp 

without filling. After addition of pulp of resinous or pulp of hardwood without filling, the brightness 

and opacity decrease in all three cases, this is due mainly to reduction of calcium carbonate content. 

Figure 9. Evolution of properties in relation with pulp composition (a) brightness and  

(b) opacity. 

  

(a) (b) 

3.2.4. Mechanical Strength Properties 

Evolution of strength properties, shown by the breaking length and the burst index, are shown in 

Figure 10. 

Figure 10. Evolution of mechanical properties in relation with pulp composition  

(a) breaking length; (b) burst index.  
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specific surface area). Differences between hardwood pulp with in-situ loading and resinous pulp with 

in-situ loading appear due to initial resistance characteristics of pulp without filling. 

The breaking length and the burst index increase by adding pulp without filling. This is mainly due 

to the decrease of calcium carbonate content. It is also due to the active fiber, which contributes to the 

increase of specific surface are and the WRV number (see Figures 2 and 3). 

4. Conclusions 

In this study, we investigated the use of hardwood and softwood cellulose fibers treated in the  

in-situ precipitation of calcium carbonate as an additive in the manufacture of printing papers to 

replace conventional filling. 

Experiments planned for this purpose targeted paper pulp characteristics and paper sheets obtained 

with various fibers compositions, in which we varied the ratio between resinous and hardwood fibers 

additions with in-situ loading and adding resinous or hardwood fibers without filling. 

Results were analyzed by comparing them with a references series, in which we varied the report 

between resinous fibers with 40% addition of precipitated calcium carbonate (conventional loading) 

and hardwood fibers without filling, observing that: 

Retention level of calcium carbonate content in paper is greater for in-situ loading, compared with 

conventional loading, and addition of untreated fibers leads to improvement of retention for in-situ 

loading and makes it worse for conventional filling. 

Compared with conventional loading, at same content of calcium carbonate, fiber addition with in-situ 

loading (resinous or hardwood) leads to an increase in brightness and especially in paper opacity. 

Fibers of in-situ loading lead to higher porosity structures, and adding untreated fibers allows the 

control of this characteristic because air permeability of paper decreases linearly with the increase of 

fibers without filling, regardless of whether they are resinous or hardwood. 

Compared with conventional loading, at same content of calcium carbonate, mechanical strength 

properties for in-situ loading are lower because calcium carbonate precipitation in cell wall pores and 

in fiber’s lumen leads to fibers with lower specific surface area and water retention value. However, 

strength properties are improved by addition of fibers without filling, so those can be optimized over 

the other paper characteristics. 

The analysis of the X-ray diffraction patterns and SEM images show that the calcium carbonate 

particulates present a typical calcite diffraction pattern, with precipitation occurring in both the lumen 

and the wall pores of the cellulose fibers. 

The main conclusion is that in-situ loading fibers, no matter if they are resinous or hardwood, can 

be used as an additive for optimizing printing paper properties, especially the relation between 

resistance and optical properties. 
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