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Abstract: The applications of Bismuth Titanate (BixTiyOz) materials have been focused on 

their electronic and optical properties, but with respect to the use of these compounds in 

applications like corrosion resistance, have been very few or nonexistent. For this reason, in 

the present investigation BixTiyOz thin films were deposited using RF magnetron sputtering 

onto silicon wafers, stainless steel 316L, and titanium alloy (Ti6Al4V) substrates, in order to 

carry out a study of the corrosion behavior of this compound. The structural properties of the 

coatings were studied through X-ray diffraction (XRD), the morphology was determined 

using Scanning Electron Microscopy (SEM), the corrosion resistance behavior of the coated 

and uncoated substrates was evaluated via the Potentiodynamic Polarization technique, and 

surface chemical composition was evaluated through X-ray photoelectron spectroscopy 

(XPS). The XRD results indicated that the films were amorphous. The SEM micrographs 

showed that the deposited films were homogeneous, but in some cases there were cracks. 

The potentiodynamic polarization technique showed that the corrosion current in the coated 

substrates decreased by an order of two magnitudes with respect to the uncoated substrates, 
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but in both cases the corrosion mechanism was pitting due to the pores in the film. The XPS 

analysis shows that the deposited films contain both Bi
3+

 and Ti
4+

. 
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1. Introduction 

Bismuth Titanate (BixTiyOz) compounds have been the subject of many studies due to their 

ferroelectric, piezoelectric and optical properties, which make them interesting materials for the 

fabrication of optical devices, ferroelectric memories, and lead-free piezoelectric sensors and  

actuators [1,2]. For instance, Bismuth Titanate (Bi4Ti3O12) is a material with an Aurivillius crystal 

structure, which in turn is composed of fluorite-type layers and perovskite-type layers. At 

approximately 948 K, the compound undergoes a phase transition, from a ferroelectric to a paraelectric 

phase. Within the Aurivillius family, this compound is the object of a lot of attention, due to its 

interesting ferroelectric properties, which make it a formidable candidate for the nonvolatile memory 

and dynamic memory of computers [3]. The production of this configuration of Bismuth Titanate 

covers a large number of techniques both physical vapor deposition (PVD) and chemical vapor 

deposition (CVD) and forms (from thin films to ceramic forms). This material exhibits an anisotropic 

behavior, which opens even more the possibilities for fabricating new forms of it, for instance 

Bi4Ti3O12 ceramics with grains aligned in certain directions through the tape-casting technique or those 

created by employing external parameters such as magnetic fields or pressure [4–6]. Another 

configuration of Bismuth Titanate compounds is the called the Pyrochlore structure (Bi2Ti2O7), which 

don't exist in the Bi2O3/TiO2 equilibrium phase diagram [7]. Several morphologies of the Bismuth 

Titanate Pyrochlore structure, such as nanowires, nanospheres, nanoparticles, nanotubes, etc., have 

been reported by many authors, and also a large number of fabrication techniques have been 

documented, such as the co-precipitation method and the template-free hydrothermal process, inter  

alia [8]. Research on applications for this phase of Bismuth Titanate is focused on photocatalysis, due 

to the fact that it is capable of decomposing a wide variety of organic and inorganic pollution and toxic 

materials, which might solve both environmental and energy problems in the future [9]. However, 

exploitation of the rest of the properties of this compound has been object of research for some groups; 

for instance, its high permittivity and significantly low current leakage make it a promising alternative 

for gate insulating layers in advanced MOS transistors [10]. Besides the two Bismuth Titanate phases 

described above, another phase of this material exists, the Bi20TiO12 phase. This phase belongs to the 

sillenite family compounds. This phase, together with the above-named Bi4Ti3O12 and Bi2Ti4O11, are 

the only equilibrium phases among the large variety of Bismuth Titanate compounds; however, the 

Bi12TiO20 phase, like the Bi2Ti2O7 phase, has interesting photocatalytic properties, this last being, as 

said before, a phase that is nonexistent in the Bi2O3/TiO2 equilibrium phase diagram [11,12]. For this 

compound, besides its photocatalytic properties, possible applications related to its electro-optic, 

acousto-optic, and piezoelectric properties have been researched, and it is also important to note that 

this phase exhibits a higher sensitivity for red light and a lower optical activity Q, which is favorable 

for the development of many devices [13]. 
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Although the structural behavior, optical properties, photoconductivity, and dielectrical properties 

have been extensively studied, the number of studies devoted to the corrosion resistance of these 

materials is still small. In the present paper, we present preliminary results with respect to the 

corrosion resistance of amorphous bismuth Titanate. 

2. Experimental Procedure 

The equipment used to grow BixTiyOz thin films was an Alcatel HS 2000 RF sputtering system with 

a balanced magnetron 101.6 mm in diameter (see Figures 1 and 2), which was described in a previous 

paper [14]. The BixTiyOz thin films were obtained from a 101.6 mm × 6.35 mm Bi4Ti3O12 (99.9%) 

target (Plasma Materials). The parameters used during the deposition process were: base pressure  

4.0 × 10
−3

 Pa, total working pressure 7.4 × 10
−1

 Pa, deposition time half an hour, and target-substrate 

distance 50.8 mm. We studied the influence of several deposition parameters, such as power supplied 

to the target (from 50 W to 200 W), substrate temperature (which varied from 293 K to 623 K), and 

argon (99.999%) flow (from 5 sccm to 25 sccm). The structural characterization of the thin films was 

performed through X-ray diffraction (XRD) with a Phillips diffractometer operated at 30 kV and  

20 mA, working in the Bragg-Brentano configuration and using Cu Kα radiation. X-ray photoelectron 

spectroscopy (XPS) data were recorded using a CLAM2 analyzer under a vacuum better than  

1 × 10
−6

 Pa using Mg Kα radiation and constant pass energy of 20 eV. The binding energy scale was 

calibrated using the C 1s signal from the adventitious carbon layer, which was set at 284.6 eV. The 

equipment used to carry out the potentiodynamic polarization tests was a Gamry Instruments reference 

600 potentiostat, which serves also as a galvanostat, zero resistance ammeter, and frequency analyzer. 

The reference electrode used in this test was a Saturated Calomel Electrode (SCE), accompanied of a 

Platinum electrode; and as a work electrodes were used the samples. The preparation of the samples 

was carried out in the following order: cleaning of samples by immersing them in isopropyl alcohol in 

an ultrasonic bath for 5 min, drying (with dry air), mounting of samples on the galvanic cell, and 

finally placing the galvanic cell inside a Faraday cage in order to minimize the effects of the magnetic 

and electrical fields in the environment. Analysis of the potentiodynamic polarization curves was done 

with Gamry Echem Analyst software. 

Figure 1. Alcatel HS 2000 RF sputtering system. 
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Figure 2. Deposition chamber.  

 

3. Results and Discussion 

XRD patterns recorded from the films grown onto silicon wafers, stainless steel 316L, and titanium 

alloy (Ti6Al4V) substrates exhibited the amorphous phase, this is probably due to the thermodynamic 

conditions, which did not allow the formation of a crystalline phase. 

Figures 3–5 show representative XPS spectra recorded from the BixTiyOz films grown. Figure 3 

shows a Bi 4f high resolution spectrum; this spectrum consists of a spin-orbit doublet with binding 

energies of 158.9 eV (Bi 4f7/2) and 164.2 eV (Bi 4f5/2). These binding energies are very similar to those 

characteristic of Bi2O3 [15], and are compatible with the presence of Bi
3+

 in the coating. Figure 4 

shows a Ti high resolution spectrum; this spectrum consists of a spin-orbit doublet with binding 

energies of 458.3 eV (Ti 2p3/2) and 464.0eV (Ti 2p1/2). These binding energies are typical of TiO2 [16], 

and therefore the result indicates that the coating contains Ti
4+

. Additionally, this spectrum shows 

another peak centered at 465.0 eV that corresponds to the Bi 4d3/2 core level [17,18] of Bi that overlaps 

with the Ti 2p spectrum. Finally, the XPS O 1s data are shown in Figure 5. The spectrum was fitted 

considering three contributions: a dominant one located at 530.1 eV, characteristic of metal-oxygen 

bonds (Ti–O, Bi–O) [15,19], a second one located at 531.7 eV, which is typical of OH– groups [20], 

and a third at 532.9 eV, which is compatible with the presence of water absorbed into the film [21]. 

Therefore, although the XRD data do not show peaks that could be attributed to any mixed  

bismuth-titanium oxide, the XPS data demonstrate that the coatings contain both Bi
3+

 and Ti
4+

 and are 

therefore compatible with the presence of such an oxide. Unfortunately, the strong overlap of the Bi 

4d3/2 peak with the Ti 2p spectrum precluded accurate determination of the stoichiometry of the 

deposited phase. These results were obtained for the coating deposited on the titanium alloy, stainless 

steel 316L, and silicon wafers. 

We would like to remark that the XPS data recorded from the materials subjected to the corrosion 

tests are essentially the same as those recorded from the freshly-coated materials, indicating that the 

deposited oxides are chemically inert and do not suffer degradation under the corrosion  

conditions used. 
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Figure 3. Bi 4f X-ray photoelectron spectroscopy (XPS) spectrum recorded from the coating. 

  

Figure 4. Ti 2p XPS spectrum recorded from the coating. 

 

Figure 5. O 1s XPS spectrum recorded from the coating. 
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Figure 6 shows the surface of the films. The micrograph allows us to determine that the surface of 

the films is formed by pores of 5 μm of average size cracks and not congruently melted material. 

Figure 6. Scanning Electron Microscopy (SEM) micrograph of the Surface films. 

 

Figure 7 shows the transverse section of the films. The micrograph allows us to establish that the 

films have an average thickness of 233 nm. 

Figure 7. SEM micrograph of the transverse section of films. 

 

Figures 8 and 9 show the anodic and cathodic polarization curves recorded from the coated and 

uncoated substrates, respectively, in NaCl (3%) solution for a period of 30 min. The potentiodynamic 

polarization measurements taken at 2 mV/s are shown in Table 1. 
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Figure 8. Potentiodynamic polarization curves recorded from stainless steel 316L coated 

(green and orange lines) and uncoated (Black line).  

 

Figure 9. Potentiodynamic polarization curves recorded from the titanium alloy (Ti6Al4V) 

coated (Blue and red lines) and uncoated (Black line).  

 

Table 1. Values of the potentiodynamic polarization measurements. 

Sample Icorr (nA) Ecorr (mV) Corrosion rate (mm/y) 

Stainless Steel 316L uncoated 10.60 −161 6.299 × 10−4 

Stainless Steel 316L coated 1.840 −193 1.097 × 10−4 

Titanium Alloy uncoated 6.960 −247 4.166 × 10−4 

Titanium Alloy coated 0.028 −226 1.676 × 10−6 
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These results indicate that the BixTiyOz coating that was produced exhibits a significant decrease in 

corrosion current as compared with that observed in the bare substrates. This decrease is of about one 

order of magnitude in stainless steel and two orders of magnitude in the titanium alloy. 

Moreover, the corrosion rate was estimated to decrease about two orders of magnitude in stainless 

steel and approximately three orders of magnitude in the titanium alloy. These values suggest that 

BixTiyOz films have a considerable corrosion protection effect. However, the corrosion mechanism is 

due to the crevice corrosion effect, which is a consequence of the presence of cracks in the surface of 

the films as evidenced in SEM micrographs. These cracks allow the electrolyte to penetrate to the 

substrate and attack it. 

4. Conclusions  

BixTiyOz amorphous thin films were grown, and their corrosion resistance was assessed. The 

preliminary results allowed us to establish that this coating is potentially useful as a protective layer for 

materials or tools that function in chemically aggressive environments. 
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