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Abstract: The δ phase of plutonium with the fcc structure exhibits an unusual negative
thermal expansion (NTE) over its narrow temperature range of stability, 593–736 K. An
accurate description of the anomalous high-temperature volume effect of plutonium goes
beyond the current capability of electronic-structure calculations. We propose an atomistic
scheme to model the thermodynamic properties of δ-Pu based on the two-state model of
Weiss for the Invar alloys, inspired by the simple free-energy analysis previously conducted
by Lawson et al. The two-state mechanism is incorporated into the atomistic description
of a many-body interacting system. Two modified embedded atom method potentials are
employed to represent the binding energies of two competing electronic states in δ-Pu.
We demonstrate how the NTE takes place in δ-Pu by means of Monte Carlo simulations
implemented with the two-state mechanism.

Keywords: plutonium; negative thermal expansion; Invar; Weiss model; modified embedded
atom method; Monte Carlo method

1. Introduction

Plutonium has six equilibrium solid phases at atmospheric pressure. The fcc phase of plutonium
called δ-Pu exhibits an unusual negative thermal expansion (NTE) over its narrow stability range at high
temperatures, 593–736 K. This phase is also known for its wide range of macroscopic anomalies, such
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as extraordinarily high elastic anisotropy, largest atomic volume (albeit the only close-packed structure
among the allotropes), strong elastic softening at elevated temperature, and extreme sensitivity to dilute
alloying. In spite of considerable advances in electronic-structure calculations over the past decades, an
accurate description of the thermodynamic properties of plutonium goes beyond the current capability of
the approach. Monte Carlo (MC) simulations combined with an effective interatomic potential can be an
excellent alternative to study the thermodynamic equilibrium of materials from the atomistic perspective.
While many suggestions have been put forward to understand the atomic mechanisms for the NTE
of materials, those that rely solely on large transverse vibrational amplitudes (such as the “tension”
effect [1], or the “rigid unit modes” [2]) are inappropriate to account for the NTE of the bulk close-packed
structures at high temperatures [3]. Hence, we must look for a non-vibrational cause for the anomalous
thermal expansion of δ-Pu.

The iron-based Invar alloys are perhaps the best known examples of simple fcc crystals with unusual
thermal expansion. The term “Invar” is originally linked to the nearly “invariable” thermal expansion
observed in the Fe-Ni system of 35 at.% Ni near room temperature, first discovered by Guillaume [4],
but it is often used generically to refer to iron-rich alloys showing abnormal temperature variations in
volume [5]. Weiss [6] proposed a simple model to explain the anomalous thermal expansions of the
Invar alloys, which postulates that fcc iron can exist in two magnetic states, closely separated in energy:
an antiferromagnetic state with a low magnetic moment and a ferromagnetic state with a high magnetic
moment. In this model, it is the excess entropy associated with the thermal excitations between the two
magnetic states that is responsible for the unusual thermal expansion of these alloys. The existence of
such stable, nearly degenerate stable magnetic states in fcc iron was later supported by density-functional
theory calculations [7,8]. Although the Weiss model is phenomenological in nature (in the sense that it
does not require the exact details of magnetism but only two competing energy states), it has achieved
remarkable success in describing a wide variety of characteristic thermodynamic behaviors of iron and
its alloys, including their phase stabilities as well as thermal expansions [9–13].

An analogy to the Invar alloys has been constructed for δ-Pu in the course of accumulating knowledge
about its electronic structure. Johansson suggested that the 5f electrons in Pu straddle the transition
from itinerant (conductive, bonding) to localized (magnetic, chemically inert) states in the actinide
series [14]. This feature is also ingeniously indicated in the rearranged periodic table by Smith and
Kmetko [15], where the elements in the d and f electron series are diagonally divided into two categories
with either itinerant or localized electrons; however, some elements along the diagonal, such as Fe
and Pu, belong to neither of these categories because of their elusive electronic nature. With regard
to the 5f series, the light actinides up to Pu are characterized by the itinerant 5f electrons, while in
the heavier actinides those electrons tend to be localized. Eriksson et al. [16] described the transition
from the itinerant to localized electronic behavior as progressively taking place within Pu, and the
δ phase encompasses a variety of competing electronic configurations in both itinerant and localized
states. The cause of the characteristic thermodynamic properties of δ-Pu analogous to the Invar alloys
was anticipated in their study. The presence and role of magnetism in plutonium are subjects of great
controversy [17–24]. As remarked above, however, the application of the Weiss two-state model is not
restricted to magnetic systems. Indeed, Lawson et al. [25,26] adopted the effective two-state picture to
describe the anomalous temperature dependence of the thermodynamic properties in the δ phase of Pu
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and Pu-Ga alloys in terms of a simple free-energy model. Although a full understanding of the electronic
nature of plutonium remains a major challenge, we may hold an interpretation of the two states present
in the δ phase as a competition between electrons with different degrees of delocalization, as suggested
in References [16,22,26–30].

In the present study, we develop a novel atomistic scheme to model the δ phase of elemental plutonium
and demonstrate how its NTE takes place at high temperatures. We employ two sets of modified
embedded atom method (MEAM) potentials [31] to represent the interaction between the Pu atoms
of distinct electronic states in the fcc structure in accordance with the Weiss picture. The idea behind the
present scheme is inspired by the aforementioned approach taken by Lawson et al. [25,26]. While the
simple isotropic free-energy model in Reference [26] had a striking success in explaining the unusual
temperature variation of the thermal expansion and stiffness, the present atomistic modeling relying on
effective interatomic potentials is more general in describing the full equation of state for a solid, in
particular its sensitivity to shear deformations, as well as to the creation of defects, which is one of key
elements for simulating radiation damage effects [32–34]. In Section 2, we first discuss a scheme to
incorporate the Weiss two-state mechanism into the MC simulation of a many-body interacting system.
We then demonstrate in Section 3 that anomalous thermal expansion of δ-Pu can be correctly modeled by
means of the MC simulation implementing the two-state mechanism. Finally, conclusions and remarks
are given in Section 4.

2. Simulation Methods

2.1. Two-State Model Description of Many-Body Interacting Systems

Despite the appealing simplicity of the Weiss model, the idea has rarely been discussed in the context
of atomistic modeling. A notable exception is the work by Gruner et al. [35], in which the Weiss picture
is employed to model the characteristic thermoelastic properties of the Invar alloys. In this approach,
utilizing two Lennard–Jones (LJ) potentials assumed to represent the low- and high-magnetic moment
states, the magneto-volume coupling is incorporated by switching from one LJ potential to the other,
according to local-moment alignments determined by an Ising-like interaction. Although this study
was able to demonstrate the non-trivial thermodynamic behaviors of the Invar alloys, the pairwise LJ
potential is too simple to account for the details of the complex properties inherent to metallic systems.
More recently, Yokoyama and Eguchi [36] explored a similar idea in their study of the low-temperature
thermal expansion of the Fe-Ni Invar alloy by means of embedded atom method (EAM) potentials.

Plutonium is a highly covalent material due to the strong directionality of the f-electron orbitals,
and therefore we employ the MEAM potential [37–39] to capture the angular dependence of electron
densities. Baskes [31] previously developed a MEAM potential that reproduces numerous features of the
element. The details of the MEAM formalism have been extensively discussed in the literature. Below
we develop an MC scheme to incorporate the two-state mechanism into atomistic modeling similar to the
approach pursued in Reference [36] but discuss the background rationale that was not addressed in the
reference. Specifically, we discuss the two vital elements in implementing MC simulations: a statistical
ensemble to simulate the system, and the form of the probability density pertinent to the ensemble.
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In the two-state model description, we assume that δ-Pu is effectively characterized by two
competing binding energy curves corresponding to distinct electronic states, in line with first-principles
studies [16,22,25–30]. We henceforth refer to these electronic states as States 1 and 2 for simplicity.
Thus, the total energy of this system is no longer a single-valued function of a given configuration, and
each of the energy states E1 and E2 individually depends on volume. (The approach taken here may
be contrasted with the two-band model [40,41], where the mixtures of different bands result in a single
electronic surface, upon which molecular dynamics is performed. In the present approach, there are two
separate electronic states that individually couple to an atomic configuration.) In accordance with the
Invar alloys, we consider that State 1 is lower in energy but higher in equilibrium volume than State 2,
by ∆E and ∆V , respectively. The energy-volume relations of these states are illustrated in Figure 1.
The system in this description is not essentially different from a simple binary alloy if we interpret the
atoms in each state as those with distinguishable “chemical identity” or “type”, as appropriately coined
“self-intermetallic” by Lawson et al. [42]. Here, the state (or type) of the atoms is subject to change
from one to the other under the influence of thermal agitation or chemical alloying, such that the number
of the atoms in each state N1 and N2 is not held fixed but varies, while the total number of atoms N
is conserved.

Figure 1. Binding energy curves E1(V ) and E2(V ) for the two competing electronic states
in an effective two-state description of δ-Pu. ∆V is the difference between the equilibrium
volumes V1 and V2, while ∆E (=E(V2)−E(V1)) is the energy separation at equilibrium for
the two states.
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To implement MC simulations, a statistical ensemble must first be specified. Here, we wish to
simulate the system at constant external pressure p and temperature T , so as to find the equilibrium
volume and fraction of the atoms in each state at those p and T . Such an ensemble is known as the
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semi-grand ensemble [43,44]. In order to find the condition for the thermodynamic equilibrium, consider
the Gibbs free energy per atom, G(x), as a function of fraction x(=N1/N) of the atoms in State 1,

G(x) = xµ1 + (1− x)µ2 (1)

where µ1 and µ2 are the chemical potentials of states 1 and 2, respectively. The equilibrium condition
follows directly from the Gibbs–Duhem relation:(

∂G(x)

∂x

)
N1+N2, p, T

= µ1 − µ2 = 0 (2)

i.e., the relative chemical potential between States 1 and 2 is set to be zero. In some common applications
of the semi-grand ensemble such as free surfaces of a binary alloy [45], the relative chemical potential
is specified such that the bulk-like composition of the alloy is overall maintained. In contrast, we set
the relative chemical potential to zero in the present context in order to let the system optimize its
composition at equilibrium. Thus, a trial move where an atom changes its identity can be performed as
though the factor involving the relative chemical potential is irrelevant in the Metropolis acceptance rule
discussed below.

A certain ambiguity seems to be involved in the question of how the two-state picture can be
incorporated into a system with many-body interactions. Recall that the original context of the Weiss
model postulates that the system is essentially described as a simple Schottky two-level system, whereN
independent atoms individually take either of two energy levels E1 and E2(>E1), separated from each
other by ∆E. The N -particle partition function ZN is thus a product of one-particle partition functions
Z1 of each atom:

ZN = (Z1)
N = (g1 e−βE1 + g2 e−βE2)N (3)

where β=(kBT )−1 (kB is the Boltzmann constant), and g1 and g2 are the degeneracies of States 1 and
2, respectively. These parameters can be determined from the values of magnetic moments in the case
of the Invar alloys [6]. In reality, the atoms in solids are not independent but interact with each other
through interatomic forces, hence Equation (3) cannot be utilized as it is when a system consisting of
interacting atoms is simulated.

Let us denote by {rl} an atomic configuration {r} = {r1, r2, . . . , rN} with a configuration of states
(or types) {l} = {l1, l2, . . . , lN}, each of whose components is either 1 or 2 for a two-state (or binary)
system. In the EAM-type models, including the MEAM, the total energy E of a system for a given
configuration {rl} is given by

E({rl}) =
N∑
i=1

[
Fli [ρ̄i] +

1

2

∑
j 6=i

Φlil′j
(rij)

]
(4)

here, Fli is the energy to embed an atom i in the state li into its host electron density ρ̄i, and Φlil′j
(rij)

is a pair interaction between the i-th and j-th atoms, respectively in the states li and l′j , separated by rij .
In common with any N -scaling energy expression, E in the EAM-type models can be written as a sum
over the energies of individual atoms Eli(=Fli + 1/2

∑
j 6=i Φlil′j

):

E({rl}) =
( N∑
i=1

Eli

)
({rl}) (5)
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even though the energy of each individual atom depends on the configuration of the environmental
atoms. We propose to express the N -particle partition function in the present context by analogy with
Equation (3), such that

ZN =
∫

dNrl
N∏
i=1

[
g1 e−βEli=1({rl; li = 1}) + g2 e−βEli=2({rl; li = 2})

]
(6)

where {rl; li} stands for a configuration {rl}with the i-th atom in state li, and the integration is taken over
all possible combinations of {rl; li}. It follows that the probability to find the system at a configuration
{rl; li} is given by

ρ({rl; li}) ∝ gli e−βEli ({rl; li}) (7)

thus, one can sample the distribution according to the following Metropolis acceptance rule:

acc(li → l′i) = min
{

1,
gl′i e

−βEl′
i ({rl; l′i})

gli e−βEli ({rl; li})

}
(8)

where a trial move is attempted by switching the state of the i-th atom from li to l′i (6=li) for a given
atomic configuration {r}. Trial moves of this type are implemented in conjunction with those in the
scaled-atomic coordinates and the volume of the periodic cell to simulate the full phase space of the
isobaric-isothermal ensemble.

2.2. Computational Details

We perform classical MC simulations with parallel tempering using 32 independent replicas of
isobaric-isothermal ensembles, each of which differs in temperature, ranging from 20 K to 1,300 K,
with equal incrementation. The external pressures of all replicas are set to zero. A periodic cell
containing 500 atoms is used to represent a fcc single-crystal bulk system at each temperature. The
general implementation of the simulations conducted in this study is similar to that previously presented
in Reference [46], except that an extra type of trial moves to exchange electronic states (Equation (8))
is included. One of the MC moves among the scaled coordinates, the volume of the simulation cell, or
the electronic states is randomly attempted according to certain probability ratios (0.9:0.05:0.05) within
each replica. With the aim of accelerating the equilibrium, parallel tempering is executed on a fixed
schedule of every 100 MC moves, where atomic configurations are exchanged between adjacent replicas
at both lower and higher temperatures in succession. We utilize the method of block averages, where
each block consists of a half million trial moves. Data were collected from 20 blocks after discarding
the first few blocks. Quoted statistical errors in the presented figures indicate one standard deviation.

With regard to state 1, we adopt the MEAM parameters published in Reference [31], except for a
modification to have t3 = 0 [47]. This parameter is correlated with the inversion symmetry in the crystal
structure primarily pertinent to the monoclinic α phase, and its original value (−0.8) stabilizes the α
phase over the δ phase at low temperatures, in agreement with experiment. This modification is not
absolutely necessary in the present analysis of the high-temperature properties of the δ phase, but it
allows us to examine the overall temperature variations of thermodynamic properties of this phase even
outside the actual range of stability. To represent state 2, we slightly modify the potential for state 1
such that it has a higher binding energy and smaller equilibrium volume than state 1, by ∆E = 60 meV
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(∼700 K) and ∆V = 4.96 Å
3, respectively. State 2 is also assumed to have slightly smaller stiffness

by 30%.
High-temperature experimental volume was selected for the initial volume of the system at all

temperatures. All the Pu atoms are initially in state 1 at all temperatures. We determine the cross
interaction ε12 between the atoms in the two states by introducing the mixing energy ∆, such that

ε12 =
ε1 + ε2

2
−∆ (9)

where ε1 and ε2 are the sublimation energies of states 1 and 2, respectively. Allowing ∆ to be a free
parameter, we investigate the simulation data presented below for various values of the parameter. For
convenience, other parameters associated with the interactions between the atoms in the two states are
determined by simple arithmetic means. In the absence of knowledge concerning the degeneracies in
the two electronic states, the ratio of these parameters is assumed to be unity. Detailed effects of the
arbitrarily chosen parameters are not examined in this study.

3. Simulation Results

In the analysis given below, we address the temperature dependence of equilibrium properties with a
varying degree of segregation between the atoms in the two states. Five values of mixing energy ∆ are
selected from the range between +0.05 and +0.24 eV. All values are taken to be positive such that the
atoms in different states are segregated in the absence of thermal agitation, for the relatively moderate
energy separation adopted in this study, ∆E/kB ∼700 K, in order to ensure that state 1 is fully occupied
at 0 K or sufficiently low temperatures in all cases.

The temperature dependence of the relative occupation of state 2 predicted by the simulations is shown
in Figure 2. A similar curve directly obtained from the simple Schottky two-level statistics Equation (3)
(with ∆E/kB ∼700 K and g1/g2 = 1) is also included in the figure for reference (labeled as “Schottky”).
While virtually no atoms are excited at all temperatures in the case of the strongest segregation,
∆ = 0.24 eV, the atoms in state 2 come into the system at finite temperatures as the segregation is
weakened by reducing the magnitude of ∆. Hence, all the data for ∆ = 0.24 eV presented below can
essentially be interpreted as what is expected for the simulations with the system consisting of only
State 1. Although these curves predicted by the present model are qualitatively similar to that of the
simple two-level model, the former shows more complicated dependencies on the parameters in the
interatomic potentials, which are absent in the latter.
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Figure 2. Calculated temperature dependence of the relative occupation of state 2 for a
varying value of the mixing energy ∆ (in eV). A similar curve obtained from the simple
two-level statistics (with ∆E/kB ∼700 K and g1/g2 = 1) is also included for reference
(labeled as “Schottky”).
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In Figure 3, the predicted temperature variations of the isobaric heat capacity per atom (cp, scaled
by kB) for the five mixing energies are compared with the experimental data in the stability range of
δ-Pu [48]. These heat capacity data, as well as the thermal expansion data discussed next, were obtained
from the root-mean square fluctuations of relevant thermodynamic variables [49]. These quantities are
associated with the second derivatives of the free energy and hence the calculated data are relatively
less converged than the other data presented in this study. While the main focus of the present study
is the reproduction of the anomalous behavior of the δ phase at high temperatures where classical MC
simulations are legitimate, the data computed from the classical simulations should not be taken to be
realistic below the Debye temperature (∼120 K for Pu-2 at. % Ga [50]), where both the heat capacity
and thermal expansion vanish as temperature approaches absolute zero. Classical simulations by no
means capture such behavior governed by quantum effects. The predicted heat capacity data exhibit
Schottky-like peaks as the fraction of the atoms in the higher state changes with temperature (Figure 2),
similarly to the case of the simple two-level model, in which the excess contribution to heat capacity is
directly proportional to the temperature derivative of the fraction [13]. The position of the peaks shifts
towards lower temperature as the atoms are excited by lower thermal energy with decreased ∆.
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Figure 3. Calculated temperature dependence of the heat capacity per atom, scaled with the
Boltzmann constant, for a varying value of the mixing energy ∆ (in eV). The experimental
data [48] in the stability range of δ-Pu are also included for comparison.
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There are at least two reasons for the discrepancy with the experimental data. First, the MEAM
potential of Reference [31] adopted in this study exhibits a pronounced dip in the heat capacity curves
at low temperatures. This effect reduces their values from what is anticipated from the Dulong–Petit law
(cp/kB ∼3), whereby the overall temperature profile of the heat capacity is lower than the experimental
data, even though it is incremented with the excess contribution from the thermal excitation between the
two states. The dip is most likely a mere artifact in this particular parametrization of the potential, and
is due to neither the intrinsic nature of the MEAM model nor the necessary outcome of the two-state
mechanism. Secondly, the conventional interatomic potential models, including the MEAM, neglect
any effect of the thermal excitation of electrons to states above the Fermi energy. Experimentally, the
electronic contribution to the entropy is substantial, however [48,51]. Although the present model
partially accounts for the electronic contributions originating from the mixing of the two states, neither
of these states capture the electronic thermal excitation in the above sense.

Figure 4 shows the temperature dependence of the linear coefficient of thermal expansion (CTE) in
comparison with the experimental data [48]. The CTE usually exhibits a similar temperature profile to
the heat capacity in many materials, but it is not in the general case, especially when there is NTE [52].
It can be seen however that the positions of the negative peaks in the CTE are well synchronized with
that of the positive peaks of the heat capacity in Figure 3. In the two-state description, thermal expansion
is suppressed when a significant number of atoms are excited to the small-volume state. This effect
of volume contraction counteracts the usual anharmonic effect of the lattice vibrations which favors
increase in volume. The former effect can override the latter effect when the volume difference between
the two states is sufficiently large, such that thermal expansion is driven to a negative value. This
mechanism is schematically depicted in Figure 5. The CTE curves predicted from the present simulations
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are qualitatively similar to those previously described by the free-energy analysis [26], apart from the
discrepancies at low temperatures due to the lack of the quantum effect. We note that the unrealistically
steep decreases in the calculated CTE curves at very low temperatures are related to the unphysical dip
in the heat capacity (cf. Figure 3) discussed in the last paragraph.

Figure 4. Calculated temperature dependence of the linear coefficient of thermal expansion
for a varying value of the mixing energy ∆ (in eV). The experimental data [48] in the stability
range of δ-Pu are also included for comparison.
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Figure 5. Schematic illustration of how volume contraction occurs in the Weiss two-state
picture. The overall volume of the system is reduced as more atoms are excited to the
small-volume state at higher temperature. This effect is in competition with the usual volume
expansion due to the anharmonic effect of lattice vibrations. The fraction of small-volume
atoms is exaggerated for visual effect in this representation.

The predicted temperature variation of the atomic volume is shown in Figure 6, along with the
experimental data [48]. Although it may appear somewhat questionable to predict a high-temperature
atomic volume using the MEAM potential (for state 1) whose 0 K volume was determined from the
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high-temperature experimental volume, first-principles calculations [16,53] predict the 0 K volume at
the ground state to be nearly comparable to the experimental value. The curve for ∆ = 0.03 eV agrees
with the experimental values around the middle of the stability range of the δ phase, but the negative
slope is overestimated in the data, consistent with the excessively negative values of the corresponding
CTE data for the ∆ seen in Figure 4.

In the original Weiss model relying on the simple Schottky two-level system, the change with
temperature in the fraction of the small-volume atoms is not characterized by a phase transition but a
crossover. That is, there is no discontinuity in the free energy, or any of its derivatives. Although it is not
obvious that this should be the case for the present system consisting of interacting atoms, neither the
first derivatives (Figures 2 and 6) nor the second derivatives (Figures 3 and 4) of the Gibbs free energy
appear to show any signs of discontinuities, even if a possible finite size effect is taken into consideration.

Figure 6. Calculated temperature dependence of the atomic volume for a varying value of
the mixing energy ∆ (in eV). The experimental data [48] in the stability range of δ-Pu are
also included for comparison.
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4. Conclusions

We have demonstrated that the unusual high-temperature thermal expansion of δ-Pu can be
reproduced by the MEAM potential in conjunction with an MC scheme that incorporates the Invar
mechanism based on the Weiss two-state picture. While the original Weiss model relies on the simple
two-level Schottky description, the mechanism has been generalized to a more realistic system with
many-body interactions. The key to the reproduction of the anomalous volume effect is the generation
of excess entropy associated with the thermal excitation between two competing electronic states with
distinct volume dependence. The simulation results are in qualitative agreement with the previous
free-energy analysis based on the Weiss model [26]. In concert with the growing fraction of the
small-volume atoms in the energetically higher state with increasing temperature, the heat capacity
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generates a typical Schottky-like anomaly. The thermal expansion is concurrently suppressed when the
atoms in the small-volume state are substantially populated in the system. When the volume difference
between the two states is sufficiently large, the effect of the volume contraction outweighs the usual
volume expansion due to the lattice anharmonicity so that NTE takes place at finite temperatures.

Owing to the lack of certainty in first-principles results, the model proposed in this study, at least
at the present stage of development, involves a certain degrees of arbitrariness, particularly in the
determination of the small-volume state and the cross interaction between the atoms in the two states.
Nevertheless, it offers a clear atomistic perspective on how competing electronic states present in δ-Pu
would affect its thermodynamic properties as a function of temperature. In this article we have limited
ourselves to discussing only the volume effects of unalloyed δ-Pu. The scheme presented in this
study is however envisaged to provide a robust analytical basis to address diverse phenomenological
aspects of plutonium and its alloys, including elasticity, dilute-alloying effects, and phase stability.
A comprehensive discussion of these topics will be given elsewhere [54]. The construction of the
reliable atomistic model of the equilibrium properties of δ-Pu presented in this work would mark an
important step towards an accurate description of more complicated problems in terms of large-scale
atomistic simulations.
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