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Abstract: Surface modification of polymers has become a vibrant field of research on 

account of a myriad of rationales which stimulated numerous efforts. The current paper 

serves as a condensed survey of the advances made through different approaches adopted 

for tuning the surface properties of polyvinyl chloride as a homopolymer extensively used 

on a large scale. Though it does not address all challenges involved, this paper 

communicates and highlights, through concise discussion, the findings of the efforts 

undertaken in recent decades. It is ultimately concluded with a perspective of the huge 

capacities and promising future directions. 
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1. Introduction 

Many interactions among different materials in contact take place at surfaces/interfaces. Besides the 

ambient factors such as pressure, pH and temperature, the interactions are largely controlled by 

interplay of surface hydrophilicity, topography, and chemical composition. This implies that 

manipulating the surface characteristics in terms of physicochemical aspects may guide the 
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interactions to a sought-after direction. A broad spectrum of applications are met spanning from simple 

coatings to complicated biological adsorptions [1,2]. 

Polyvinyl chloride (PVC) faces many challenges due to the hydrophobic nature of the polymer 

surface. The current opinion is that the surface hydrophobicity may bring forth severely adverse 

consequences, in particular when such materials are exposed to biological systems. This has motivated 

extensive research during recent decades seeking efficient means to figure out the problem [3]. A clear 

consensus of the findings points to exploiting the surface modification techniques as a straightforward 

solution for the issue which does not impair bulk properties [4,5].  

PVC is the second most widely used polymer in terms of consumption volume accounting for a 

global production of over 25 million tons per annum. It has mostly found applications in the medical 

field where it covers around 28% of total plastics use, ranked after polyethylene and before 

polystyrene [6]. The phthalate ester plasticizers typically used to soften PVC are considered as 

potential carcinogens and are inclined to leach away and and diffuse into the environment [7,8]. 

Besides intimate hydrophobicity and low surface free energy, PVC suffers from poor biocompatibility, 

unwanted protein adsorption, and bacterial adhesion [9]. To alleviate the severity of these problems, 

different approaches have been adopted. Of particular significance are those strategies based on 

surface treatment, whereby great advances have been made within the last three decades to fine-tune 

the surface properties and decrease the plasticizer migration. The focus of the current report is to 

present concisely the existing knowledge in the available literature surrounding the efforts made on the 

surface modification of PVC in terms of surface physics and chemistry followed by the  

intended applications. 

2. Strategies for PVC Surface Treatment 

Several strategies for PVC surface treatment are available. In some cases, it is necessary to utilize 

two or more techniques consecutively to gain the desired modification level. Nonetheless, all various 

methods for surface modification have more or less common interests from chemical and physical 

viewpoints. The methods engineer the surface by introducing superficial functionalities, by which 

many surface characteristics such as hydrophilicity, roughness, etc. can be regulated to a great extent. 

This often makes the controlled modification of the surface intended for a certain application a 

demanding project. In the following paragraphs, a short background is given on different techniques 

employed for the surface modification purpose. More comprehensive information can be found in 

notable reviews [4,5,10–20]. 

Plasma treatment is an extensively used technique of enormous potential for surface modification. 

Plasma is defined as a partially ionized gas containing free electrons, ions, and radicals, as well as 

neutral particles. It is an active environment where several different interactions between energetic 

particles and the surface may occur. The interactions are classified as plasma polymerization, plasma 

functionalization, and plasma etching/ablation. In plasma polymerization, an organic monomer in 

solution or vapor phase is polymerized, that is, grown while attached onto the substrate by one end, 

and developed into a coating. In plasma functionalization, depending on the medium identity, various 

chemical groups are attached to the surface. The last interaction involves removal of the surface 

entities through strong collision with plasma particles [21–23]. 
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High energy irradiation category includes γ-radiation, β-irradiation (electron beam), and ion 

radiation. The latter is widely used to achieve either ion implantation at the top surface layer or to 

deposit coatings. For this purpose, several ions like hydrogen, noble gases, gold, etc. are employed. 

High energy photons can deliver surface radicals which act as initiating sites for subsequent 

functionalization. For the treatment of polymers, additional simultaneous chemical effects are also 

probable, e.g., free radical recombination and crosslinking, as well as chain scission [24–26]. 

Ultra violet (UV) treatment is widely applied as a surface modification technique usually in the 

presence of a photoinitiator/photosensitizer and induces a combination of functionalization and 

ablation reactions. UV can be put to use in various environments with different physical states. Surface 

grafting of polymers can be performed easily via this technique. The extent of surface modification 

may be well controlled by fine-tuning the irradiation time, monomer concentration, photoinitiator, and 

solvent. The solvent selection is very critical in this context, to avoid which the treatment can be run in 

vapor phase [27–29]. 

Exposure of the material surface to ozone gives rise to surface oxidization as a consequence of O3 

formation-decomposition combined reactions. This can be carried out also along with UV irradiation 

to favorably guide the reaction kinetics. However, degradation is an unwanted phenomenon which may 

arise after ozone treatment and can be controlled somewhat by adjusting the exposure time. The 

technique is usually employed as pre-treatment after which grafting of certain chemical entities can  

be accomplished [30–32]. 

A classic method of current use includes the wet chemical means, where chemical reactions are 

allowed to take place between a compound dissolved in an organic solution and polymer surface. 

Aminolysis and alkaline or acidic hydrolysis represent typical instances. Oxidation of the surface by 

hydrogen peroxide is regarded as a wet chemical method as well, where the introduced hydroperoxide 

entities serve as initiation sites for subsequent functionalization steps. Hydroxyl and carboxyl terminals 

are generated when the functionalities are hydrolyzed through bond scission [33].  

A recent technique of attraction is surface-initiated polymerization mostly fulfilled through wet 

chemical methods giving rise to brush-like structures. By this technique, grafting polymers onto solid 

substrates is feasible leading to the formation of high density, end-tethered polymer brushes. In usual 

cases, a surface-confined initiator is exploited for graft polymerization, provided that the reaction 

proceeds via state-of-the-art mechanisms like atom transfer radical polymerization (ATRP), a precision 

surface modification is then possible [34–38]. Polymer brushes can be prepared via the grating-to 

approach as well; however it usually yields low grafting density [16,39].  

The direct immobilization of natural entities such as biotin, heparin, insulin, and amino acids has 

also been carried out extensively in order to impart various biological applications. In this context, 

numerous bioconjugation techniques have been developed to facilitate the immobilization, among 

which carbodiimide coupling of carboxylic groups with primary amines is of paramount importance. 

Indeed, many attempts have focused on introduction of carboxylic groups onto the surface and then 

their activation in order to employ this coupling method [40,41]. Last but not least, a state-of-the-art 

approach for surface modification is self-assembly. It is described as a process by which a disordered 

system of preformed components develops an organized structure or pattern by virtue of specific, local 

interactions among the components themselves without external direction. As regards the surface,  

self-assembled monolayers can be constituted on the surface via hydrophobic interactions in this way. 
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In order for this method to be applicable on polymers, a block copolymer with an amphiphilic 

tendency is needed as an intermediate [19,20]. 

3. Research Highlights of PVC Surface Treatment  

The attributes of polymer surfaces are strongly correlated with respective physicochemical factors. 

It goes without saying that any surface treatment targets the properties in terms of two critical aspects, 

surface chemistry and physics, which also governs bioactivity, dielectric, optical, and mechanical 

properties. The current overview addresses the PVC surface modification reports from these two 

fundamental standpoints. 

3.1. Surface Chemistry 

Surface chemistry is the principal factor determining the majority of the polymer surface properties. 

It fundamentally refers to the molecular structure and organization at the surface which is also a 

measure of the propensity of the substance to undergo surface reactions [42]. The surface of virgin, 

pure PVC is mostly rich in C–C, C–H, and C–Cl moieties and is thus hydrophobic. The minimal 

defects which occur upon manufacturing cause oxidation (C–O), unsaturation (C=C), and branching. 

Surface chemistry can be altered via physicochemical interactions after almost any strategies 

mentioned above to make the PVC tailored for a specific application. It is noteworthy that plasticized 

grades of PVC also contain a considerable amount of single and carbonyl bonds which affect the 

surface polarity and might bring out some confusion when interpreting the chemical data after  

surface modification.  

The major research in this field has been conducted on the influence of plasma treatment under 

different working environments on PVC surface chemistry [43–66]. This may be because of the 

solvent-free basis of the method which is of importance from an environmental viewpoint. However, it 

lacks precision control on the surface chemistry and is usually expensive. It was seen that treating PVC 

surface in plasma led to the C–C, C–Cl, and C–H bonds scission since the induced energy exceeded 

the bonds dissociation energy [43–53]. Plasma exposure in an inert gas gave rise to the generation of 

metastable species, that is, carbon radicals (Figure 1) on PVC surfaces which could either form a 

crosslinked network or be oxidized to give new functionalities, in case the treated surface was exposed 

to air [43–58]. Provided oxygen or air was operated as the working gas, carbonyl, carboxyl, peroxide, 

and ester groups were most probable to form [59]. This is why the treated surface was found to be 

predominantly negatively charged, as demonstrated in Figure 2 [60]. It was observed that the level of 

the surface chemical changes directly depended on the plasma discharge voltage and inversely on the 

working pressure [44]. The sample position from the plasma source could affect the surface 

modification extent (Table 1). The researchers reported that plasma treatment in remote configuration 

could enhance radical reactions and hinder electrons and ion ablation interactions and found it more 

effective than direct plasma treatment when it came to the dechlorination of PVC films [61,62].  
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Figure 1. Electron spin resonance spectra of pristine and plasma-treated PVC surfaces 

(Reprinted with permission from [45]. Copyright 2008 Elsevier).  

 

Figure 2. Zeta potential values of (1) untreated PVC; (2) plasma-treated PVC; and (3) 24 h 

after plasma treatment. The last sample is indicative of recovery (Reprinted with 

permission from [60]. Copyright 2007 Elsevier).  

 

Table 1. X-ray photoelectron spectroscopy atomic composition of remote and direct argon 

plasma treated PVC at 60 W for 3 min (Adapted from Ru et al. [62]). 

Plasma type C1s Component (%) O1s Component (%) Atomic ratio 

 C–H 
O–C 
C–Cl 

C=O 
O–C=O

O=C O–C O/C Cl/C 

Untreated 83 15 2 – ~100 0.06 0.14 
Direct treatment 67 19 14 40 60 0.15 0.03 

Remote treatment 73 18 9 53 47 0.018 0.01 
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Post-plasma grafting and immobilization have been extensively carried out for subsequent PVC 

surface treatment [48–50,53,63–65]. Asadinezhad et al. [48–50] used diffuse coplanar surface barrier 

discharge (DCSBD) plasma to polymerize acrylic acid (AA) groups onto PVC surface in high density. 

The plasma generated surface radicals acted as the initiators for the acrylic acid radical graft 

polymerization in room temperature. The carboxyl groups of the polyacrylic acid brush were then 

exploited for further functionalization (Figure 3). Zhang et al. [53] coated PVC surface with bronopol 

and triclosan after argon plasma treatment and found that bronopol and triclosan were well attached to 

the activated surface while retaining their structure. Hu et al. [63] successfully immobilized 

benzyltrimethylammonium cationic groups onto PVC using low pressure argon plasma grafting, 

quarterization, and alkalization. Liu et al. [64] treated PVC under SO2/O2 gas plasma and found that 

sulfonic acid groups were selectively introduced onto the surface. Balazs et al. [65] effectively 

modified PVC films by monovalent silver through oxygen glow discharge plasma, followed by a  

two-step post-plasma treatment in sodium hydroxide and silver nitrate solutions (Scheme 1). The 

saponification with sodium hydoxide of esters produced sodium carboxylate and sodium phthalate 

salts. In some contrast to the foregoing reports, Anuradha et al. [66] could not find significant changes 

in surface chemistry of PVC after modifying by plasma glow discharge in vacuum. Although, when 

the polymer was exposed to plasma, it could expand and produce free volume among the chains; 

hence, the surface ions or segments could move into the free volume. 

Figure 3. A schematic graph of (a) DCSBD plasma device; (b) multistep approach pursued 

to modify PVC surface (Reproduced with permission from [50]. Copyright 2010 MDPI).  
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Scheme 1. Chemical modification of PVC through sodium hydroxide and silver nitrate wet 

treatments (Reprinted with permission from [65]. Copyright 2004 Elsevier).  

 

As an alternative to plasma exposure, high energy irradiation (electron, gamma, and UV radiation) 

has been utilized to alter the PVC surface in terms of chemistry meant for various intents [67–73]. 

Such methods, despite requiring rather expensive equipment, are also safe in terms of hazardous 

materials exposed to the living environment. Jung et al. [67] modified the PVC surface using ion 

irradiation by H+ ions to create surface patterning. They observed that severe chemical changes 

occurred due to dehydrochlorination and oxidation (Table 2). Elsewhere, Cota et al. [68,69] exposed 

PVC films to argon ion sputtering and observed a non-stoichiometeric chloride concentration profile 

implying the evolution of chlorine and explained that the electron beam-induced dissociation of the 

polymer surface accounted for this effect. Manfredini et al. [70] found that after electron irradiation, 

some hydrogen chloride gas was evolved from the surface of the plasticized PVC and polymer 

degradation took place faster. Sinha et al. [71] investigated the effect of gamma irradiation on PVC 

films and realized that the thermal stability of the PVC samples reduced because of C–Cl bonds 

scission. de queiroz et al. [72] could graft acrylic acid units on gamma-irradiated PVC surface. The 

gamma irradiation generated active radicals which could initiate acrylic acid chain polymerization in a 

surface-confined fashion. A similar procedure was attempted by another group of researchers to graft 

and copolymerize sucrose acrylate with benzophenone sensitizer activated with UV irradiation where 

the grafting was found to increase with time [73].  

Table 2. X-ray photoelectron spectroscopy data on surface composition of ion beam 

irradiated PVC at different intensities (Adapted from Jung et al. [67]). 

Ion beam intensity (ions/cm2) 0 1 × 1014 1 × 1015 1 × 1016 
C 1s component (%) 64.79 65.23 76.44 82.80 

C–C/C–H 49.70 50.04 57.34 68.79 
C–Cl/C–O 12.18 12.16 11.16 10.20 

C=O – – 3.77 – 
C=O–O 2.91 3.03 4.17 3.81 

O 1s component (%) 9.03 10.71 20.16 16.22 
Cl 2p component (%) 26.18 24.05 3.40 0.98 

[O]/[C] ratio 0.13 0.16 0.26 0.20 
[Cl]/[C] ratio 0.40 0.37 0.04 0.01 
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Ozone treatment has been tried successfully for PVC surface modification [74,75]. Ozone (O3) was 

either thermally or by irradiation decomposed to O2 and O radical which began the functionalization 

upon colliding with the surface molecules. Kurose et al. [74] reported that the selective 

hydrophilization by ozonation was achieved for those polymers having chlorides in their structures. A 

similar finding was also published by Okuda et al. [75] where they showed aliphatic and chlorine 

characteristic peaks were reduced in intensity after ozonation and found a significant amount of the 

chlorine ion released implying an oxidative degradation (Figure 4). 

Figure 4. Fourier transform infrared spectra of the PVC sample before and after ozonation 

(Reprinted with permission from [75]. Copyright 2007 Taylor & Francis).  

 

Wet chemical means have been widely employed to alter the surface chemistry of PVC [76–88] due 

to the flexibility in terms of methodology and inexpensiveness. Nonetheless, they are risky to the 

living environment since hazardous chemicals are often needed as solvents, catalysts, etc. It was 

generally observed that the surface selectivity and overall degree of modification depended essentially 

on the solvent quality, reaction time, and temperature [76–85]. Kurian et al. [76] carried out the 

surface modification of PVC from various sources with the ionic bonding of polyelectrolyte by 

exposing the polymer sheets to dilute zephiran chloride followed by immersing in polyelectrolyte 

solutions. Reyes-Labarta et al. [77] studied the chemical modification of PVC films with  

4-aminothiophenol (4-ATP) in dimethylformamide (DMF) aqueous solution and observed a 

concentration gradient of the modifier across the films. Also, a partial extraction of the plasticizer was 

detected. McGinty et al. [78] prepared hydrophilic PVC surface using physiosorption of 

azobisisobutyronitrile onto the surface followed by radical graft polymerization of a number of 

hydrophilic monomers. Sacristan et al. [79–81] examined the appropriate reaction conditions for the 
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selective surface modification of PVC films with sodium azide and 4-ATP and found that high surface 

selectivity was correlated with short reaction time, low temperature, and low solvent quality, while 

using a good solvent, higher overall degrees of modification with lower surface selectivity were 

achieved. Moreover, the modification degree was learned to be correlated with the depth as indicated 

in Figure 5.  

Figure 5. Depth profile of the modification degree obtained from Raman spectroscopy for 

PVC film treated with 4-ATP in DMF at 30 °C (Reprinted with permission from [80]. 

Copyright 2000 American Chemical Society).  

 

Elsewhere, Lakshmi et al. [82] immobilized thiosulphate groups onto PVC films using a phase 

transfer catalyst in aqueous media which led to the nucleophilic substitution of chlorine atoms by 

thiosulphate moieties (Figure 6). Also, the plasticizer leaching was detected when the PVC samples 

were exposed to the modifier. Likewise, James et al. [83] covalently bound thiocynate groups onto 

PVC films using sodium thiocynate which led to the nucleophilic substitution of chlorine by  

thiocynate groups.  

More efficient modifications have been attained using controlled chemistry via precision 

mechanisms such as ATRP [84–86]. Zou et al. [85,86] prepared poly(N,N-dimethylacrylamide) 

brushes on PVC sheets. To this end, primary amine groups were first introduced onto PVC surface by 

wet chemical modification with 4-ATP, followed by coupling of hydroxyl groups by a ring opening 

reaction of amine groups with glycidol. The ATRP initiator was then covalently coupled to the surface 

by an ester linkage, after which the surface-initiated ATRP of dimethylacrylamide was carried out 

(Scheme 2). Their studies showed that the surface initiation was a slow process and graft density 

gradually increased over time, so did the brush uniformity. They also found that both monomer 

concentration and reaction time were important for controlling the molecular weight and graft density. 

Self-assembly based on wet chemistry has also been used to modify the PVC surface by thin films 

formation on the polymer, where Zha et al. [87] produced multilayer coatings on PVC film using 

alternating deposition of iron and polysaccharides after immersing the films in 

cetyltrimethylammonium bromide. The multilayers were reported to be stable because of the 

electrostatic interactions. 
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Figure 6. High resolution spectra of S2p signal recorded by X-ray photoelectron 

spectroscopy from unmodified (a) and thiosulphate-substituted plasticized PVC sheet (b) 

(Reprinted with permission from [82]. Copyright 2002 Elsevier).  

 

Scheme 2. Incorporation of ATRP initiators and surface initiated ATRP on PVC substrate 

in four steps (HMTETA: hexamethyl triethylene tetramine; PDMA: poly 

(dimethylacrylamide) (Reprinted with permission from [86]. Copyright 2010 Wiley).  

 

Surface modification in the phases other than liquid has been performed, as well [88–90].  

D'yakova et al. [88] modified the surfaces of PVC films with vanadium and phosphorus-containing 
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groups via chemical gas modification in a flow-type reactor. Xie et al. [89] grafted bifunctional 

glycidyl methacrylate (GMA) monomer onto the surface of PVC after polymerization in a gas phase 

photografting reactor (Figure 7); heparin was then immobilized onto the poly (glycidyl methacrylate) 

segments. Zimmermann et al. [90] chemically tethered a thiol-substituted hydroxybenzophenone to 

PVC films in a solid-state reaction carried out at a temperature below the glass transition. It was 

observed that the chlorine atoms on the PVC backbone were substituted using a potassium thiolate of 

thiol-substituted hydroxybenzophenone.  

Figure 7. Schematic representation of gas-phase photografting reactor design (Reproduced 

with permission from [89]. Copyright 2002 Wiley).  

 

3.2. Surface Physics 

Surface physics is principally associated with the physical state of the surface, free energy, 

crystallinity, dynamics, and the topographical changes. Among them, morphology of the surface 

layers, as well as the free energy, stands out as two critical properties often analyzed [42]. As for virgin 

PVC, low surface free energy and usually smooth morphology have been unanimously evidenced as 

drawbacks for many applications and can be well tuned through appropriate surface  

modification routes.  

Almost the entire research works contributed to this area reported that the polar component of the 

surface free energy of PVC increased after the modification (Table 3) [91,92]. This increase was in 

principle attributed to surface chemical changes due to the introduction of functional groups and on the 

other hand was finely associated with topographical changes because of the ablation/etching. 

Table 3. The influence of air-plasma treatment for different periods on polar and dispersive 

components of the surface free energy for PVC films calculated based on various models 

and reported as an average (Adapted from Kaczemarek et al. [92]). 

Plasma duration (s) γd (dispersive part) (mN/m) γp (polar part) (mN/m) 

0 48.02 0.59 
2 21.99 42.71 
4 25.81 36.03 
7 25.90 43.23 
10 26.89 42.85 

 

lamp 

film water bath 

solution 
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Plasma treatment has been established to strongly affect the PVC surface properties in terms of 

physical aspects [43–51,57–60,92]. Exposure to Plasma has been found to slow down the plasticizer 

leaching away from the PVC bulk. Wen et al. [44] learned that the migration rate was dependent on 

plasma treatment time and working pressure. It was inferred that crosslinking of the surface layer led 

to the plasticizer migration hindrance. Kucherenko et al. [46,47] treated the PVC surface via corona 

discharge in air as well as plasma in an oxygen-nitrogen mixture and found a transition in surface 

morphology from crystalline to amorphous state. The observed changes in the morphology of the PVC 

film surface were attributed to its amorphization and oxidation, simultaneous with partial degradation 

on the polymer surface. Elsewhere, Anuradha et al. [66] found out that the PVC crystallinity was 

reduced upon exposing PVC surface to plasma treatment in vacuo. Also, the predominant increase in 

the grain size of the specimen after plasma treatment was attributed to the coalescence of the 

neighboring grains after plasma treatment.  

It was almost unanimously accepted that hydrophilicity (wettability) increased after plasma 

treatment (Figure 8) which could be translated as an increase in surface free energy, so did the 

roughness (Figure 9) [48–50,56–58,61]. This was more obvious at longer treatment time, higher 

plasma discharge power, and lower working pressure. However, part of the modification was restored 

after treatment due to the thermodynamic recovery [44].  

The extent of wettability enhancement and also thermodynamic recovery have been established to 

be dependent on plasma power and modification time, as well as the post-plasma storage  

temperature [12]. This can be seen in Figure 10. Liu et al. [64] modified PVC surface by doing plasma 

treatment in a gas mixture of oxygen and sulfur dioxide and found that the water contact angle sharply 

reduced because of the sulfonic acid introduction. The maximum wettability was found when an equal 

volume of the gases was used.  

Figure 8. Water contact angle data (a) as well as roughness values (b) as a function of the 

plasma power (Reprinted with permission from [58]. Copyright 2011 Elsevier).  

 

 

     (a)                                                                 (b) 
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Figure 9. Surface morphology of untreated (a) and plasma-treated PVC (b) obtained from 

scanning electron microscopy (Reproduced with permission from [50]. Copyright  

2010 MDPI).  

 

Figure 10. Thermodynamic recovery of the treated surface over storage time after 

modification (Reprinted with permission from [44]. Copyright 2011 IEEE).  

 

Zhang et al. [53,59] used plasma immersion ion implantation in argon to modify PVC surface. They 

found enhanced hydrophilicity but not a very different morphology. This was attributed to the 

crystallization of triclosan and bronopol used as the antibacterial agents leading to a coarse 

morphology. The sample position in plasma chamber has been found effective as well. Ru et al. [61] 

examined the effects of long-distance and direct argon radio frequency plasma surface treatment on 

PVC films in terms of wettability. They reported that both configurations were able to increase surface 

roughness and hydrophilicity; nonetheless, the effect of the long-distance argon plasma was more 

notable as was emphasized in the former section. Khorasani et al. [60] treated PVC surface with 

oxygen plasma at low pressure and found fractal morphology after plasma treatment and explained that 

since the plasticizer had lower resistance to oxygen plasma treatment than PVC matrix, the 

 

(a)                                                           (b) 
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heterogeneity on morphology structure of untreated PVC caused separation of polymer and plasticizer 

moieties resulting in fractal morphology after plasma treatment (Figure 11). 

Figure 11. Fractal morphology of oxygen plasma-treated PVC (Reprinted with permission 

from [60]. Copyright 2007 Elsevier). 

 

In connection with the other surface treatment strategies, Jung et al. [67] used ion irradiation to 

enhance cell patterning on PVC surface and found that in low to medium ion flux, the wettability 

increased while at higher ion flux, due to excessive carbonization, the wettability reduced (Figure 12).  

Figure 12. The effect of ion beam fluence on water contact angle values of the treated 

PVC (Reproduced with permission from [67]. Copyright 2010 Wiley). 

 

McGinty et al. [78] showed reduced plasticizer migration by grafting hydrophilic polymers.  

Kurose et al. [74] carried out the surface treatment of PVC by ozone and found an increase in selective 

hydrophilicity due to the replacement of chlorine with oxygen-containing groups. It was interesting 

that they found a decreased roughness upon ozonation which was described as the factor which led to 

increase the hydrophilicity. Okuda et al. [75] used this approach to separate PVC from other plastics of 

almost equal density based on the froth flotation technique. The researchers who took advantage of the 

wet chemical methods to modify PVC surface reported that the wettability and topography of the 
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surface were effectively altered. D'yakova et al. [88] found that modification of the surfaces of PVC 

films via chemical gas modification with vanadium and phosphorus-containing groups made the 

surface layer of the polymers more hydrophilic, whereas silicon- and titanium-containing structures 

rendered more hydrophobicity. 

3.3. Applications of PVC Surface Treatment 

Surface modification of PVC is principally intended for various applications. Thus far, it has been 

practiced to impart biological activity, ink printability, and ion permeability to PVC.  

Sowe et al. [54,55] treated PVC films by DCSBD plasma in air and found enhanced ink printability 

due to the new functionalities generated on the surface. This finding was deemed to be beneficial for 

packaging industries. For a different purpose, Hu et al. [63] prepared ion exchange membranes for 

application in alkaline directly alcohol fuel cells based on PVC powder. They successfully 

immobilized benzyl trimethylammonium cationic groups onto PVC matrix using low pressure argon 

plasma grafting, quaternization and alkalization. The plasma-grafted alkaline anion-exchange 

membrane exhibited good ionic exchange capacity, ionic conductivity, and methanol permeability.  

Biocompatibility towards cell and blood as well as biocide activity are all considered most 

important characteristics which can be granted to PVC via surface modification. Zou et al. [85,86] 

grew poly(N,N-dimethylacrylamide) on PVC by well-controlled ATRP and saw that the graft densities 

of the brushes played an important role in controlling interfacial properties. They found that the blood 

platelet activation was reduced compared to unmodified PVC especially in higher molecular weights. 

Liu et al. [64] treated PVC surface via SO2/O2 gas plasma treatment and found that the blood platelets 

were effectively suppressed on surface sulfonation of PVC film. de Queiroz et al. [72] evaluated the 

thrombogenic behavior of PVC films modified by gamma rays irradiation followed by AA grafting 

and bovine serum albumin immobilization. They found that the adopted modification was very 

effective in suppressing the adhesion and activation of platelets when contacted to blood.  

Yoshizaki et al. [84] coated PVC surface with poly (2-methoxyethylacrylate). The hemocompatibility 

from this polymer was compared with the covalent-bound heparin over a short period of blood 

circulation. Both circuits showed a similar character in hemocompatibility. Zha et al. [87] tried to 

produce hemocompatible coatings on PVC films by consecutive alternating adsorption of iron and two 

kinds of polysaccharides, heparin and dextran sulfate via electrostatic interaction. Also,  

iron-polysaccharide multilayer coating gave a marked reduction in adherence degree of platelets 

(Figure 13). The multilayer coating involving both heparin and dextran sulfate was shown to lower 

non-specific protein adsorption in comparison with when only one agent was used. Xie et al. [89] 

attempted a procedure of heparinization on the surface of PVC for antithrombogenicity utilization. A 

bifunctional monomer, GMA, was grafted onto the surface of PVC by gas-phase photografting 

polymerization, then heparin was immobilized onto the poly (glycidyl methacrylate) segments. Their 

results indicated that the blood compatibility of the product was improved greatly. Lamba et al. [93] 

examined the interactions of blood with PVC and found that PVC led to blood coagulation which 

could be reduced upon using heparin.  
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Figure 13. Scanning electron micrographs of PVC surface after being contacted with fresh 

platelet enriched plasma for (a) control PVC; (b) heparin/iron coated; and (c) dextran 

sulfate/heparin/iron coated samples (Reprinted with permission from [87]. Copyright  

2009 Elsevier).  

 

Asadinezhad et al. [48–50] improved the antibacterial properties of PVC against two bacterial 

strains. DCSBD plasma was used for this purpose, followed by AA grafting and antibacterial agents 

coating. They found that plasma treatment and acrylic acid grafting were effective in suppressing the 

bacterial adhesion. The approach was effective in reducing the adhesion of bacteria for antimicrobial 

agents like triclosan, chitosan, chitosan/pectin multilayer, benzalkonium chloride, bronopol, and 

chlorhexidine. Zhang et al. [53] used plasma immersion ion implantation to bind triclosan and 

bronopol molecules to enhance the antibacterial properties of PVC films. They found that the  

plasma-modified PVC with bronopol exhibited good antibacterial properties. However,  

triclosan-coated sample acted showed superior activity against gram negative bacteria.  

Triandafillu et al. [91] studied the bacterial adhesion on native and chemically modified PVC surfaces. 

The oxygen plasma treatment of the PVC films reduced the number of adhering bacteria (Figure 14). It 

was demonstrated that the surface modification of the PVC using oxygen-plasma treatment was just 

successful in decreasing the initial adhesion of the bacteria not in preventing the bacterial biofilm 

formation. Rad et al. [94] examined the adhesion of five different bacterial strains to PVC catheters 

and found that the bacterial attachment to the hydrophobic sample was high. In contrast, plasma treated 

catheter showed a remarkable reduction in number of bacteria adhered onto the surface. The reduction 

of bacteria was more evident for plasma treatment carried out in AA vapor. McGinty et al. [78] using 

physisorbed free radical initiation reduced the plasticizer migration which was beneficial for medical 

uses and also enhanced the antimicrobial properties of PVC. They reported that PVC films treated with 

poly (vinyl pyridine) and quaternized with various bromoalkanes were effective in killing bacteria. 

Khorasani et al. [60] investigated the effect of wettability and surface charge of PVC surfaces on 

fibroblast cells attachment. They reported that the differences in surface charge probably influenced 

the cell adhesion. Their results indicated a trend of less cell attachment and proliferation for treated 

PVC. They also reported the dependence of zeta potential of treated PVC (more negatively charged) 

compared to virgin PVC on cells attachment and growth. Jung et al. [67] studied the creation of  

micro-patterns of cells on PVC films using ion irradiation. A PVC film was irradiated with H+ ions 

through a pattern mask in order to create patterns of the hydrophilic/hydrophobic regions on the PVC 

surface. Their results revealed that selective adhesion and proliferation of the cells on the ion-irradiated 
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regions were observed (Figure 15). They believed that this method based on ion irradiation could be 

applicable to the fabrication of cell-based sensing devices and tissue engineering. 

Figure 14. Adhesion effectiveness of a subset of Pseudomonas aeruginosa strains to 

oxygen plasma-treated PVC as compared to untreated PVC (Reprinted with permission 

from [91]. Copyright 2003 Elsevier).  

 

Figure 15. Optical microscope images of the cell patterns on PVC surfaces irradiated with 

ion beam at (a) 1 × 1014; (b) 1 × 1015; and (c) 1 × 1016 ions/cm2. Each scale bar represents 

100 nm (Reprinted with permission from [67]. Copyright 2010 Wiley). 

 

As for biodegradability, Rios et al. [73] studied the graft copolymerization of sucrose acrylate onto 

thin films PVC with benzophenone sensitizer initiated with UV irradiation. It was found through 

microbiological assays that the microorganisms present in the soil were able to utilize the modified 

PVC as a source of carbon indicating biodegradation. It was concluded that the copolymerization of 

synthetic backbones with natural side chains could be considered as a way of producing compounds 

more sensitive to degradation in a natural environment.  
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4. Concluding Remarks 

In this brief review, various approaches within the last three decades taken to engineer the PVC 

surface along with the respective highlights have been sketched. It has been established that the PVC 

surface can be turned into a hydrophilic surface of high free energy with an enhanced bonding strength 

and minimized biofouling without affecting the bulk properties. Also, cell and blood compatibility 

have been observed to increase as a result of appropriate surface modification. The modified PVC 

exhibited less plasticizer migration, as well. It seems necessary here to describe some general 

perspectives on this issue. As per the number of publications, it can be claimed that the subject of 

polymer surface engineering itself is developing quite rapidly. Concerning PVC in particular, a sharp 

increase is evident over the last decade in the amount of the relevant research. Among various 

strategies pursued, the solvent-free techniques—especially plasma treatment—are increasingly 

becoming attractive. Also, wet chemical methods based on the state-of-the-art controlled chemistry are 

at the center of intense focus. The achievement of enhanced control over the modified surface can also 

be mentioned as another trend. This concise overview also makes it clear that there are complex 

phenomena occurring at the surface once the PVC surface is exposed to external bodies. As better 

understanding of the complex phenomena and aging effects due to the interactions between polymer 

surface and surroundings is gained, new possibilities of enhanced control over surface properties 

emerge. Accordingly, a new generation of biomaterials based on PVC is being created to enable the 

design and production of superior medical devices. In addition to what has already been mentioned, to 

reach the optimal PVC surface, fine-tuning and the avoidance of overdevelopment, as well as effective, 

interdisciplinary collaboration among materials scientists, chemists, biologists, and bioengineers will 

be necessary. 
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