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Abstract: In this paper, a novel gelatin-based hydrogel was synthesized through 

crosslinking graft copolymerization of methacrylic acid (MAA) onto gelatin, using 

ammonium persulfate (APS) as a free radical initiator in the presence of 

methylenebisacrylamide (MBA) as a crosslinker. A proposed mechanism for hydrogel 

formation was suggested and the structure of the product was established using FTIR 

spectroscopy and gravimetric analysis of the products. Moreover, morphology of the 

samples was examined by scanning electron microscopy (SEM) and thermogravimetric 

analysis (TGA/DTG). The effect of reaction variables such as concentration of APS and 

MBA were systematically optimized to achieve a hydrogel with swelling capacity as high 

as possible. The gelatin-g-PMAA hydrogel exhibited a pH-responsiveness character so that 

a swelling-deswelling pulsatile behavior was recorded at pHs 2 and 8. This on-off 

switching behavior makes the hydrogel as a good candidate for controlled delivery of 

bioactive agents. 
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1. Introduction 

Synthesis and characterization of hydrogels is the main goal of the several research groups in the 

world. These materials are defined as hydrophilic, three-dimensional networks with ability to absorb 

large values of water, saline solution, or physiological fluids [1]. They are widely used in various 

applications such as hygienics, foods, cosmetics, and agriculture. Nowadays, the worldwide 

production of SAP(hydrogel) is more than one million tons in year.  

The properties of the swelling medium (e.g., pH, ionic strength and the counter ion and its valency) 

affect the swelling characteristics. SAPs responding to external stimuli such as heat, pH, electric field, 

chemical environments, etc., are often referred to as "intelligent" or "smart" polymers. Among these, 

pH-sensitive hydrogels have been extensively investigated for potential use in site-specific delivery of 

drugs to specific regions of the gastrointestinal tract and have been prepared for delivery of low 

molecular weight protein drugs. Therefore, these hydrogels have important applications in the fields of 

medicine, pharmacy, and biotechnology [2,3].
 

Natural-based hydrogels have attracted much interest from the viewpoint of improving the tissue 

tolerance of synthetic polymers and the mechanical properties of natural polymers. The presence of the 

natural parts guarantees biodegradability of the superabsorbing materials. Because of their bio 

Compatibility, biodegradability and non-toxicity, natural polymers, i.e., polysaccharides and proteins, 

are the main part of these biopolymers. One of the best methods for the synthesis of these hydrogels is 

graft copolymerization of vinylic monomers onto natural polymers. Monomers such as acrylonitrile 

(AN), acrylic acid (AA), acrylamide (AAm) have been graft copolymerized onto polysaccharides such 

as starch, cellulose and their derivatives [4-7]. The first industrial hydrogel was synthesized using this 

method via ceric-induced graft copolymerization of acrylonitrile onto starch followed by alkaline 

hydrolysis of the resulted graft copolymer [8].  

Proteins are widely distributed in nature and are synthesized mainly in animals, i.e., collagen, 

keratin, gelatin, and etc., and in a few plants such as Soya. In general, proteins are high molecular 

weight polymers and their solubility in aqueous solutions is difficult. Two efficient methods for 

preparation of aqueous soluble proteins are alkaline and enzymatic hydrolysis.  

In the present report, to modify the hydrolyzed gelatin, the grafting of metacrylic acid (MAA) onto 

gelatin chains in the presence of a crosslinking agent was performed in a homogeneous system. 

2. Results and Discussion 

2.1. Synthesis of Hydrogels 

A general reaction mechanism for crosslinking graft copolymerization of MAA onto gelatin backbones 

in the presence of APS and MBA is shown in Scheme 1. The sulfate anion-radical produced from 

thermaly decomposition of APS, abstracts hydrogen from one of the functional groups in side chains 

(i.e., COOH, SH, OH, and NH2) of the substrate to form the corresponding radical [9]. Then the 

resulted macroradicals radically initiate graft copolymerization of neutralized MAA led to a graft 

copolymer socalled gelatin-g-PMAA. Since a crosslinking agent, i.e., MBA, presented in the reaction 

mixture, the crosslinked gelatin-g-PMAA network is resulted. 
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Scheme 1. Proposed mechanistic pathway for synthesis of the gelatin-g-PMAA hydrogel. 
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2.2. Optimization of the Grafting Variables 

In this work, the main factors affecting on the grafting conditions (i.e., concentration of MBA and 

APS) as well as the swelling behavior of the resuled pH-responsive hydrogels were investigated.  

2.2.1. Effect of MBA Concentration 

Figure 1 shows the influence of the crosslinking agent on the swelling capacity of gelatin-g-PMAA 

hydrogel. Higher values of absorbency is obtained using lower crosslinker concentration (Cc), 

however, the hydrogels prepared do not posses good dimensional stability, so that the swollen gel 

strength is not sufficient to be referred as a real. In fact, with Cc 0.043 mol/L, slimy gel formed. Figure 1 

exhibits a power law behavior of absorbency-Cc. Such a behavior is well-known, as reported by 

pioneering scientists [10]. Higher crosslinker concentration decreases the space between the 

copolymer chains and, consequently, the resulted highly crosslinked rigid structure cannot be 

expanded and hold a large quantity of water [11]. 

Figure 1. Effect of crosslinker concentration on swelling capacity. 
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2.2.2. Effect of APS Concentration 

The relationship between the initiator concentration and water absorbency values was studied by 

varying the APS concentration from 0.001 to 0.04 mol/L (Figure 2). It is observed that the absorbency 

is substantially increased with increasing in the APS concentration and then it is decreased. Initial 

increment in water absorbency may be attributed to increased number of active free radicals on the 

gelatin backbone. Subsequent decrease in swelling is originated from an increase in terminating step 

reaction via bimolecular collision, which, in turn, causes to enhance crosslinking density. This possible 

phenomenon is referred to as ―self crosslinking‖ by Chen and Zhao [12]. In addition, the free radical 

degradation of gelatin backbones by sulfate radical-anions is an additional reason for swelling-loss at 

higher APS concentration. The proposed mechanism for this possibility is reported in the previous 

work [13]. A similar observation is reported by Hsu et al. in the case of degradation of chitosan with 

potassium persulfate [14].
 

Figure 2. Effect of initiator concentration on swelling capacity.
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2.3. Spectral Characterization 

For identification of the hydrogel, infrared spectroscopy was used. Figure 3 shows the FTIR spectra 

of the hydrolyzed Gelatin and the synthesized hydrogel. The band observed at 1655 cm
−1

 can be 

attributed to C=O stretching in carboxamide functional groups of substrate backbone (Figure 3a). The 

broad band at 3200–3600 cm
−1

 is due to stretching of –OH groups of the gelatin. The IR spectrum of 

the hydrogel, gelatin-g-PMAA (Figure 3b) shows three new characteristic absorption bands at 1708, 

1567 and 1410 cm
−1

 verifying the formation of graft copolymer product. These peaks attributed to 

carbonyl stretching of the carboxylic acid groups and symmetric and asymmetric stretching modes of 

carboxylate anions, respectively. Combination of absorption of the carboxylate and alcoholic O–H 

stretching bands is appeared in the wide range of 2550–3600 cm
−1

. 
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Figure 3. FTIR spectra of hydrolyzed gelatin (a) and gelatin-g-PMAA hydrogel (b). 
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To obtain additional evidence of grafting, a similar polymerization was conducted in the absence of 

the crosslinker. After extracting the homopolymers, PMAA and unreacted monomers using a 

cellophane membrane dialysis bag (D9402, Sigma–Aldrich), an appreciable amount of grafted gelatin 

(85%) was observed. The graft copolymer spectrum was very similar to Figure 3b. Also according to 

preliminary measurements, the sol (soluble) content of the hydrogel networks was as little as 1.2%. 

This fact practically proves that all monomers are involved in the polymer network. So, the monomers 

percent in the network will be very similar to that of the initial feed of reaction. 

2.4. Scanning Electron Microscopy 

One of the most important properties that must be considered is hydrogel microstructure 

morphologies. Figure 4 shows the scanning electron microscope (SEM) photographs of the surface 

(Figure 4A) and the cross-sectional area (Figure 4B) of the hydrogel with interconnected pores. These 

pictures verify that the synthesized polymer in this work have a porous structure, where the pores 

might be induced in to the hydrogel by water evaporation resulting from reaction heat. It is supposed 

that these pores are the regions of water permeation and interaction sites of external stimuli with the 

hydrophilic groups of the graft copolymers. The cross-sectional view of hydrogels (Figure 4B) also 

exhibited a large, open, channel-like structure. 

The porosity plays the multiple role of enhancing the total water sorption capability and the rate of 

response by reducing the transport resistance. Therefore, creation of porosity in hydrogels has been 

considered as an important process in many ways. The phase-separation technique, the water-soluble 

porogens and the foaming technique are three different methods for preparing porous hydrogel 

structures. In this paper, as mentioned above,however the pores were simply produced from water 

evaporation resulting from reaction medium heat. 
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Figure 4. SEM photograph of the optimized hydrogel (gelatin 1.5 g, MBA 0.043 mol/L, 

APS 0.02 mol/L, 55 °C, 60 min). (A) Surface of porous hydrogel; (B) Cross-sectional area 

of porous hydrogel. 

 

 

 

 

2.5. Thermogravimetric Behavior 

The grafting was also supported by thermogravimetric analysis (Figure 5). TGA of gelatin (Figure 

5a) shows a weight loss in two distinct stages. The first stage ranges between 15 and 120 °C and shows 

about 17% loss in weight. This may correspond to the loss of adsorbed and bound water. No such 

inflexion was observed in the TGA curve of gelatin-g-PMAA. The second stage of weight loss starts at 

330 °C and continues up to 440 °C during which there was 60% weight loss due to the degradation of 

gelatin. Grafted samples, however, show almost different behavior of weight loss between 15 and  

550 °C (Figure 5b). The first stage of weight loss starts at 205 °C and continues up to 330 °C due to 

the degradation of gelatin. The second stage from 370 to 480 °C may contribute to the decomposition 

of different structure of the graft copolymer. The appearance of these stages indicates the structure of 

gelatin chains has been changed, which might be due to the grafting of PMAA chains. In general, the 

copolymer had lower weight loss than gelatin. This means that the grafting of gelatin increases the 

thermal stability of gelatin in some extent. 
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Figure 5. TGA curves of (a) gelatin and (b) gelatin-g-PMAA. 

 

 

For the better study of the thermal behavior of the hydrogel, curve of the hydrogel was also 

provided as shown in Figure 6. The first derivative of the TGA curve (DTG) shows that the maximum 

decomposition rate of the hydrogel occurs in the sharp peak at 432 °C. At this temperature, an 

endothermic reaction cause to decomposition of the hydrogel. Other main decomposition points of the 

hydrogel are at 198, 263, and 274 °C and all are endothermic decompositions. 

Figure 6. DTG curve of optimized hydrogel. 

 

 

2.6. pH-Responsiveness Behavior of Gelatin -g-PMAA Hydrogel 

We investigated the reversible swelling-deswelling behavior of this hydrogel in solutions with  

pH 2.0 and 8.0 (Figure 7). At pH 8.0, the hydrogel swells due to anion-anion repulsive electrostatic 

forces, while at pH 2.0, it shrinks within a few minutes due to protonation of the carboxylate anions. 
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This swelling-deswelling behavior of the hydrogels makes them as suitable candidates for designing 

drug delivery systems. 

Figure 7. On-off switching behavior as reversible pulsatile swelling (pH 8.0) and 

deswelling (pH 2.0) of the gelatin-g-PMAA hydrogel. 

 

3. Experimental  

3.1. Materials 

Gelatin (Merck) was used as received. Acrylic acid (AA, Merck) was used after vacuum 

distillation. N’,N’-methylene bisacrylamide and ammonium persulfate (Fluka) were of analytical grade 

and used without further purification. Double distilled water was used for the hydrogel preparation and 

swelling measurements. 

3.2. Preparation of Hydrogel 

Gelatin (1.50 g) was dissolved in 35 mL distilled water and filtered to remove its insoluble salt. 

Then the solution was added to a three-neck reactor equipped with a mechanical stirrer. The reactor 

was immersed in a thermostated water bath preset at a desired temperature (55 °C). Then the initiator 

solution (0.01–0.40 g) was added to the mixture. After stirring for 10 min, certain amounts of 70% 

neutralized MAA (2.0–8.0 g) and MBA (0.05–0.20 g) were simultaneously added to the reaction 

mixture. After 60 min, the produced hydrogel was poured to excess non-solvent ethanol (200 mL) and 

remained for 3 h to dewater. Again, 100 mL fresh ethanol was added and the hydrogel was remained 

for 24 h. Finally, the filtered hydrogel is dried in oven at 60 °C for 10 h. 

3.3. Absorbency at Various pHs  

Sensitivity of the hydrogel to pH was investigated in terms of swelling and deswelling of the final 

product at two basic (pH 7.0) and acidic (pH 2.0) solutions, respectively. The pH values were precisely 
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checked by a pH-meter (Metrohm/620, accuracy ±0.1). Swelling capacity of the hydrogels at each pH 

was measured according to a conventional tea bag method at consecutive time intervals (15 min). 

3.4. Instrumental Analysis  

Fourier transform infrared (FTIR) spectroscopy absorption spectra of samples were taken in KBr 

pellets, using an ABB Bomem MB-100 FTIR spectrophotometer (Quebec, Canada), at room 

temperature. To study the morphology of the hydrogel, the surface and cross-sectioned area of the 

hydrogel were examined using scanning electron microscopy (SEM). After Soxhlet extraction with 

methanol for 24 h and drying in an oven, powder was coated with a thin layer of gold and imaged in a 

SEM instrument (Leo, 1455 VP). Thermogravimetric analyses (TGA/DTG) were performed on a 

Universal V4.1D TA Instruments (SDT Q600) with 8–10 mg samples on a platinum pan under 

nitrogen atmosphere. Experiments were performed at a heating rate of 20 °C/min until 550 °C. 

4. Conclusions 

The hydrogel, gelatin-g-PMAA, was synthesized by graft copolymerization of methacrylic acid 

onto gelatin, in a homogeneous medium. The study of FTIR spectra and Thermogravimetric analysis 

provide the graft copolymerization do takes place. The maximum water absorbency (197 g/g) was 

achieved under the optimum conditions, that found to be MBA 0.043 mol/L, and APS 0.02 mol/L. The 

hydrogels exhibited high sensitivity to pH, so that, the reversible swelling-deswelling behavior in 

solutions with acidic and basic pH makes the hydrogels as a suitable candidate for controlled drug 

delivery systems.  
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