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Abstract: Composites of hydroxyapatite (HaP) and highly ordered large pore mesoporous 
silica molecular sieves such as, Al-SBA-15 and Al-MCM-41 (denoted as SBA-15 and 
MCM-41, respectively) were developed, characterized by XRD, BET, FTIR, HRTEM and 
NMR-MAS, and applied to fluoride retention from contaminated water. The proposed 
procedure by a new route to prepare the HaP/SBA-15 and HaP/MCM-41, composites 
generates materials with aluminum only in tetrahedral coordination, according to the 27Al 
NMR-MAS results. Free OH- groups of HaP nanocrystals, within the hosts, allowed  high 
capacity fluoride retention. The activity of fluoride retention using HaP/MCM-41 or 
HaP/SBA-15 was 1-2 orders of magnitude greater, respectively, than with pure HaP.  
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1. Introduction  

 
Calcium phosphate apatites are compounds of the formula Ca5(PO4)3X, where X can be a F− 

(fluorapatite, FaP), OH− (hydroxyapatite, HaP) or a Cl− ion (chlorapatite). One ion is replaced by 
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another of the same sign but of different charge. Neutrality is maintained by substitutions of ions with 
dissimilar charges or vacancies [1].  

Fluoridated calcium hydroxyapatites have been studied in relation to their physico-chemical 
properties [2-6]. It is well known that fluoride is one of the elements contained in biological apatites as 
trace amounts, which strongly modifies their crystallinity and their solubility. Porous hydroxyapatite 
biomaterials have a great stability and a good biocompatibility. They can be used as composite 
biomaterials for their ability to form a strong chemical bond with natural bones. 

Laghzizil et al. [5,6] enhanced the fluoride adsorption capacity onto hydroxyapatite (HaP) prepared 
in a highly porous form using a modified chemical wet method. Besides, they have also analyzed the 
effect of the F- ions on the crystallinity and electrical properties of hydroxyapatite biomaterials. 
Moreover, Dalas et al. [7] have studied the crystallization of hydroxyapatite on polymers, 
containing -C-N groups, from supersaturated solutions of HaP. Consequently, this method was 
particularly useful to study the formation of new phases on the substrates in which HaP was deposited, 
for example the growth of hydroxyapatite on silica gels in the presence of organic additives [8]. In 
other research, nanosized hydroxyapatite particles have been successfully synthesized from 
microemulsions stabilized by a biodegradable surfactant [9,10]. These particles possess powder 
characteristics that make them superior in many composites applications. The microemulsion-derived 
hydroxyapatite powders exhibit a high specific surface area, lowered degree of particle agglomeration 
and narrow particle size distribution [10].  

On the other hand, the synthesis of mesoporous hydroxyapatite was reported by several authors [11-
17], e.g., Tang et al. [18] described a simple and new method for the preparation of hydroxyapatite 
porous biomaterials with a uniform pore size distribution by sintering the mixture of HaP powders and 
monodispersed polystyrene microspheres. 

In a previous work, we published our first report on the activity of HaP/ MCM-41 and HaP-BEA 
composites for fluoride retention [19]. We developed a technique of preparation of nanocrystalline 
HaP (ex-situ) and in the presence of the respective hosts, forming in situ composites. We also 
compared the capacity of F− retention from contaminated water, with respect to a commercial sample.  

In the present work, we prepare composites of hydroxyapatite (HaP) and highly ordered large pore 
mesoporous silica molecular sieve such as Al-SBA-15 and Al-MCM-41. We correlate fluoride 
retention, from contaminated water, with the physicochemical properties of HaP/MCM-41 and 
HaP/SBA-15 nanocomposites. Our first results concerning the development of SBA-3, SBA-15 and 
SBA-1 was recently reported [20].  
 
2. Results and Discussion  
 
2.1. XRD and BET studies 

 
The surface area of the hydroxyapatite commercial sample (CHaP), measured by the single-point 

BET (N2) method, was 69 m2/g. The surface areas were 1,140 m2/g for MCM-41, 960 m2/g for  
HaP/ MCM-41; 1,250 and 987 m2/g for SBA-15a and Hap/SBA-15a; 1,200 and 960 m2/g for SBA-15b 
and Hap/SBA-15b, respectively, and 85 m2/g for HaP synthesized by us. The pore diameters of the 
hosts were: 5.8, 9.6 and 9.8 nm for MCM-41, SBA-15a and SBA-15b, respectively. The composite 
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HaP/MCM-41 and HaP/SBA-15 isotherms show a residual pore volume of 0.45 mL per gram of 
MCM-41 host, and 0.80-0.85 mL per gram for SBA-15a-b (see Table 1). 

 
Table 1. Textural and structural properties of the calcined hosts and composites. 

Sample Si/Ala ao* 
(nm) 

Area 
m2/g 

Pore Vol. 
mL/g 

Diameter ** 
pore (nm) 

Wall thickness*** 
(nm) 

MCM-41 25 2.4 1140 0.80 5.80 1.1 

SBA-15a 50 11.3 1250 1.32 9.60 2.2 

SBA-15b 32 11.7 1200 1.26 9.80 2.4 

HaP/MCM-41 25 2.4 960 0.45 3.25 1.1 

HaP/SBA-15a 50 11.3 987 0.80 7.50 2.2 

HaP/SBA-15b 32 11.7 960 0.85 7.20 2.4 

a By ICP. (*) hexagonal: ao = 2 d100/√3; (**) D ≅ 4V/A; (***) E = ao - D, (according to Ref. [21]). 

 
The XRD for Na-MCM-41, indicates a signal (hkl: 100) corresponding to a hexagonal structure of 

the mesoporous materials, at 2θ = 1.99-2.08° and ao = 4.9-5.1 nm. The low intense signals at long-
range order, 110 and 200, at 2θ = 4.66° and 5.30°, respectively, are characteristics of highly ordered 
hexagonal structure (see Figure 1). In the case of SBA-15, the main signal appears at 1.2°(2θ) and 
shifts to lower angles (0.9° (2θ)) with the incorporation of Al in the case of Al-SBA-15 (see Figure 1), 
in agreement with literature [22,23].  

 
Figure 1. XRD of Al-SBA-15 and Al-MCM-41. 
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The pattern diffraction peaks confirm a high crystallinity or long-range order structure in all 
nanostructured hosts. The XRD pattern of pure HaP prepared ex-situ by us, HaP/MCM-41 and 
HaP/SBA-15 composites are illustrated in Figure 2. 

 
Figure 2. XRD of CHaP, HaP/SBA-15 and HaP/MCM-41. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2. FTIR studies 
 

FTIR data of a pure commercial hydroxyapatite sample (CHaP), HaP/MCM-41 and HaP/SBA-15 
with the assigned bands (prior to the retention of F-) are shown in Figure 3. In ther HaP spectrum, the 
P–O stretching IR mode appears at ~ 962 cm−1 and the PO4 region appears as a very strong bands at 
~1,029 cm−1 and at ~1,092 cm−1, whereas the band at 3,567 cm−1 is assigned to OH stretching mode 
[1]. The well defined bands at 650, 610 and 564 cm−1 are attributed to the components of asymmetrical 
deformation O-P-O. The identification of the bands was difficult in the case of HaP/MCM-41 and 
HaP/SBA-15 composites, with HaP crystals (in the nm range). FTIR of HaP/SBA-15 (Figure 3) shows 
bands corresponding to SBA-15, at 1,080 and 1,227 cm−1 (T–O asymmetric stretching, internal and 
external respectively), the band at 800 cm-1 (T–O symmetric stretching) are due to TO4 vibrations  
(T = Si). Some authors [24,25] have assigned this band to the Al–O–Si bending, indicating the 
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incorporation of Al into SBA-15 in final samples. Such positive shifts in frequencies (from 798 cm-1 in 
the as-synthesized sample), would reflect the formation of new Si–O–Si and Si–O–Al bridges during 
calcinations. In this way, it is probably due to an increased network cross-linking [26], and would 
account for the lattice contraction and structural stabilization that Al-MCM-41 and Al-SBA-15 
undergoes upon template removal and calcination process. The signal at 458 cm−1 is assigned to a 
bending of T-O. In the same way, FTIR of HaP/MCM-41 shows bands corresponding to MCM-41, at 
1,090, 1,223 cm−1 (T–O asymmetric stretching, internal and external respectively) and  
800 cm−1 (T–O symmetric stretching) are due to TO4 vibrations (T = Si), assigned to the bending  
Si–O–Si and a band at 454 cm−1 due to the bending of T-O. The band at 1,630 cm−1 ascribed to the  
Si–O stretching overtone also appears clean with evacuation of the hosts at 400 °C. The behavior is 
similar for both samples. By FTIR of the composite in the OH stretching zone, a strong signal at  
3,567 cm−1 due to OH- of HaP is observed [27]. The integrated absorbance of this band per mg of HaP 
(see Section 3.2), for each sample is CHaP: 0.125; nanosized HaP prepared in this work: 0.31; 
HaP/MCM-41(30 wt% of HaP): 0.51 and HaP/SBA-15b (35 wt% of HaP): 0.69. This band must 
remain intact (without any interaction with the hosts), in order that the capacity of F- retention of 
composite do not be altered as long as possible (Figure 3). 

 
Figure 3. FTIR of hydroxyapatite commercial sample (CHaP), nanosized HaP prepared in 
this work, HaP/SBA-15b and HaP/MCM-41 nanocomposites. 
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2.3. NMR-MAS studies 
 

27Al-NMR-MAS results of the samples [20,28], showed a intense peak at 53 ppm, assigned to 
AlIV

Td form, a very low signal at 0 ppm due to octahedral extra framework aluminum (AlVI
Oc), can be 

seen in Figure 4 (see inset spectrum) for Al-SBA-15b and Al-MCM-41 materials. 
 

Figure 4. 27Al MAS-NMR spectra of Al-MCM-41 and Al-SBA-15b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.4. HRTEM and SEM studies 
 

The HRTEM images illustrated in Figure 5, reveal the existence of a long-range hexagonal 
arrangement of nanosized mesopores. The higher order reflections are still discernable clearly in the 
sample HaP/MCM-41 and HaP/SBA-15 compared with the HRTEM of the hosts reported in literature 
[19,29]. Thus, the nanosized crystals of HaP are within the mesostructure of the hosts.  

 
Figure 5. HRTEM of HaP/MCM-41 and HaP/SBA-15b. 
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The size and shape of the samples indicate good morphology of the crystals. HaP-SBA-15 images 
reveal that it consists of many rope-like domains with relatively uniform sizes of 1.5–2 μm, without 
other phases (clusters of HaP crystals) as well as in HaP-MCM-41 microphotographs, but with 
micellar rod-like shape hexagonal crystals, with size of 1.5 × 2 .2 µm (see Figure 6), in agreement with 
HRTEM data showed in Figure 5.  
 

Figure 6. SEM of HaP, HaP/MCM-41 and HaP/SBA-15b. 

 
 
 
 
 
 
 
 
 
 

       HaP(this work)   HaP/MCM-41    HaP/SBA-15b 
 
2.5. Fluoride retention 
 

Figure 7 shows the F- retention capacity of the samples. The method used for the host inclusion (not 
found in literature) seems to be adequate, since the OH- groups of HaP were not blocked. In the case of 
HaP (ex-situ), its lower crystal size has favored the F- retention, compared with the commercial sample. 
MCM-41 and SBA-15b act as supports to anchor the HaP crystals, on a nanometer scale (<3 nm and  
10 nm, respectively), with higher fluoride retention from contaminated water, in correspondece with 
the data showed in FTIR studies (see Figure 3). In Figure 7, we can see that the fluoride retention by 
the hosts is not significant. The results demonstrated first, a fast retention of fluoride from 0 to  
10 hours and then decaying to the stationary state, in about 25 hours. The final concentration of 
fluoride ion was 0.15 and 0.02 × 10−3 M, for HaP/MCM-41 and HaP/SBA-15 respectively. In this way, 
Table 2 shows the diminution of the OH- band of HaP (signal at 3567 cm-1 for CHaP and nanosized 
HaP prepared in this work and 3,569-3,570 cm-1 for HaP/SBA-15 and HaP/MCM-41 nanocomposites), 
as a function of time on stream, for the data shown in Figure 7. 

The results are shown as percentage of the OH- band, in absorbance units for each sample, which 
remains unalterable during the fluorides retention test, considering the 100% of the absorbance of this 
signal before the beginning of the test. 

As can be seen, the nanocomposites of HaP/MCM-41 and HaP-SBA-15, retain fluoride with better 
performance, even after 20 h of evaluation, than the HaP crystals. The best performance of HaP/SBA-
15 with respect to HaP/MCM-41, could be due to a high dispersion with lower size of HaP 
nanocrystals (linked to its higher surface area and pore volume). Taking account that SBA-15 material 
has higher amount of silanol groups than MCM-41 [20], the condensation of adjacent silanol groups 
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(Si–(OSi)3–OH) forms siloxane species, which might anchor Ca2+, in order to make available sites for 
the HaP nanocrystals nucleation. Thus, as the silanol sites increase, the possibility to generate more 
sites for the growth of HaP crystals increases, these results are in agreement with Díaz et al. [30]. 

 
Figure 7. F- retention capacity from contaminated water of the samples vs. time. 
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Table 2. OH- bands of HaP, in % Absorbance Units, at different times after fluoride retention. 

Samples 

OH- bands at 3667-3670 cm-1,
Absorbance Units, %* 

Time, h 

4 10 20 50 

CHaPa 80 18 6 2 

HaPb 75 23 8 3 

HaP/MCM-41 73 57 40 41 

HaP/SBA-15b 71 60 45 43 
* See the text; a Commercial HaP; b HaP this work. 

 
3. Experimental Section  
 
3.1. Host synthesis 
 

Al-SBA-15 was synthesized using 15-crown-15, (PEO15, Aldrich) as a co-polymer mono block and 
cetylpyridinium bromide (BDH 95%) as surfactant, TEOS (Aldrich 99%) and NaAlO2 (Aldrich 99%), 

as silica and aluminum source, respectively; as described elsewhere [20]. The final Si/Al ratios 
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determined by ICP of the samples were 50-33 (denoted as SBA-15a and SBA-15b). Al-MCM-41 was 
developed by a new technique [28]. An aqueous solution of NaAlO2 was added to the mixture of silica 
source (Ludox TM-40 colloidal silica, Aldrich, 40% suspension in water) and aqueous TMAOH 
(tetramethylammonium hydroxyde). Then, both aqueous solutions of CTABr (cetyltetra-
methylammonium bromide) and NaH2PO4 were added to the synthesis, then mixtured and stirred for 
30 min at 20 ºC. The final gel mixtures were refluxed under stirring for a period of 24 h. The Si/Al 
molar ratio was 30, determined by ICP for the final catalytic material, denoted as MCM-41.  
 
3.2. Preparation of the composites 
 

HaP ex-situ, was prepared using CaCl2•2H2O (a) and K2HPO4 (b), and doubly distilled water. 
Solutions of variable concentrations were used: 1-0.51 M of CaCl2 and 1.8-2.3 M of K2HPO4, at pH 8-
9. Solution (b) is added to solution (a) in a stirred Pyrex vessel at 37 ºC, and left for 6 h, obtaining a 
calcium/phosphate molar ratio of 1.7 in order to have the stoichiometric ratio of HaP, with ionic 
strength, I = 0.16 mol·L-1. The pH was adjusted to the required value by the slow addition of KOH 
solution. During the reaction, CO2 was excluded by bubbling with presaturated N2 gas. To prepare 
HaP/host (HaP-in-situ), the same procedure was followed, SBA-15 and MCM-41 were added at the 
first 0.5 h of the total reaction time of the preparation. The suspensions were vigorously stirred for 4 h, 
at 60 ºC, filtered, washed with triple-distilled carbon dioxide-free water, and then dried at 100 ºC for  
4 h. The HaP ex-situ and composites were activated by heating at 500 ºC in N2 flow for 10 h, then 
calcined up to 500 ºC at a heating rate of 2 ºC/min from 100 ºC for 2h. Commercial hydroxyapatite 
(CHaP) also was used in this study, provided by Bio-gel HTP, marketed by BIO-RAD®. The HaP 
content in the composite was determined by ICP following the ratio of Ca/P and Ca/Si. From Ca/P we 
determined the stoichiometric ratio of HaP and with Ca/Si, the amount of HaP in the composites. Thus, 
HaP content for HaP/MCM-41 and HaP/SBA-15 composites were 30 and 35 wt%, respectively. 
 
3.3. Fluoride retention essay  
 

Solutions of contaminated water with fluoride were prepared, using a Teflon device with magnetic 
stirring, specially designed to bubble N2 in order to avoid CO2 contamination at 25 ºC. The pH of the 
solutions was measured with a Mettler pH meter with combination glass electrodes; the instrument 
was calibrated with buffers of pH = 4 and 7.5. Ion F- concentration was determined using a specific 
electrode for F-, dynamic range between 1 to 300 ppm. In addition, F- traces were followed by FTIR. 
Experimental conditions: 2.3 g of HaP in 100 mL of NaF solution with initial concentration of  
8 × 10-3 M. The weight of the materials employed was normalized on HaP base.  
 
3.4. Characterization 
 

Nitrogen adsorption of the samples was measured with and ASAP 2010 Micromeritics apparatus. 
Elemental analysis was performed by inductively coupled plasma-atomic emission spectroscopy 
(VISTA-MPX) operated with high frequency emission power of 1.5 kW and plasma airflow of  
12.0 L/min. The diffraction patterns were performed with with a Philips X’Pert PRO PANalytical 
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diffractometer under Cu Kα radiation (λ = 1.5418). The diffraction data was collected by using a 
continuous scan mode with a scan speed of 0.02° (2 θ)/min. FTIR spectra of the samples were obtained 
using wafers of HaP and the composites in KBr employing a vacuum cell with special KBr windows 
and a JASCO 5300 Fourier Transform Spectrometer. Prior to the FTIR experiments, the samples were 
degassed (p < 10-3 Pa) at 400 ºC for 4 h. 27Al MAS-NMR spectra were taken on a BRUKER MSL300 
spectrometer operating at 78.2 MHz for 27Al. We used a BRUKER MAS 300WB CP1H-BBWH. 
VTN-BL4 probe with 4 mm o.d. zirconia rotors. The size and shape of the crystals were determined by 
SEM in a PHILIPS-SEM 501B. High-resolution transmission electron microscopy (HRTEM) images 
of a few representative samples were collected using a JEOL-200 CX electron microscope. 
Composites samples were mounted on a microgrid carbon polymer, supported on a copper grid, by 
placing a few droplets of a suspension of the sample in water followed by drying at ambient 
conditions. 
 
4. Conclusions  

 
SBA-15 and MCM-41 were successfully developed. The materials have good structural and textural 

properties. They are useful as hosts incorporating nanocrystals of hydroxyapatite, forming active 
composites of HaP/MCM-41 and HaP/SBA-15. According HRTEM studies, HaP nanocrystals are 
within the hosts, and not on the external surface, indicating good incorporation of nano-crystals in the 
host, with sizes of pores higher than 4 nm. Fluoride retention is a function of surface area and pore 
diameter of the hosts (SBA-15 and MCM-41), that allow the anchoring of the HaP nanocrystals, 
leaving OH- groups free. The capacity for fluoride retention of the HaP/hosts increases one and two 
order of magnitude with respect to pure HaP. Thus, we have developed useful nanocomposites of 
HaP/mesostructured materials, which allow efficient retention of  fluoride from contaminated water.  
 
Acknowledgements 

 
O.A.A. and A.R.B., Conicet Researcher. M.L.M., Conicet Fellowship. The authors are grateful to 

CONICET Argentina, PIP Nº 112-200801-00388 (2009-2011); and MINCyT Cba. 1210/07 (2007-
2011).  
 
References  
 
1. Elliot, J. Structure and Chemistry of the Apatite and other Calcium Orthophosphates; Elsevier: 

Amsterdam, The Netherlands, 1994. 
2. LeGros, R.Z. Calcium phosphates in oral biology and medicine. Monogr. Oral Sci. 1991, 15, 1-201. 
3. Rosalen, P.; Bowen, W.; Pearson, S. Influence of fluoride co-cystallized with sugar on caries 

development in desalivated rats. Arch. Oral Biol. 1997, 42, 317–322.  
4. Sakamoto, K.; Nakahira, A.; Okazaki, M.; Yamaguchi, S.; Kaneno, M.; Ichihara, J. Fluoride ion-

promoted reaction of β-tricalcium phosphate to fluoridated hydroxyapatite. J. Fluorine Chem. 
2001, 110, 75–79.  



Materials 2009, 2              
 

 

1518

5. Laghzizil, A.; Elhrech, N.; Britel, O.; Bouhaouss, A.; Ferhat, M. Removal of fluoride from 
moroccan phosphate and synthetic fluoroapatites. J. Fluorine Chem. 2000, 101, 69–73. 

6. Hammari, L.E.L.; Laghzizil, A.; Barboux, P.; Lahlil K.; Saoiabi, A. Retention of fluoride ions 
from aqueous solution using porous hydroxyapatite: Structure and conduction properties. J. 
Hazard. Mater. 2004, 114, 41–44.  

7. Dalas, E.; Chrissanthopoulos, A. The overgrowth of hydroxyapatite on new functionalized 
polymers. J. Cryst. Growth 2003, 255, 163–169. 

8. Rivera-Muñoz, E.; Brostow, W.; Rodriguez, J.R.; Castaño, V.M. Growth of hydroxyapatite on 
silica gels in the presence of organic additives: kinetics and mechanism. Mater. Res. Innov. 2001, 
4, 222–230.  

9. Lim, G.K.; Wan, J.; Ng, S.C.; Chew, C.H.; Gan L.M. Processing of hydroxyapatite via 
microemulsion and emulsion routes. Biomaterials 1997, 18, 1433–1439. 

10. Lim, G.K.; Wang, J.; Ng, S.C.; Chew, C.H.; Gan, L.M. Nanosized hydroxyapatite powders from 
microemulsions and emulsions stabilized by a biodegradable surfactant. J. Mater. Chem. 1999, 9, 
1635–1639. 

11. Yao, J.; Tjandra, W.; Chen, Y.Z.; Tam, K.C.; Ma, J.; So, H.B. Hydroxyapatite nanostructure 
material derived using cationic surfactant as a template. J. Mater. Chem. 2003, 13, 3053–3057. 

12. Zhao, Y.F.; Ma, J. Triblock co-polymer templating synthesis of mesostructured hydroxyapatite. 
Micropor. Mesopor. Mater. 2005, 87, 110–117. 

13. Prélot, B.; Zemb, T. Calcium phosphate precipitation in catanionic templates. Mater. Sci. Eng. C 
2005, 25, 553–559. 

14. Ozin, G.A.; Varaksa, N.; Coombs, N.; Davies, J.E.; Perovic, D.D.; Ziliox, M. Bone mimetics: A 
composite of hydroxyapatite and calcium dodecylphosphate lamellar phase. J. Mater. Chem. 
1997, 7, 1601–1607. 

15. Soten, I.; Ozin, G.A. Porous hydroxyapatite-dodecylphosphate composite film on titania-titanium 
substrate. J. Mater. Chem. 1999, 9, 703–710. 

16. Zhang, J.; Fujiwara, M.; Xu, Q.; Zhu, Y.; Iwasa, M. ; Jiang, D. Synthesis of mesoporous calcium 
phosphate using hybrid templates. Micropor. Mesopor. Mater. 2008, 111, 411–416. 

17. Wang, H.; Zhai, L.; Li, Y.; Shi, T. Preparation of irregular mesoporous hydroxyapatite. Mater. 
Res. Bull. 2008, 43, 1607–1614. 

18. Tang, Y.J.; Tang, Y.F.; Lv, C.T.;  Zhou, Z.H. Preparation of uniform porous hydroxyapatite 
biomaterials by a new method. Appl. Surf. Sci. 2005, 254, 5359–5362. 

19. Anunziata, O.; Beltramone, A.; Cussa, J. Composite hydroxyapatite/Na-MCM-41 for the fluorine 
retention in contaminated water. In Recent Progress in Mesostructured Materials; Elsevier: 
Amsterdam, The Netherlands, 2007; Vol. 165, pp. 77–80. 

20. Anunziata, O.; Beltramone, A.; Martinez, M.L.; López Belón, L. Synthesis and characterization of 
SBA-3, SBA-15 and SBA-1 nanostructured catalytic materials. J. Colloid Interf. Sci. 2007, 315, 
184–190.  

21. Chen, F.; Shen, S.; Jun Xu, X.; Xu, R.; Kooli, F. Modification of micropore-containing SBA-3 by 
TEOS liquid phase deposition. Micropor. Mesopor. Mater. 2005, 79, 85–91.  

22. Chen, F.; Xu, X.J.; Shen, S.; Kawi, S.; Hidajat, K. Microporosity of SBA-3 mesoporous 
molecular sieves. Micropor. Mesopor. Mater. 2004, 75, 231–235.  



Materials 2009, 2              
 

 

1519

23. Ryoo, R.; Ko, C.H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. Block-copolymer-templated ordered 
mesoporous silica: array of uniform mesopores or mesopore−micropore network? J. Phys. Chem. 
B 2000, 104, 11465–11471. 

24. Corma, A.; Corell, C.; Fornes, V.; Kolodziejski, W.; Perez-Pariente, J. Infrared spectroscopy, 
thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure and 
stability of zeolite MCM-22. Zeolites 1995, 15, 576–582. 

25. Janicke, M.; Landry, C.; Christiansen, S.; Britalan, S.; Stucky, G., Chmelka, B. Low silica MCM-
41 composites and mesoporous solids. Chem. Mater. 1999, 11, 1342–1351. 

26. Landau, M.V.; Varkey, S.P.; Herskowitz, M.; Regev, O.; Pevzner S.; Sen, T.; Luz, Z. Wetting 
stability of Si-MCM-41 mesoporous material in neutral, acidic and basic aqueous solutions. 
Micropor. Mesopor. Mater. 1999, 33, 149–163. 

27. Manjubala, I.; Sivakumar, M.; Najma, S. Synthesis and characterization of hydroxy/fluorapatite 
solid solutions. J. Mater. Sci. 2001, 36, 5481-5486. 

28. Anunziata, O.; Beltramone, A.; Cussa, J. Synthesis at atmospheric pressure and characterization 
of highly ordered Al, V, and Ti-MCM-41 mesostructured catalysts. Catal. Today 2008, 133-135, 
891–896.  

29. Jin, Z.W.; Wang, X.D.; Cui, X.G. Synthesis and morphological investigation of ordered SBA-15-
type mesoporous silica with an amphiphilic triblock copolymer template under various conditions. 
Colloid. Surface. A 2008, 316, 27–36. 

30. Dıaz, A.; Lopez, T.; Manjarrez, J.; Basaldella, E.; Martınez-Blanes, J.; Odriozola, J. Growth of 
hydroxyapatite in a biocompatible mesoporous ordered silica. Acta Biomaterialia 2006, 2,  
173–179. 

 
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


