
Materials 2009, 2, 1252-1287; doi:10.3390/ma2031252 
 

materials 
ISSN 1996-1944 

www.mdpi.org/materials 
Review 
 
Modelling of Grain Growth Kinetics in Porous Ceramic 
Materials under Normal and Irradiation Conditions 
 
Mikhail S. Veshchunov 
 
Nuclear Safety Institute (IBRAE), Russian Academy of Sciences B. Tul'skaya 52, 115191, Moscow, 
Russia; E-Mail: vms@ibrae.ac.ru; Tel. +7(495) 955-22-18; Fax: +7(495) 958-00-40 
 
Received: 10 July 2009; in revised form: 28 August 2009 / Accepted: 2 September 2009 /  
Published: 10 September 2009 
 

 
Abstract: Effect of porosity on grain growth is both the most frequent and technologically 
important situation encountered in ceramic materials. Generally this effect occurs during 
sintering, however, for nuclear fuels it also becomes very important under reactor 
irradiation conditions. In these cases pores and gas bubbles attached to the grain 
boundaries migrate along with the boundaries, in some circumstances giving a boundary 
migration controlled by the movement, coalescence and/or sintering of these particles. New 
mechanisms of intergranular bubble and pore migration which control the mobility of the 
grain boundary under normal and irradiation conditions are reviewed in this paper.  
 
Keywords: porous ceramics; grain growth; intergranular bubble and pores; irradiated  
UO2 fuel 

 
 
1. Introduction 

 
The interest in controlling grain growth in ceramic fabrication processes generally arises from two 

main causes. It may be a direct end in itself, insofar as the grain size of the finished article is one of the 
major factors determining its properties; alternatively it may be a means to the end of preparing 
articles of close to theoretical density. As a consequence, the justification for efforts to control grain 
size is sought in the advantage brought either by a specific grain size or by high density. 

Grain size can affect the properties of the finished article. While few properties of ceramics are 
completely independent of grain size, most attention has been drawn to those mechanical and 
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dielectric/magnetic properties where the structure-property relationship is very clear. The most striking 
of these are the effect of grain size grd on fracture strength, ( )2/1−= grdfσ  [1,2], the effect of grain size 

on high temperature creep deformation, ( )m
grdf −=ε& , where m is a constant whose value depends on 

the creep mechanism [3]. A wide range of electrical and magnetic parameters are affected by grain  
size [4,5]. 

The second reason for controlling grain growth has been found in the search for high density in 
sintering [6]. The recognition that densification can only proceed at a reasonable rate as long as the 
sources and sinks for the associated diffusion process are kept close together and, more particularly, 
the identification of the grain boundary and the pore as the sources and sinks for the diffusion atoms, 
have suggested that ultimate density is only to be expected where pores remain attached to grain 
boundaries [7]. 

Similarly to many other ceramic materials, nuclear fuel based on UO2 and (U,Pu)O2 is processed by 
powder sintering. However, in this case the main reason for controlling grain growth is to reduce the 
fission gas release in the fuel rods, in order to achieve increases in fuel burnup. With this in mind, the 
processing of ‘coarse grain’ microstructures was considered as early as the 1970’s with the aim of 
reducing the fraction of gas released by increasing the diffusion distances to the grain boundaries. 
Positive results were reported for coarse-grained UO2, obtained by annealing [8]. Grain growth in the 
final stage of sintering is the result of interactions between the grain boundaries and the residual 
porosity. 

In addition to the atomic diffusion, a rather important mechanism of fission gas release from the 
interior of fuel grains to the grain boundaries under irradiation conditions is collection of gas lodged in 
the fuel matrix by moving grain boundaries. Incorporation of fission gas in a grain boundary by those 
mechanisms is irreversible because the thermodynamic solubility of the rare gases in UO2 is 
essentially small. Fission products in the grain boundaries migrate along the boundaries and precipitate 
into gas bubbles which eventually link up and vent to the environment. The latter phenomenon is 
important at high burnup, but the former process is dominant at low burnup resulting in significant 
growth of the bubbles and fuel swelling (reducing the thermal conductivity of the fuel material).  

Grain growth is the process by which the mean grain size of aggregates of crystals increases. The 
driving force for this process results from the decrease in free energy which accompanies reduction in 
total grain boundary area. Second-phase inclusions act as pinning agents to grain boundaries since the 
attachment of an inclusion reduces the total boundary energy by an amount equal to the specific 
surface energy times the area occupied by the inclusions. If the inclusions are relatively immobile, a 
boundary pinned at an inclusion can only move by breaking free. This occurs when the driving force 
for the boundary migration exceeds the pinning force exerted by inclusions on the boundary. In the 
case of mobile second-phase inclusions (e.g. gas bubbles or sintering pores), they migrate along with 
the boundaries, in some circumstances giving a boundary migration rate controlled by the movement 
of the second-phase particles.  

Burke and Turnbull [9] deduced a parabolic relationship for normal grain growth kinetics. They 
modelled migration of a boundary as occurring by atom transport across the boundary due to a surface 
curvature and pressure gradient between grains. In this approach the driving force applied to the 
boundary of a spherical grain with radius grR  is written as: 
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where gbγ  is the surface energy of the boundary, and ξ ≈ 1−2 is a geometric factor. Under simplifying 

assumption grgr RR = , where grR  is the mean grain radius, the mean grain boundary velocity is given 

by equation: 

gr
gb

gr
gb R

MGu
dt
Rd

v
′

=Δ==)0(  (2) 

where gbu  is the grain boundary mobility, and ξγ gbgbuM =′ . After integration, Equation (2) results in 

the parabolic grain growth. 
A more appropriate treatment of the grain growth problem with consideration of grain coalescence 

was performed by Greenwood [10], who modified Equation (1) to the form: 
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where cR  is the critical radius which varies with time. Therefore the grain boundary velocity of a 
spherical grain with the radius grR  is given by equation: 
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Grains grow or collapse depending on whether cgr RR >  or cgr RR < , respectively.  

Using Equation (4), the kinetics become identical with those for Ostwald ripening of a distribution 
of second phase particles, with interphase reactions controlling the rate at which large particles grow at 
the expense of smaller ones. Hillert [11] used previous analysis of Lifshitz and Slyozov [12] for 
Ostwald ripening to obtain parabolic kinetics for grain growth. According to Hillert's theory [11] the 
critical radius satisfies equation: 

c

c

R
M
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dR 1

8
′

=  (5) 

whereas the mean grain radius grR  is related to the critical radius cR  by: 

( ) cgr RR 98=  (6) 

So, for the mean grain growth velocity this results in: 

gr
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where 
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=′=  (8) 



Materials 2009, 2              
 

 

1255

Hence, in comparison with the simplified approach [10], the effective mobility of the mean grain 
boundary migration in Equation (7) turns out to be one order of magnitude smaller than in 
Equation (2).  

Speight and Greenwood [13] applied the grain growth theory to nuclear fuels taking into 
consideration the sweeping of entrapped gas by the front of an advancing grain boundary. The basic 
postulate of their model is that small bubbles, because they exert a minimal drag force on an advancing 
grain surface, are swept along with the moving boundary, whereas large bubbles, because of their 
higher drag, can detach from the advancing surface.  

In order to calculate the retarding effect of bubbles or pores on a separately moving grain boundary, 
Nichols [14] showed that in presence of the attached bubbles (or pores) the grain boundary motion is 
governed by the net force bFnG −Δ , where F is the force applied to a separate bubble and bn  is the 

surface concentration of bubbles, moving along with the grain boundary. Therefore the grain boundary 
velocity was calculated modifying Equation (2) as:  

( ) ( )b
gb

bgb FnG
G

v
FnGuv −Δ

Δ
=−Δ=

)0(

 (9) 

Simultaneously, the bubble velocity bv  is equal to gbv , until the bubble is attached to the  

boundary [9]: 

gbb vbFv ==  (10)  

where kTDb b2= , and bD  is the bubble diffusion coefficient (dependent on the bubble radius bR ). 

Using Equations (9) and (10) the force F can be calculated as: 

bgb
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Δ
= )0(
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 (11) 

Therefore, one derives the equation for the grain boundary velocity [14]: 
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where Guv gbgb Δ=)0(  is the grain boundary velocity in the lack of the attached bubbles.  

However, Nichols analysed a simplified problem of a single boundary movement representing an 
average behaviour of an aggregate of crystals, without consideration of a real size distribution of 
grains and their coalescence. Such a consideration can be done in the framework of Hillert’s mean-
field approach [11] and was performed in the author paper [15]: 
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It is important to note from Equation (14) that pore (bubble) parameters control boundary 
movement when bgbgrgb nbRv >>ξγ881 )0( . Comparing Equation (14) with Equation (13) one can see 

that in the advanced model (with application of Hillert’s approach to consideration of grain size 
distribution) this occurs significantly earlier when ( ) )0(1.0 gbgbbgr vnbR ξγ>> , i.e., at grain size one 

order of magnitude smaller than in the simplified approach [14].  
To take into account different kinds of gas bubbles on the grain boundary, i.e., face (f), edge (e) and 

corner (c) bubbles, relationship similar to Equation (10) should be applied to each kind of  
porosity [16]: 

ccceeefffgb FbvFbvFbvv ======  (15) 

therefore, the net force acting on the boundary takes the form: 
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and for the grain boundary velocity one obtains [15]: 
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In the absence of porosity the grain growth under isothermal conditions can be satisfactorily 
described by parabolic kinetics, derived by direct integration of Equation (7): 

( ) tTKRtR grgr =− )0()( 22

 (18) 

where )0(grR  and )(tRgr  are the average grain radii of the sample before annealing and after an 

annealing time t at a temperature T, respectively.  
In porous materials the grain growth is the result of interactions between grain boundaries and 

pores, which give rise to drag effect which impedes boundary motion in accordance with 
Equation (14). For instance, for materials with the total porosity invariable during annealing the grain 
growth was approximated in [14,17] by a more slow kinetic equation: 

tKRtR n
gr

n
gr ')0()( =−  (19) 

with the growth exponent n = 3 or 4, depending on pore migration mechanism, in a good agreement 
with experimental observations, e.g. [18,19]. However, recently it was revealed that in many cases the 
normal grain growth kinetics must be described by non-integer exponents, somewhat different from 3 
or 4 [20]. 

In Section 2 it is shown, following the original publication of the author [21], that additional 
consideration of the porous material densification (i.e., porosity reduction under high temperature 
annealing conditions) in the course of the grain growth allows explanation of complicated grain 
growth kinetics characterised by non-integer growth exponents observed in the tests. 

In application to irradiated materials with gas bubbles formed on the grain boundaries, Nichols’ 
approach [14] has another deficiency associated with consideration of a retarding effect using the 
standard mechanisms of bubble mobility derived by Shewmon [22] for spherical (e.g. intragranular) 
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bubbles. However, besides a more complicated (so called “lenticular”) shape of grain face bubbles, the 
migration mechanism of these bubbles might be essentially different from that of the intragranular 
bubbles, owing to their specific location on and interaction with a grain boundary. A new mechanism 
of the lenticular grain face bubble migration which controls the bubble mobility and determines the 
drag force exerted on the grain boundary, proposed in the author’s paper [15], will be presented in 
Section 3.  

In Section 4 of the current paper the new mechanism is extended to consideration of the grain 
boundary peripheral (edge and corner) bubbles migration associated with vacancy fluxes along the 
grain boundary, following the original publication of the author [23]. 

In Section 5 further generalization and improvement of the model for the grain growth controlled 
simultaneously by sintering pores and gas bubbles migration (also considered in [23]), is presented. 
For this purpose, pore coalescence during grain growth and pores shrinkage, caused by vacancies 
thermal evaporation from pores and by vacancies knockout from pores under irradiation, are self-
consistently considered in the improved model.  

Implementation of the advanced grain growth model in the MFPR code designed for modelling fuel 
performance and fission products release [24,25], and its validation against various tests are presented 
in Section 6. 

 
2. Effect of Sintering Pores on Normal Grain Growth Kinetics 

 
For explanation of the normal grain growth kinetics, Equation (19), a series of models has been 

proposed, most of them based on consideration of Kingery and François [26]. They assumed that, as 
grains are removed in the growth process, pores migrating with the boundaries are brought together, 
and pore growth occurs together with grain growth, see Figure 1. After, say, twofold increase of the 
mean grain size, an amount of grains grN  decreases by one order of magnitude ( 3−∝ grgr RN ), and 
practically all pores are located at grain corners, so amount of pores pN  becomes proportional to the 
amount of grains, grp NN ∝ .  

 
Figure 1. Pore migration with boundaries and resulting pore growth during normal grain growth.  

 
Kingery and François additionally assumed that in the later stages of sintering grain growth is 

relatively faster than fuel densification, so that the pore fraction remains essentially constant. Under 
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such an assumption, the mean pore radius 3/1−∝ pp NR  and thus is proportional to the mean grain 

radius: 

grp RR ∝  (20)

On this basis, to account for drag effect of the pores, they proposed to introduce an additional factor 
11 −− ∝ grp RR  in the r.h.s of Equation (7), leading to Equation (19) with n = 3 after integration. 

Later Nichols [14] derived a more appropriate equation for the drag force, Equation (12), which was 
applied by Brook [17] to consideration of normal grain growth kinetics controlled by pore migration. 
Using this equation for the later stages of sintering when corner pore mobility controls boundary 
movement, Brook obtained an equation: 

pgr

pgr

nR
b

dt
Rd

∝  (21)

where pn  is the surface concentration of pores on the boundary, and pore mobility: 

n
pp Rb −∝  (22)

is determined by migration mechanism, i.e., n = 3 for the mechanisms of lattice diffusion and gas 
phase transport at P = const., and n = 4 for the surface diffusion mechanism [22]. He also noticed that 
for the considered situation where pores are located at grain corners, their separation is proportional to 

grR , so the surface concentration of pores on the boundary is inversely proportional to 2−
grR : 

2−∝ grp Rn  (23)

Substitution of Equations (22) and (23) in Equation (21) results in: 

n
gr

gr R
dt
Rd −∝ 1  (24)

or, after its integration: 

tKRtR n
gr

n
gr ')0()( =−  (25)

Therefore, namely the pore migration mechanisms by lattice diffusion and gas phase transport at 
P = const. provide grain growth kinetics with n = 3, whereas n = 4 is afforded by the surface diffusion 
mechanism.  

Nevertheless, Bourgeois at al. [20] noticed that to describe grain growth during porous UO2 thermal 
treatment (sintering) in their recent tests, the slope ( ))0()(ln n

gr
n
gr RtR −  as a function of tln  might be 

quite different from 1, whether with n = 3 or n = 4, and also from one temperature to another. 
Therefore, in order to describe grain growth in these cases, a non-integer exponent n must be used.  

In order to explain such behaviour, one should take into account that Equation (25) was derived 
under simplifying assumption that the pore fraction remains essentially constant during grain growth, 

.3 constRN pp =  However, this assumption was not confirmed in the new tests [20]. Indeed, in these 

tests changes in density of fuel pellets during heat treatment were monitored simultaneously with the 
grain growth measurements, which demonstrated a plain correlation between grain growth and fuel 
densification. 
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In order to take into consideration shrinkage of isolated pores owing to vacancies evaporation 
during thermal annealing, Speight and Beere’s approach [27] (for the grain face cavities) was applied 
in [21] to the case of the corner pore located at intersection of 6 grain faces (4 hexagonal and 2 square) 
of UO2 grains considered as truncated octahedron (see details of this structure in Section 4): 

p

sgbp

RkT
wD

t
V γ

β
π 267.3 Ω

−≈
∂
∂

 (26)

where gbD  is the grain boundary self-diffusion coefficient of uranium atoms, 2w is the thickness of the 

grain boundary, sγ  is the surface tension of the pore, ( ) ( )( )2222 3125.0ln pcpcpc RRRRRR −−−=β  is 

the dimensionless factor, ( ) pc nR =
−12π  determines the radius of the sink free zone cR , which can be 

estimated taking into account that 24 corners are distributed over the grain surface with the area of 
≈ 24 grRπ , i.e.,  

26 grp Rn π≈  and 6grc RR ≈  (27)

Therefore, decrease of an isolated pore radius can be evaluated from Equations (26)-(27) as: 

pp

sgbp

RRkT
wD

t
R αγ

β
−≡

Ω
−≈

∂

∂ 5.5
 (28)

where  

kT
wD sgb

β
γ

α
Ω

=
5.5

 (29)

Neglecting pores shrinkage, one can obtain (following Kingery and François [26]) that variation of 
total porosity in the course of pores coalescence is zero, ( ) 0=dtVNd pp . However, taking pores 

shrinkage into consideration, one will obtain that in this case 

( )
t

V
N

dt
VNd p

p
pp

∂

∂
=  (30)

where  

( )
td

dN
V

td
Vd

N
dt

VNd p
p

p
p

pp +=  (31)

and  
3−∝∝ grgrp RNN  (32)

Here tVp ∂∂  denotes variation of the pore mean volume owing solely to pores shrinkage, 
Equation (26), whereas tdVd p  denotes total variation of the pore mean volume owing to pores 
simultaneous shrinkage and coalescence [21]. 

Substituting Equations (26), (31) and (32) in Equation (30), one obtains 
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33 p

gr

gr

pp

Rdt
Rd

R
R

dt
Rd α

−=−  (33)

In the case when the corner pore mobility controls grain boundary movement, the relationship for 
the mean grain radius growth controlled by pore mobility, similar to Equation (14), takes the form: 

6
1.0

81
8 2

grp

gr

gb

p

p

gr

gbgr Rb
Rn

b
Rtd

Rd πξγξγ
≈≈  (34)

where Equation (27) was used for pn , and 4

3/4

2
3

p

s
p kTR

Db
π
Ω

≈ [22], if the surface diffusion mechanism 

controls the pore migration kinetics. Substituting this value in Equation (34), finally one obtains: 

4
p

grgr

R
R

td
Rd

ϕ=  (35)

where 
kT
wDsgb Ω

≈
40
ξγ

ϕ . 

The system of Equations (33) and (35) has the solution: 
( )ϕα 31−∝ grp RR  (36)

and 
( )( ) ( )( ) KtRtR grgr =− −− 0314314 ϕαϕα  (37)

The total porosity reduction can be calculated as ( )33
grppppppores RRRNVNV ∝∝= and after 

substitution of Equation (36): 
a

grgrpppores RRVNV −− =∝= ϕα  (38)

where ϕα=a .   
Substituting Equations (29) and (37) in Equation (38), one can evaluate: 

s

gb

D
D

a
ξβ

ϕα 220
≈=  (39)

where ≈ξ 1−2, parameter β depends on the fuel porosity (see designations after Equation (26)) and for 
the fuel density 96-98% varies in the range 0.2–0.3. Numerical estimations of Equation (39) presented 
in [21] are in a reasonable agreement with the exponents derived from the measured in [20] 
correlations between grain growth and fuel densification, 3.02.0 −≈a .  

This means, as seen from Equation (37), that for the surface diffusion mechanism of pores the 
power exponent attains non-integer value ≈ 3.6–3.7, in a qualitative agreement with observations [20]. 
Direct comparison of calculation results with the measurements will be presented in Section 6.2. 
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3. Grain Growth Kinetics Controlled by Grain Face Bubble Migration 
 
In accordance with [22], the mobility of a spherical intragranular bubble with radius bR  is 

determined by various migration mechanisms: 
n

bRb −∝  (40)

where n = 3 for the mechanisms of lattice diffusion and gas phase transport, and n = 4 for the surface 
diffusion mechanism. 

It was usually assumed that the same migration mechanisms can be also applied to the grain face 
bubbles with some renormalisation of the proportionality coefficient in Equation (40), owing to a more 
complicated lenticular form of these bubbles. However, a more profound difference from free 
intragranular bubbles arises on grain faces, which can significantly reduce the intergranular bubble 
mobility and thus migration velocity of the grain boundary. This new rate determining mechanism 
proposed in [15] of bubble migration will be presented in this Section. 

 
3.1. Phenomenological Consideration 

 
Before presenting a more detailed “microscopic” consideration of the grain boundary migration 

with attached gas-filled bubbles, a phenomenological approach to calculation of the retarding force 
exerted by bubbles on the moving boundary will be presented. 

The driving force for the boundary migration can be derived from the pressure gradient across the 
boundary arising from its curvature given by expression grgb RG ξγ=Δ (see Section 1). This pressure 

gradient between the two adjacent grains provides different boundary conditions also for gas bubbles 
in these grains; in particular, an additional external hydrostatic pressure Gpext Δ=  is applied to the 

spherical segment of the lenticular bubble surface in the shrinking grain. 
In order to clarify the nature of the drag force exerted on the grain boundary by an attached bubble, 

at first a simplified limiting case of a complete equilibrium of the lenticular bubble with both grains 
(shrinking and growing) separated by the boundary under steady-state conditions, will be considered, 
Figure 2. In this limiting case: 

 02 22 =−≡Δ Rpp sb γ  (41)

02 11 =Δ−−≡Δ GRpp sb γ  (42)

where bp  is the internal bubble pressure, 1R  and 2R  are the curvature radii of the two surface 

segments of the bubble. 
One can see from Equations (41) and (42) that the curvature radii of the two bubble surfaces are 

different, this induces different contact angles 1θ  and 2θ  with the grain boundary: 

bRR ρθθ =⋅=⋅ 2211 sinsin , (43)

where bρ  is the projected radius of the bubble in the plane of the boundary.  
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Figure 2. Determination of the drag force exerted by attached lenticular bubble on moving 
grain boundary. 

  
 
Assuming a balance between the surface tension forces in the plane of the grain boundary under 

steady-state conditions: 

( )21 coscos θθγγ += sgb  (44)

one can calculate a net force exerting by the bubble on the grain boundary in the normal to the grain 
boundary direction (see Figure 2): 

( ) bs F=− 12 sinsin2 θθπργ  (45)

Substituting Equations (41)–(44) in Equation (45), one gets: 
2
bb GF πρ⋅Δ=  (46)

and therefore, in accordance with Equation (2), the driving force for the grain boundary migration is 
reduced proportionally to the reduction of the grain boundary area owing to its coverage with bubbles: 

( )21 bbbb nGnFGG πρ⋅−Δ=−Δ=′Δ  (47)

The above presented consideration of the bubble equilibrium with the two grains can be justified 
only in the case when the rate determining process of bubble mobility is infinitely fast in comparison 
with the grain boundary migration. In a more general case of a finite bubble mobility, a complete 
equilibrium between the bubble and the two grains is not attained, hence Equations (41) and (42) are 
not anymore valid. It is straightforward to show that in order to uphold a coherent migration of the 
grain boundary and the attached bubble in this case, the values  1pΔ and  2pΔ become non-zero and 
obey the relationship: 

0 22

2
2

1
1 >=−=Δ−=Δ−−=Δ εγγ

b
ss

b p
R

pG
R

pp  (48)

Indeed, during a time interval dt  the grain boundary moves over a distance dtvgb . If the bubble is 

“frozen” at its position, the volume of the upper part of the bubble will be decreased by a value 

Grain 1 

Grain 2 

θ1

γs

γs

θ2

γgb

vgb 

Fb 

pext = 0 

pext = ΔG 
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dtvdV gbb ⋅= 2πρ , whereas the volume of the lower part will be increased by the same value dV , see 

Figure 3.  
 

Figure 3. Determination of vacancy fluxes along the grain boundary in two adjacent grains 
providing relocation of a lenticular bubble coherently with the grain boundary. 

 

  
 
In order to sustain the bubble migration with the grain boundary velocity gbv , vacancy fluxes along 

the upper and lower surfaces of the grain boundary, )1(
vJ  and )2(

vJ , should compensate these volume 

variations: 

dtvdVdtJdtJ gbbbvbv ⋅==Ω−=Ω 2)2()1( 22 πρπρπρ  (49)

where Ω  is the vacancy volume. It is assumed that each of the vacancy fluxes ( )1(
vJ  or )2(

vJ ) occurs in 

a thin surface layer with a thickness w ≈ 0.5 nm of the corresponding grain (grain 1 or grain 2), 
characterised by a relatively high self-diffusion coefficient gbD .  

These fluxes will be farther calculated in the following Section 3.2, nevertheless, from the physical 
point of view (confirmed by calculations presented below) it is clear that the values of )1(

vJ  and )2(
vJ  

are determined by the pressure differences  1pΔ and 2pΔ , respectively, which should obey condition 

21 pp Δ−=Δ , Equation (48), in order to sustain relationship )2()1(
vv JJ −= , Equation (49).  

Equations (43)–(45) are still valid for the considered case of a non-equilibrium bubble with the 
steady-state lenticular shape, and along with Equation (48) determine the retarding force: 

( ) ( )επρθθπργ 2sinsin2 2
12 +Δ=−= GF bsb  (50)

Substitution Equation (50) in Equation (9) results in: 

( )[ ]22 21 bbbbgbgb nnGuv πρεπρ ⋅−⋅−Δ=  (51)

Superposition of Equations (51) and Equation (49) with explicitly calculated fluxes )1(
vJ  and )2(

vJ as 

a function of ε will finally determine the migration of the grain boundary with attached bubbles.  
The same result, Equation (51), derived in the present Subsection in phenomenological approach 

(i.e., by consideration of mechanical forces, acting on the boundary and bubbles), can be obtained in a 

Grain 1 

Grain 2 

vgb⋅dt Jv
(1) 

Jv
(2) 

dtvdV gbb ⋅= 2πρ  

vgb 



Materials 2009, 2              
 

 

1264

more accurate microscopic approach based on self-consistent calculation of vacancy fluxes across and 
along the grain boundary, which will be presented in the following Subsection 3.2.  

 
3.2. Microscopic Consideration 

 
In accordance with Cole, Feltham and Gillam [28], migration of a grain boundary of a growing 

grain takes place in steps of one interatomic spacing a as atoms transfer from the neighbouring grain 
across the boundary under the pressure difference ΔG across the boundary:  

Gu
kT
QG

kT
av gbgb Δ≡⎟

⎠
⎞

⎜
⎝
⎛−Δ

Ω
= exp2)0( υ  (52)

where υ is the atomic oscillation frequency on the grain boundary, Q is the activation energy for self-
diffusion in the grain boundary, Ω is the atomic volume. The grain boundary mobility 

⎟
⎠
⎞

⎜
⎝
⎛−

Ω
=

kT
Q

kT
augb exp2υ  , can be also evaluated following Burke and Turnbull [9] as: 

wkT
D

u gb
gb 2

Ω
=  (53)

where 2w ≈ 1 nm is the thickness of the grain boundary, gbD  is the self-diffusion coefficient in the 

grain boundary. 
The above described process of atomic jumps can be equivalently considered as translations of 

vacancies from the growing grain to the adjacent one with the same rate as translations of atoms in the 
opposite direction. The corresponding flux of vacancies )0(~

vJ  in the normal to the grain boundary 

direction is uniform over the grain boundary surface (with the total area S) and thus determines the 
grain boundary relocation during the time interval dt , in accordance with the following relationship: 

dxSdtSJ v ⋅=⋅Ω)0(~ . Therefore, the grain boundary migration velocity dtdxvgb =)0(  can be represented 

in the form Ω= )0()0( ~
vgb Jv , and thus: 

ΩΔ= GuJ gbv
)0(~

 (54)

In the presence of attached bubbles with the surface coverage bn  and mean projected radius bρ , the 
vacancy flux takes place across the reduced surface of the grain boundary ( )21 bbnS πρ− . In the limiting 

case (corresponding to an infinite bubble mobility, or ε → 0), when the lenticular bubble attains 
equilibrium with both grains separated by the boundary, the vacancy flux is still uniform over the 
reduced grain boundary surface, and thus, Equation (54) can be used in the balance equation: 

( )2)0()0( 1~
bbvgb nSJSv πρ−Ω=  (55)

Therefore, in this case the grain boundary velocity is calculated as: 

( )2)0( 1 bbgbgb nGuv πρ⋅−Δ=  (56)

in agreement with Equation (47). 
In a more general case of a limited bubble mobility when a complete equilibrium between the 

bubble and the grains is not attained and ε > 0, a spatial variation of the vacancy chemical potential 
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over the grain boundary faces takes place. On the one hand, this chemical potential variation induces 
the vacancy fluxes to (from) the bubble along the upper (lower) surface of the grain boundary, )1(

vJ  and 
)2(

vJ , introduced in Equation (49). On the other hand, the pressure drop across the boundary becomes 

also non-uniform over the grain face area. In order to calculate the total vacancy flux across the 
boundary in this case, one should self-consistently consider the vacancy transport along and across the 
grain boundary, on the base of calculation of the spatial variation of the vacancy chemical potential. 

As shown by Speight and Beere [27], variation of the surface chemical potential ( ) ( )Ω= rr nnσμ  in 

a grain reflects exactly the steady state distribution of normal stresses over the grain boundary area 
unoccupied by bubbles. In the currently considered problem with a moving grain boundary under 
pressure difference across the boundary, such a conclusion should be generalised and independently 
applied to each of the two adjacent grains, ( ) ( )Ω= rr nn

)2,1(
2,1 σμ . The integral of these stresses over the 

area (with the mean radius ( ) 2/1−≈ bc nR π ) associated with one bubble must equal the total load applied 

to each face of the grain boundary. Hence, following [27], one obtains:  

( ) 2

2,1

2
2,12,1

1 22 bb
s

c

R

p
R

Rrdrr
c

b

πργπσπμ
ρ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=Ω ∫−  (57)

where the first term on the r.h.s. arises from the normal stresses 2,1σ  at each of two surfaces of the 

grain boundary in the absence of attached bubbles. In the presently considered case these stresses 
uphold the pressure gradient ΔG across the grain boundary, i.e., 

GΔ+= 12 σσ  (58)

The second term on the r.h.s. of Equation (57) expresses the force which the bubble surface tension 
exerts on the boundary. This term can be calculated as the integral of the normal stress on the 

lenticular bubble surface ( ) ( ) Ω⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Ω= b

s
nn p

R
R

2,1

)2,1(
2,12,1

2, γθσθμ  over the corresponding surface 

segment of the bubble: ( ) 2

2,1
2,12,1

)2,1( 2
bb

s
nn p

R
dSR πργσ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=∫ . 

As illustrated in Figure 4, the chemical potential gradients along the grain face surfaces, 1μS∇  and 

2μS∇ , determine the vacancy surface fluxes )1(
vJ  and )2(

vJ , introduced in Equation (49), whereas the 
chemical potential drop across the grain boundary ( ) ( ) ( )rrr 12 μμδμ −=  determines the vacancy flux 
across the grain boundary: 

( ) ( ) 2~ Ω= rurJ gbv δμ  (59)

Integrating this flux over the grain boundary area unoccupied with bubbles and using Equation (57) 
one can calculate the grain boundary velocity: 

( ) ( )( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=−

Ω
= ∫ 2

12

2
12122

222 b
ss

cbgb

R

c

gb
gb RR

Rnurdrrr
R

u
v

c

b

πργγπσσπμμ
π ρ

 (60)

The second term on the r.h.s. of Equation (60) is calculated from Equation (48): 
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G
RR

ss Δ+=− εγγ 222

12

 (61)

Substitution of Equations (58) and (61) in Equation (60) results in: 

( )[ ]22 21 bbbbgbgb nnGuv πρεπρ ⋅−⋅−Δ=  (62)

which exactly coincides with Equation (51).  
 

Figure 4. Schematic representation of vacancy fluxes along and across the grain boundary. 

 
An additional relationship between gbv  and ε  can be obtained from the balance equation, 

Equation (49), if the surface vacancy fluxes )1(
vJ  and )2(

vJ  are properly ascertained. These fluxes obey 

the continuity equations on each face of the grain boundary, which in the system of coordinates 
moving along with the grain boundary take the form: 

( ) 0~ 1)2,1( =Ω±⋅∇ −
gbvvS vrJJ m

rr
 (63)

or  

( )
012

2,1
2 =

Ω

−
±∇

Ω
gb

gb
s

gb v
u

kT
wD

m
μμ

μ  (64)

with the boundary conditions: 

02,1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= cRrdr
dμ

, and ( ) Ω⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= b

s
b p

R 2,1
2,1

2γρμ  (65)

It is straightforward to see that integration of Equation (64) over the surface non-occupied with the 
bubbles, directly results in the first part of Equation (60), if Equation (49) is valid. 

Superposition of equations (64) forms the system of Laplace and Helmholtz type equations for 
12 μμ + and 12 μμ −  with the solution obeying Equation (65), which determines the vacancy fluxes at 

the bubble surface [15]: 

( ) ( )[ ]rrJv 12

~
μμ −∝  

( )rJ Sv 2
)2( μ∇∝  

( )rJ Sv 1
)1( μ∇∝  

vgb 

Grain 1 

Grain 2 

Bubble 
 

Bubble 

( )1
)1( θSI  

( )2
)2( θπ −SI  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )cbcb

cbcb

gb

gbgb
vv RIKRKI

RKIRIK
u
v

G
kT
wD

JJ
χχρχχρ
χχρχχρχε

1010

1111)2()1( 2
2 +

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+Δ

Ω
=−=  (66)

where Ω= wDkTu gbgb2χ , and ( )xI 1,0  and ( )xK 1,0  represent the first and the second modified 

Bessel functions of the zeroth and first kind, respectively. 
Substitution of Equation (66) in Equation (49) results in the additional relationship for the grain 

boundary velocity: 

( ) ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ω
+

Ω
+Δ=

−1

3
2 ,

1
,

2
gbb

cbgb

b

cbgb
bgb ukT

RwD
kT

RwD
Gv

ρ
χχρχϕ

ρπ
χχρχϕ

πρε  (67)

where ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )cbcb

cbcb
cb RIKRKI

RKIRIKR
χχρχχρ
χχρχχρχχρϕ

1010

1111,
+
−

= . 

In the meaningful limit wRc >> , wb ≥ρ , one has with a very good accuracy ( ) 1, ≈cb Rχχρϕ , until 

cb R<ρ : 

( ) fb
gbb

gb

b

gb
bgb bF

ukT
wD

kT
wD

Gv =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ω
+

Ω
+Δ=

−1

3
2 12

ρ
χ

ρπ
χ

πρε  (68)

Superposition of Equations (62) and (68) allows exclusion of the parameter ε and final calculation 
of the grain boundary velocity: 

G
nbu

nbu
v

bfgb

bfgb
gb Δ

+
=  (69)

where the bubble mobility is presented by the expression in brackets of Equation (68): 
1

3 1
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ω
+

Ω
=

gbb

gb

b

gb
f ukT

wD
kT
wD

b
ρ

χ
ρπ
χ

 (70)

A further simplification of Equation (70) can be attained using evaluation of the grain boundary 
mobility gbu  in Equation (53) resulting in 1−≈ wχ . In this case the bubble mobility can be 

approximated as: 

3

1

3
21

b

gb

bb

gb
f kT

Dw
kT

D
b

ρπρρπ
Ω

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Ω
=

−

 (71)

For gas bubbles in UO2 the surface diffusion mechanism of bubble migration generally dominates 
over the two other mechanisms of lattice diffusion and gas phase transport (see, e.g. [29]). For this 
reason, in derivation of Equations (70) and (71) it was implicitly assumed that the surface diffusion of 
uranium atoms along the two segments (upper and lower) of the bubble surface disconnected by the 
grain boundary, was fast enough to redistribute in the bubble all vacancies absorbed from the upper 
surface of the grain boundary (flux )1(

vJ ) and desorbed to the lower one (flux )2(
vJ ), in order to sustain 

its steady-state lenticular shape in the course of grain boundary migration. This assumption can be 
explicitly grounded if one compares two expressions for the bubble mobility by the new mechanism, 
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Equation (71), and by the bubble surface diffusion mechanism. For the lenticular grain face bubble the 
mobility by the surface diffusion mechanism was derived in [15]: 

4
0

3
0

4

4 4
3

cos1
sin

2
3

b

s

b

s
s kT

wD
kT

wDu
ρπθ

θ
ρπ

Ω
≈

−
Ω

≈  (72)

where θ0 ≈ θ1 ≈ θ2 ≈ 50° for UO2. 
Therefore, comparing Equations (71) and (72) one can see that ( )( )wDDuu bsgbsb ρ≈ . From 

analysis of experimental data for UO2 (see below Section 6) one can conclude that sD  exceeds gbD  by 

1–2 orders of magnitude in a wide range of temperatures above 1000 K, increasing with temperature. 
At higher temperatures T ≈ 2000 K, when the grain growth becomes noticeable, the ratio gbs DD  

attains 3 orders of magnitude. Therefore, for the practical interval of bubble sizes ww b
310≤≤ ρ , i.e., 

from ≈ 1 nm up to ≈ 1 μm, the ratio sb uu is still small. 

 
4. Retarding Effect of Peripheral Bubbles on Grain Growth in Irradiated Fuel 

 
In the current section the new mechanism of the peripheral (edge and corner) intergranular bubble 

migration associated with vacancy fluxes along grain boundary is considered following the original 
publication of the author [23]. 

The shape of UO2 grains is considered as a truncated octahedron or tetrakaidecahedron (TDK) [30]. 
The TDK has 14 faces, six of which are square and eight hexagonal, 36 edges and 24 corners. When 
packed together an array of TDKs can fill all available space in a solid and thus represents an 
appropriate basic building block. The meeting point of each grain face is shared by two grains, each 
grain edge by three grains and each grain corner by four grains. Face bubbles are uniformly distributed 
over these faces with the surface concentration 2/1 cf Rn π=  and bubbles of the two other types (Ne 

edge and Nc corner bubbles, associated with one grain face) are located on the periphery of the faces, 
Figure 5.  

 
Figure 5. Peripheral grain boundary bubbles (edge and corner).  

 

 

 

 
 
Tucker has further rationalized the TDK structure by assuming that the grain is composed of 

fourteen circular faces with radius e [31]. The grain edge porosity is represented in this model by a 
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tube (or “toroid”) threading around the circumference of the grain face. The toroid is formed by 
rotation of arc GH (IH) around the vertical axis passing through the centre of grain face, as shown in 
Figure 6. The volume of the toroid is equal to the volume of edge porosity V∑ associated with one 
grain (see Appendix A). 

 
Figure 6. (a) Toroid formation. (b) Toroid cross-section. 

(a) 
 

n 
(b) 

R S 

T

 
 

4.1. Continuity Equation for Vacancy Fluxes on Grain Face 
 

The vacancy flux to the periphery of the grain face will be calculated within the mean field 
approximation. In this approach vacancy sinks into the face bubbles are represented as a sink 
uniformly distributed over the grain face with the strength:  

2
2,1 2)(

c

bb
face

R
rJ

S
π

πρρ Ω⋅=
=  (73)

From the condition of coherent relocation of the grain boundary-bubble complex, Equation (49), the 
distributed sink strength (73) of face bubbles occupying the grain face with the surface concentration 

2/1 cf Rn π=  takes the form: 

22
cgbb RvS ρm=  (74)

The continuity equations at each face of the grain boundary in the system of coordinates moving 
along with the grain boundary, generalises Equation (64) and takes the form: 

 ( ) 0122,1 =Ω−±∇− SvuJ gbgbS mm
r

μμ  (75)

with the boundary conditions at the grain face periphery [31]: 

 ( ) ( )Ω−== tors pKer γμ 2,12,1  (76)

where 2,1K  is the toroid surface curvature and torp  is the gas pressure in the toroid. The first term in 

Equation (75) is the vacancy flux along the upper (lower) face of the grain boundary: 

2,12,1 μS
gb

kT
wD

J ∇
Ω

−=  (77)
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and the second term is the vacancy flux across the grain boundary. 
Superposition of equations (75) forms the system of Laplace and Helmholtz type equations for 

12 μμ + and 12 μμ −  which has solution (see Appendix B):  

 ( ) ( ) ( )
( ) ( )

gb
gb

gb
gbtor u

Sv
eI

rI
u

SvGGr
22

2
2

)(
0

0
2,1

Ω
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ω
+−Ω+Δ

Δ
−= mm

χ
χ

εμ  (78)

where GKppK StortorStor Δ−−=−= γγε 12  is the deviation parameter (similar to that introduced for 

the face bubbles in Equation (48)). 
Correspondingly, the total vacancy flux to (from) the grain boundary periphery with perimeter 2πe, 

along the upper (lower) surface of the grain boundary is: 

 ( ) ( )
( )eI

eI
kT

weD
u

Sv
GJ gb

gb

gb
tor χ

χχπ
ε

0

1
2,1 2 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−+Δ= m  (79)

Self-consistency of the above presented mean-field approximation is shown in Appendix C. 
 

4.2. Coherent Migration of Edge and Corner Bubbles 
 
The calculated vacancy flux to the periphery should be distributed between two kinds (edge and 

corner) of the peripheral bubbles. Such a distribution can be described by two weighing factors ce ηη , , 

so that the vacancy flux to (from) each kind of the bubbles is equal to: 

cece
ce NJI ,2,1,

),(
2,1 η=  (80)

These factors can be found from condition of the equal velocities of the two kinds of the bubbles:  

gbce vvv ==  (81)

Indeed, displacement of the grain boundary with the attached peripheral bubbles is associated with 
relocation of the bubbles cross-sections, dashed in Figure 5. Areas of these cross-sections are: 

( )eeeee RS ϕϕϕ sincos2 2 −=  (82)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−−= c

c
ccc

c
ccc RRS ϕ

π
πθπϕθ

π
πθπθ cos

32sin
)6sin(4/cos

32sin
)6sin(

6
2 22  (83)

Therefore, a part of the bubble volume swept by the moving grain boundary gbcece vSdV ,, =  should 

be compensated by the vacancy fluxes ),(
2,1

ceI over the grain boundary faces, which provide bubbles 
migration with the grain boundary velocity gbv  (compare with a similar consideration for the face 

bubbles in Equation (49)):  

Ω= ),(
2,1,

ce
cegb ISv  (84)

Comparing Equations (80) and (84) one can evaluate: 

eecc

cece
ce NSNS

NS
+

= ,,
,η  (85)
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After substitution of Equations (79) and (80) in Equation (84) one obtains: 

( )
1

2

2

122
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
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⎝

⎛
+++Δ

Ω
=

c

b

e

ee
tor

gb
gb R

w
e
NSG

kT
D

v ρ
ηπ

ε  (86)

4.3. Forces Exerted on Peripheral Bubbles and Toroid 
 
In order to calculate the velocity of the grain boundary with intergranular bubbles one should 

calculate forces, exerted on the peripheral bubbles by the boundary. As shown in Section 3.2, the force 
acting on the face bubble is: 

( ) ( ) 2
12

2 1122 bffSbff RRGF πργπρε −=+Δ=  (87)

where ffSf pR −= 22γε , from the condition of the coherent migration of the grain boundary and the 

attached bubble. 
Similarly to consideration of face bubbles in Section 3.2, the integral of the normal stress over the 

unoccupied area associated with one «toroidal bubble» must equal the total load applied to each face 
of the grain boundary. Hence, one obtains: 

( ) ( ) tortors
S

SpKerdrr
face

−−=Ω ∫− γπσπμ 2,1
2

2,12,1
1 2  (88)

where the first term on the r.h.s. arises from the normal stresses 2,1σ  at each of two surfaces of the 

grain boundary in the absence of the attached toroidal bubble. In the presently considered case of the 
moving boundary these stresses uphold the pressure gradient ΔG across the grain boundary, i.e., 

GΔ+= 12 σσ  (see Equation (58)). 
The second term on the r.h.s. of Equation (88) expresses the force which the toroid surface tension 

exerts on the boundary. This term can be calculated, for example, analogously to the l.h.s. of 
Equation (57) as the integral of the normal stress on the toroidal bubble, 

( ) ( ) ( )Ω−=Ω= torsnn pKR γθσθμ 2,1
)2,1(

2,12,1 , , over the corresponding segment of the toroidal bubble: 

( ) tortorsnn SpKdSF −=⋅= ∫ γθσ 2,12,1
)2,1(

2,1 cos  (89)

where torS  is the toroid projection area, calculated in Appendix A. 

In order to sustain a coherent migration of the grain boundary and the attached toroid, the vacancy 
fluxes )1(

vJ  and )2(
vJ , which are determined by the pressure differences  1pΔ and 2pΔ , respectively, 

should obey the relationship )2()1(
vv JJ −= , which results in the condition 21 pp Δ−=Δ : 

021 =−+−Δ− StorStor KpKGp γγ  (90)

Therefore, the force acting on the toroid torF  is equal to: 

( ) ( ) tortortorSeStor SGSKKFFF εγγ 2212 +Δ=−=−=  (91)

where 

torStor pK −= γε 2  (92)
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Similarly one obtains the force acting on the edge and corner bubbles: 

( ) cecece SGF ,,, 2 ⋅+Δ= ε  (93)

where ( )cecececece pRR ,2,1,,, ,,εε =  from the corresponding conditions for coherent migration of the 

boundary and the attached bubbles. 
 
4.4. Grain Boundary Retarding Effect 

 
The grain boundary velocity depends on the net force acting on the boundary: 

( )cceeffgb
gr

gb nFnFnFGu
dt

dR
v −−−Δ==  (94)

where in  is the surface concentration of the i-th type bubbles. 

Each grain face with the surface area πe2 has one toroid bubble, so, one should assign to the toroid 
bubbles the surface concentration 1/πe2. The force acting on the toroid must be equal to the sum of 
forces acting on the edge and corner bubbles: 

( ) 2enFnFF cceetor π+=  (95)

In this case the grain boundary retarding effect associated with the toroid coincides with one 
associated with the peripheral bubbles. Therefore, the grain boundary velocity can be represented in 
the form: 

( )2eFnFGuv torffgbgb π−−Δ=  (96)

On other hand  

ffgb bFv =  (97)

where 3
b

gb
f kT

D
b

πρ
Ω

=  as derived in Section 3.2, Equation (71).  

Substitution of Equation (91) in Equation (86) gives: 
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 (98)

Superposition of Equations (94)–(98) results in the relationship for the boundary velocity (see 
Appendix D): 
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 (99)

For a more realistic description of grain growth with consideration of size distribution and 
coalescence of grains using the same procedure as for derivation of Equation (14), one can obtain for 
the mean grain velocity a new relationship instead of Equation (99): 
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 (100)

where 0
22 VVeStor Δ≈ π  (see Appendix A).  

 
4.5. Effect of Bubbles Coalescence during Grain Growth 

 
Further improvement of the model concerns additional consideration of the intergranular bubbles 

coalescence owing to grains shrinkage. Similarly to consideration of (empty) pores coalescence by 
Kingery and François [26], one can assume that, as grains are removed in the growth process, bubbles 
migrating with the boundaries are brought together, and corner bubbles growth occurs together with 
the grain growth. This process results in the increased retarding effect exerted by corner bubbles. 

In the standard approach all gas content swept by a moving boundary in a shrinking grain was 
uniformly distributed among various types of intergranular bubbles, characterized by invariable 
surface concentrations of these types. In the new approach the procedure of collecting all intragranular 
gas content into intergranular bubbles is conserved, however, additionally all intergranular gas content 
is collected in corner bubbles after complete grain disappearance.  

Correspondingly, the numbers of gas atoms in the intergranular bubbles cefN ,,  are redistributed in 

the following way: 

grgrgrgrefef RRdNdNNdN 3,, −=−=  (101)

( ) grgrefc RRdNNdN 3=+  (102)

where grN , grR  are the number of grains and the mean grain radius at time t, respectively.  

The effect becomes essential when a manifold increase of grain size occurs, e.g. under low 
irradiation rates.  

 
5. Combined Retarding Effect of Pores and Bubbles on Grain Growth in Irradiated Fuel 

 
As shown in Section 2, consideration of fuel densification (i.e., porosity reduction) owing to 

thermal evaporation of vacancies from pores allows explanation of complicated grain growth kinetics 
characterised by non-integer growth exponents observed in the tests [20] on thermal annealing of 
porous UO2 fuel. However, under irradiation conditions pores additionally shrink owing to vacancy 
knockout mechanism [32,33] based on the assumption that fission fragments passing through a pore 
can, via atomic collisions, effectively knock vacancies from the pore, therefore, both pore shrinkage 
mechanisms should be considered simultaneously.  

On the other hand, intergranular gas bubbles grow up under irradiation conditions owing to sinking 
of fission gas to the grain boundaries leading to significant fuel swelling. Therefore, the retarding 
effect on the moving grain boundaries from both types of intergranular porosity, i.e., pores and gas-
filled bubbles, should be simultaneously considered in the general case of porous fuel under irradiation 
conditions. 
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The additional mechanism of the irradiation-induced vacancy knockout from pores [32,33] results 
in the following rate equation (instead of Equation (33)): 

F
Rdt

Rd
R
R

dt
Rd

p

gr

gr

pp Ω−−= ληα 2
3 3  (103)

where the new term in the r.h.s. corresponds to the vacancy knockout by fission fragments: 

28 p
p RF

t
V

Ω−=
∂
∂

πλη  (104)

F is a fission rate, η = 100 is the number of vacancies knocked out of a pore per collision with the 
fission fragment and λ = 10–6 m is the length of the fission fragment path.  

In Hillert’s mean field approximation for grains coalescence, Equation (17), the mean grain 
boundary velocity supplemented with the additional type of inclusions (pores) takes the form: 
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where, for the UO2 typical case of relatively large pores with Rp ≥ 1 μm the surface diffusion 
mechanism controls the pore migration kinetics: 
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Finally, taking into consideration the additional term associated with the pores, Equation (100) 
takes the form: 
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which in combination with Equation (103) determines the grain growth kinetics controlled by pore and 
bubble migration in irradiated fuel. 
 
6. Model Implementation and Validation 

 
New model was implemented in the integral code MFPR, which is developed for analysis of UO2 

fuel microstructure evolution and fission products release under irradiation conditions [24,25]. In 
particular, the code simulates growth and coalescence of intergranular bubbles, and thus the newly 
implemented model allows self-consistent calculation of the grain boundary retarding effect by the 
attached bubbles.  

The normal grain growth kinetics in non-irradiated and non-porous fuel is represented in the MFPR 
code in the standard parabolic form: 

( ) ( )TERRvv gbgrgb −⋅= exp00
)0(

 (108)
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with activation energy Egb = 44200 K recommended by Speight and Greenwood [13]. 
Correspondingly, the diffusivity across the grain boundary evaluated from Equation (53) following 
Burke and Turnbull [9] is )( p

gbD ≈ 4 × 10-6⋅exp(–44200/T) m2/s, whereas the diffusivity along the grain 

boundary measured by Alcock et al. [34] is )(l
gbD ≈ 4 × 10-6⋅exp(–35250/T) m2/s. This disagreement can 

be explained by an assumption that the diffusivity along the grain boundary ( )(l
gbD ) differs from the 

diffusivity across the grain boundary ( )( p
gbD ) [15].  

Under this assumption Equation (70) takes the form 3)(
b

l
gbb kTwDu ρπχΩ= , where 

Ω= wDkTu l
gbgb

)(2χ  and wkTDu p
gbgb 2)( Ω≈ , i.e., )()(1 l

gb
p

gb DDw−=χ . Therefore, instead of 

Equation (71) one gets a modified expression for the bubble mobility: 
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and instead of Equation (107) one gets a modified expression for grain boundary velocity: 
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6.1. Turnbull’s Tests 

 
Validation of the modified code version was performed against Turnbull’s tests [8], where high-

temperature grain growth in irradiated UO2 fuel was measured. In these experiments the effect of grain 
size on the swelling and gas release properties of uranium dioxide was studied. Small cylindrical 
specimens 10 mm long and 3 mm diameter were prepared from 2% enriched uranium dioxide of near 
theoretical density. The fuel samples were irradiated at T = 1750 °C for period of 2, 4 and 6 months in 
the UKAEA reactor DIDO in a flux of ≈ 2.4 × 1017 thermal neutrons/m2⋅s. During irradiation the 
temperature was maintained by electrical heating; fission heating produced a temperature gradient 
within the specimens ≈ 100 °C from centre to surface. There were three types of samples with the 
initial grain diameter dgr = 7 μm (specimens A and B) and 40 μm (specimen C), the latter being 
produced by preliminary annealing of specimens A during 72 hours at T = 1700 °C in hydrogen. 
Specimens B and C were pre-irradiated to 0.02% burn-up at 80 °C. So, the following identification of 
the specimens is used: 

• specimen A, 7 μm starting grain size; 
• specimen B, 7 μm starting grain size, pre-irradiated to 0.02% burn-up at 80 °C; 
• specimen C, 40 μm starting grain size, pre-irradiated to 0.02% burn-up at 80 °C. 

Examination of large-grained specimen C showed the unchanged average grain size, whereas 
specimens A and B exhibited identical grain growth characteristics with the grain size increasing from 
7 μm to 18 μm after 6 months irradiation.  

The density of the samples was close to theoretical one, for this reason, parameters of 
Equation (108) were fitted to reproduce the out-of-pile annealing behaviour of specimen C (i.e., 
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growing from 7 to 40 μm during 72 hours at T = 1700 °C): 02R = 7 μm, v0 = 1.4 m/s . The surface 

concentration of grain face bubbles was estimated as ≈ 4 × 1010 m-2 from the post-test fracture surface 
image presented in [8]. 

In order to reveal retarding effect of grain face and peripheral bubbles, experimental results for 
grain growth kinetics and swelling are compared in Figure 7 with theoretical curves calculated with 
several versions of the MFPR code: 

• The initial code version, where the standard (surface diffusion) mechanism is applied to the 
intergranular bubble migration (Figure 7a) [24]; 

• The intermediate version, where the new (grain boundary diffusion) mechanism is applied to the 
grain face bubbles migration and the standard (surface diffusion) mechanism is applied to the 
peripheral bubbles (Figure 7b) (Section 3 of the current paper) [15]; 

• The final version, where the new mechanism is applied to migration of all intergranular bubbles 
(Figure 7c) (Section 4 of the current paper). 

 
Figure 7. MFPR simulation of grain size in Turnbull’s test. (a) Standard migration 
mechanism. (b) Grain boundary diffusion mechanism applied to grain face bubbles. (c) 
Grain boundary diffusion mechanism applied to all grain boundary bubbles (solid lines) in 
comparison with case (b) (dashed lines). 
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In the standard approach using bubble mobility us determined by the bubble surface diffusion 
mechanism, Equation (72), calculations strongly overpredict the measured grain growth kinetics for all 
three specimens, Figure 7a.  

The new model predicts a rather good agreement for the samples B and C and slightly overpredicts 
the growth of the sample A. From comparison of curves in Figures (7b) and (7c) it is seen, that 
contribution of the peripheral bubbles to the grain boundary retarding effect is essential under the 
Turnbull’s test conditions. 
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6.2. Tests of Bourgeois et al. 
 
In the tests [20] already discussed in Section 2, the normal grain growth kinetics of fresh UO2 

pellets with the relative density ρ (in % with respect to the theoretical density) annealed in dry 
hydrogen was studied. Grain sizes and changes in density were measured for two batches, T0 and T12. 
Initial grain sizes in T0 and T12 were 8.8 and 10.4 μm, respectively, and the initial pore size can be 
obtained from expression for intergranular porosity: 

poregr

gr

VV
V

6+
=ρ  (111)

In order to reveal influence of pores on normal grain growth kinetics, at first calculations with the 
standard model, Equation (108), neglecting retarding effect of pores were performed, Figure 8. 

Results of calculations with the implemented new model are presented in Figure 9. Owing to a large 
uncertainty in determination of the diffusion coefficients and the coefficient β (from Equation (26)), 
these parameters were slightly adjusted in order to provide the best agreement between theoretical 
simulations and experimental points. In these simulations the grain boundary diffusion coefficient Dgb 
was chosen as 4.2·10-6·exp(–35250/T) m2/s, and the surface diffusion coefficient Ds as 56·exp(–
48945/T) m2/s, in a rather close agreement with estimations presented in [35]. As indicated in Section 
2, the parameter β  depends on the fuel porosity and for the typical fuel density 96-98% varies in the 
range 0.2–0.3; in calculations it was fixed as 0.15. Results of calculation with the improved code 
version show a reasonable agreement for the samples T12 and some underestimation of grain growth 
for the samples T0.  

 
Figure 8. MFPR simulations of Bourgeois’ tests. Standard model for normal grain growth 
neglecting retarding effect of pores. 
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Figure 9. MFPR simulations of Bourgeois’ tests. New model for normal grain growth 
controlled by intergranular pores. 

 
Figure 10. MFPR simulation of porosity evolution in Bourgeois’ tests. 
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In order to reveal competitive influence of bubbles and pores on the grain growth kinetics in pre-
irradiated UO2 samples, calculations were performed with two code versions, respectively including: 

• The grain growth controlled only by bubbles migration (presented in Sections 3 and 4); 
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The simulation results in comparison with the experimental data are presented in Table 1. It is 
evident from the simulation results that under irradiation exposure lower than 4 × 1018 fissions/cm3 the 
grain growth is limited mainly by intergranular pores, and for exposures greater than 4 × 1018 
fissions/cm3 migration of intergranular bubbles becomes the rate controlling mechanism. 

The grain growth kinetics exponents (presented in Table 1 in parentheses), evaluated from 
calculated curves using the least-squares method, differ from exponent n ≈ 2.5 measured in [36], 
however, they are in a reasonable agreement with the normal grain growth exponents, 3 < n < 4, 
measured in the tests of Bourgeois et al. [20].  

 
Table 1. Simulation of the MacEwan and Hayashi tests. 

Irradiation 
exposure, 
fiss./cm3 

Final 
grain 

size, μm 

Predicted grain size, μm  
(estimated value of grain growth exponent) 

Grain growth 
controlled by bubbles 

Grain growth 
controlled by bubbles 

and pores  
0 16.0 38.5 (2.006) 16.75 (3.675) 

3.8 × 1015 14.2 38.3 (2.013) 16.75 (3.626 ) 
3.6 × 1016 13.8 35 (2.225) 16.74 (3.671) 
2.8 × 1017 10.8 21.9 16.3 (3.711) 
4.4 × 1018 - 9.8 10.2 
4.4 × 1019 8.2 7.2 7.2 

 
7. Conclusions  

 
New mechanisms of the grain growth in irradiated and non-irradiated porous ceramic materials 

proposed and developed in the recent papers of the author, are reviewed in the current paper. As the 
first step of the new model development, Nichols’ approach [14] to consideration of the drag force 
exerted by attached bubbles and pores on migrating grain boundaries is combined with supplementary 
consideration of grains coalescence within Hillert’s mean field approach [11]. It is shown that the 
boundary migration rate becomes controlled by the movement of the second-phase particles with 
significantly smaller sizes than predicted in the simplified approach [14]. An additional consideration 
of various types of grain boundary pores and bubbles (i.e., grain face, edge and corner) which exert 
different drag forces owing to their different shapes and sizes, was performed.  

However, Nichols’ analysis [14] is based on consideration of retarding effect of bubbles on moving 
boundary using the standard (lattice diffusion, gas phase transport or surface diffusion) mechanisms of 
bubble mobility derived for intragranular bubbles. This approach was re-considered in the present 
paper taking into account a more complicated, lenticular shape of the grain face bubbles. Furthermore, 
migration mechanism of the grain face bubbles might be essentially different from the intragranular 
bubbles, owing to their specific location on and interaction with a grain boundary. The new 
mechanism of the lenticular grain face bubble migration is associated with vacancy fluxes over the 
grain boundary surfaces to the bubble, which afford coherent relocation of the grain boundary-bubble 
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complex. The calculated mobility of the grain face bubble is characterised by a slower dependence on 
its projected radius, 3−∝ bρ , in comparison with the surface diffusion mechanism, 4−∝ bρ , which 

sustains its steady-state lenticular shape in the course of bubble migration. In particular, for UO2 the 
new mechanism becomes the rate controlling step for bubbles migration in a wide range of their radii 
from ~ 1 nm to ~ 1 μm, and correspondingly, determines the drag force exerted by bubbles on the 
grain boundary. 

The new mechanism of the grain boundary bubbles migration which controls the bubble mobility 
and determines the drag force exerted on the grain boundary, is further developed in application to the 
peripheral (edge and corner) intergranular bubbles. As a result, the growth kinetics of grains with 
different types of intergranular bubbles is calculated. It is shown that contribution of the peripheral 
bubbles to the retarding effect can be significant, especially under irradiation conditions with high 
fission rates in UO2 fuel. 

The new model for the grain growth was also applied to consideration of as-fabricated porous fuel 
on the base of self-consistent simulation of grain growth and fuel densification, which occurs under 
annealing conditions owing to thermal evaporation of vacancies from pores. Under irradiation 
conditions the pore shrinkage is significantly increased owing to vacancy knockout from pores by 
fission particles, on the one hand, and intergranular bubbles growth takes place owing to sinking of 
fission gas atoms from grains, on the other hand. Simultaneous consideration of the intergranular 
bubbles and pores evolution allows further improvement of the model predictions for the grain growth 
under irradiation conditions.  

The new model was implemented in the integral code MFPR and validated against various test 
under annealing [8,20] and irradiation [36] conditions with various types (dense and porous) fuel 
pellets, with and without pre-irradiation. The new code predictions for these tests are essentially 
improved and are in a satisfactory agreement with observations.  
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Appendix A. Toroid Geometry 

 
The toroid is formed by rotation of arc GH (IH) around the vertical axis passing through the centre 

of grain face [31], as shown in Figure 6.  
In the process of the grain boundary migration, the toroid changes its form similarly to grain face 

bubbles and one should distinguish between upper and lower surfaces of the toroid. Each of these 
surfaces is determined by their own radius of curvature b1,2 and contacted angle θ1,2, which obey the so 
called “lacing equation”: 

( ) ( ) )(
)sin(

2sin
)sin(

2sin 2211 mbb
=

−
−+

=
−
−+

φπ
πφθ

φπ
πφθ  (112)



Materials 2009, 2              
 

 

1281

that is analogous to the relationship 2,12,1 sinθρ Rb =  for the face bubbles. Equation (112) is deduced 

from «the useful relationship » presented in [31]: 

( ) ( )φφθ csccos ⋅+⋅+= bce  (113)

The volume of the toroid is equal to the volume of edge porosity VΣ associated with one grain. 
Since edge bubbles are shared by three faces of grain and corner bubbles by four faces, the volume of 
the toroid is equal to the total sum of bubble volumes associated with one grain: 

( ) Σ=+=+⋅ VVNVNVV ccee
dwn

tor
up

tor5.0  (114)

where ( )2,12,12,12,1
, ,,, φθcbVV t
dwnup

tor =  is the volume of the upper and lower parts of toroid. Approximate 

expression for fractional swelling was presented by Tucker [31] after substituting values θ0 ≈ 50º, 
7/6arcsin0 ≈φ  in the following form:  

( )[ ] 1132

0

10799.05104.0
−−

−−=
−

=
Δ rr

VV
V

V
V

tcone

t  (115)

where Vcone is the volume of grain cone, associated with one toroid, cbr ⋅= 5557.0 . The 
approximation Equation (115) is valid up to 1/ 0 ≤Δ VV . For small 1.0/ 0 <Δ VV  Equation (115) can 

be simplified: 

( )[ ] 112

0

15104.0
−−

−=
Δ r
V
V  (116)

Since edge swelling normally does not exceed 0.1, one could obtain from Equation (116): 

( ) 00 52.252.2 VVVVVcb Δ≈Δ+Δ=  (117)

Substitution of Equation (117) in Equation (113) yields:  

( ) ( )0

1

0 11 VVeVVec Δ+≈Δ−=
−

 (118)

The area of toroid cutting off grain face is equal to: 

∫ ⋅=
torS

tor dSS θcos  (119)

where the integral in Equation (119) is taken over the toroid surface, resulting in: 
22 ecStor ππ −=  (120)

From Equations (118) and (120) one can calculate Stor in the linear approximation at 10 <<Δ VV : 

0
22 VVeStor Δ≈ π  (121)

The toroid surface curvature K at the point F in Figure 6a is equal to: 

)sincot(cos
sin1

θφθ
θ

−+
−=

bcb
K  (122)

The balance between the surface tension forces in the plane of the grain boundary has the form: 
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Sgb γγθθ =+ 21 coscos  (123)

which in the linear approximation when 021 θθθ ≈≈  takes the usual form: o50)2arccos(0 ≈= Sgb γγθ . 

 
Appendix B. Solution of the Continuity Equations  

 
In this Appendix will be searched the solution of Equation (75): 

( ) 0122,1
2 =Ω−±∇ Svu

kT
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gbgbS
gb

mm
r

μμμ  (124)

with the boundary conditions, Equation (76): 
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Superposition of Equations (124) and (125) yields: 
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System of equations (126) can be written in the following form: 
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with a new variable 21 μμη −= , where ( )gb
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vS
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kTB +=
2

 
and 0

22 >
Ω

=
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kTu

gb

gbχ . 

After substitution BN += ηχ 2  one obtains the Laplace and Helmholtz type equations for 
variables ( )21 μμ +  and N , respectively: 
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which have general solutions: 
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 (129)

where constants 4,3,2,1C  are found from the boundary conditions Equation (125). 
The solution is searched in the area er <<0 . Since ( ) −∞→→ 0ln r  and ( ) +∞→→ 00 rK , this 

results in 04 =C  и 02 =C . After determination of the constants 3,1C  from the boundary conditions, 

the final solution takes the form: 
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Appendix C. Validity of the Mean-Field Approximation 
 
In calculation of the vacancy flux to the grain face periphery, the distributed sink strength of face 

bubbles, Equation (74), was used in the mean field approximation. The validity of such consideration 
will be checked in this Appendix. 

First of all one should check self-consistency of the sink strength calculations. For this purpose, the 
sink strength into a face bubble located in the centre of the infinite grain face with uniformly 
distributed face bubbles surrounding this central bubble, should be evaluated.  

The solution of the continuity equations for this system of bubbles with the pre-determined 
distributed sink strength S: 

( ) 0~~~
122,1

2 =Ω−±∇ SvukTwD gbgbSgb mm
r

μμμ  (131)

is similar to the general solution of Equations (75) and (76), presented in Appendix B, but has different 
boundary conditions: 
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Hence the terms with I0(χr) in the general solution, Equation (129), must be excluded, since they 
become infinitely large as r → +∞. Therefore, the solution takes the form: 
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where R1,2 are the curvature radii of the two surface segments of the central bubble that obey the 
geometrical relationship: 

bRR ρθθ =⋅=⋅ 2211 sinsin  (134)

From this solution one obtains the vacancy flux to the central bubble: 
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where fSf pR −= 22γε . From Equation (53) the boundary mobility is equal to: 
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therefore, 12 −=Ω= wwDkTu gbgbχ , and Equation (68) takes the form: 
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On the other hand, the distributed sink strength into face bubbles is determined by Equation (73) as: 
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Substituting Equation (135) in Equation (137) and taking into account Equation (138) one obtains 
the equation for the unknown value S: 
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which has the solution (using Equation (136)):  
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that coincides with Equation (74) in the realistic limit bw ρ<< :  
22
cgbb RvS ρ≈  (141)

Therefore, self-consistency of the sink strength calculation is confirmed. 
Secondly, the self-consistency of the chemical potential distribution calculations has to be checked. 

On the one hand, it is straightforward to see that the chemical potential distribution around a face 
bubble, Equation (133), steeply varies in a narrow vicinity w≈≈ −1χ  of each face bubble and is 
practically constant in-between the bubbles. Taking into account Equation (48), this constant value is 
equal to:  
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with except of the region near the face bubbles. 
On the other hand, solution of the equation for the vacancy diffusion to the edge of the grain face, 

Equation (78), has a similar form with the constant value outside a narrow zone ( w≈≈ −1χ ) around 
the peripheral toroid, taking into account Equation (90): 
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Comparison of Equations (142) and (143) gives )2,1()2,1(
edgeface MM = . Hence, calculation of the chemical 

potential distribution is completely self-consistent, as schematically represented in Figure 11. 
 

Figure 11. Chemical potential distribution. 
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Appendix D. Retarding Effect of the Peripheral Toroid on the Moving Grain Boundary 
 
In this Appendix the retarding effect of the peripheral toroid on moving grain boundary is 

calculated. Geometry factors of the moving toroid should be chosen in such a way that the drag force 
exerted on grain boundary by the toroid concides with that exerted by the full set of the peripheral 
bubbles. Superposition of Equations (91), (92), (94), (95), (97), (98), (112), (114), (121) and (123) 
with the ideal gas state equation forms the system of 10 equations: 
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(144)

with 11 unknowns: vgb, Ff, Fe, Fc, Ftor, b1, b2, θ1, θ2, ptor, εtor. However, Fe and Fc enter in the system 
only in combination facetorccee SFnFnF =+ . Consequently, solution of Equation (144) has the form:  

11

2

21

3 121

−−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Ω
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Ω
+Δ=

face

torgbb

e

ee
gbf

b

gb
gbgbgb S

S
kT

D
c

w
e
NSun

kT
D

uGuv ρ
ηππρ

 (145)

References and Notes 
 
1. Davidge, R.W.; Evans, A.G. The strength of ceramics: Review paper. Mater. Sci. Eng. 1970, 6, 

281-298. 
2. Carniglia, S.C. Reexamination of experimental strength-vs-grain-size data for ceramics. J. Amer. 

Ceram. Soc. 1972, 55, 243-249. 
3. Gifkins, R.C. Diffusional creep mechanisms. J. Amer. Ceram. Soc. 1968, 51, 69-72. 
4. Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics; Academic Press: New York, USA, 1971. 
5. Standley, K.J. Oxide Magnetic Materials; Oxford Univ. Press: London and New York, UK/USA, 

1972. 
6. Coble, R.L. Sintering in crystalline solids. I. Intermediate and final state diffusion models. J. 

Appl. Phys. 1961, 32, 793-799.  
7. Burke, J.E. Role of grain boundaries in sintering. J. Amer. Ceram. Soc. 1957, 40, 80-85. 



Materials 2009, 2              
 

 

1286

8. Turnbull, J.A. The effect of grain size on the swelling and gas release properties of uo2 during 
irradiation. J. Nucl. Mater. 1974, 50, 62-68. 

9. Burke, J.E.; Turnbull, D. Recrystallization and grain growth. In Progress in Metal Physics; 
Pergamon Press: London, UK, 1952; pp. 220-292.  

10. Greenwood, G.W. The growth of dispersed precipitates in solutions. Acta Metall. 1956, 4,  
243-248. 

11. Hillert, M. On the theory of normal and abnormal grain growth. Acta Metall. 1965, 13, 227-238. 
12. Lifshitz, I.M.; Slyozov, V.V. The kinetics of precipitation from supersaturated solid solutions. J. 

Phys. Chem. Solids 1961, 19, 35-50. 
13. Speight, M.V.; Greenwood, G.W. Grain boundary mobility and its effect in material containing 

inert gases. Philos. Mag. 1964, 9, 683-689. 
14. Nichols, F.A. Further comments on the theory of grain growth in porous compacts. J. Am. Ceram. 

Soc. 1968, 51, 468-468. 
15. Veshchunov, M.S. A new model of grain growth kinetics in UO2 fuel pellets. Part 1. Grain growth 

kinetics controlled by grain face bubble migration. J. Nucl. Mater. 2005, 346, 208-219.  
16. Rest, J. The coupled kinetics of grain growth and fission product behavior in nuclear fuel under 

degraded-core accident conditions. J. Nucl. Mater. 1985, 131, 291-302. 
17. Brook, R.J. Pore-grain boundary interactions and grain growth. J. Am. Ceram. Soc. 1969, 52,  

56-57. 
18. McEwan, J.R. Grain growth in sintered uranium dioxide: I. Equiaxed grain growth. J. Am. Ceram. 

Soc. 1962, 45, 37-41. 
19. Coble, R.L. Sintering in crystalline solids. II. Experimental test of diffusion models in porous 

compacts. J. Appl. Phys. 1961, 32, 787-792. 
20. Bourgeois, L.; Dehaudt, Ph.; Lemaignan, C.; Fredric, J.P. Pore migration in UO2 and grain growth 

kinetics. J. Nucl. Mater. 2001, 295, 73-82. 
21. Veshchunov, M.S. A new model of grain growth kinetics in UO2 fuel pellets. Part 2. Normal grain 

growth kinetics controlled by pore migration. J. Nucl. Mater. 2005, 346, 220-225. 
22. Shewmon, P.G. The movement of small inclusions in solids by a temperature gradient. Trans. 

AIME 1964, 230, 1134-1137. 
23. Antropov, D.S.; Veshchunov, M.S. Development of model for grain growth in UO2 fuel. 

Multidiscipline Modeling in Materials and Structures 2008, 4, 125-140.  
24. Veshchunov, M.S.; Ozrin, V.D.; Shestak, V.E.; Tarasov, V.I.; Dubourg, R.; Nicaise, G. 

Development of the mechanistic code MFPR for modelling fission products release from 
irradiated UO2 fuel. Nucl. Eng. Des. 2006, 236, 179-200. 

25. Veshchunov, M.S.; Dubourg, R.; Ozrin, V.D.; Shestak, V.E.; Tarasov, V.I. Mechanistic modelling 
of urania fuel evolution and fission product migration during irradiation and heating. J. Nucl. 
Mater. 2007, 362, 327-335. 

26. Kingery, W.D.; Francois, B. Grain growth in porous compacts. J. Am. Ceram. Soc. 1965, 48, 546. 
27. Speight, M.V.; Beere, W. Vacancy potential and void growth on grain boundaries. Metal Sci. 

1975, 8, 190-191. 
28. Cole, D.G.; Feltham P.; Gillam, E. On the mechanism of grain growth in metals, with special 

reference to steel. Proc. Phys. Soc. B 1954, 67, 131-137. 



Materials 2009, 2              
 

 

1287

29. Veshchunov, M.S.; Shestak, V.E. An advanced model for intragranular bubble diffusivity in 
irradiated UO2 fuel. J. Nucl. Mater. 2008, 376, 174-180. 

30. White, R.J.; Tucker, M.O. A new fission-gas release model. J. Nucl. Mater. 1983, 118, 1-38. 
31. Tucker, M.O. A simple description of interconnected grain edge porosity. J. Nucl. Mater. 1979, 

79, 199-205. 
32. Stehle, H.; Assmann, H. The dependence of in-reactor UO2 densification on temperature and 

microstructure. J. Nucl. Mater. 1974, 52, 303-308. 
33. Dollins, C.C.; Nichols, F.A. In-pile intragranular densification of oxide fuels. J. Nucl. Mater. 

1978, 78, 326-335. 
34. Alcock, G.B.; Hawkins, R.J.; Hills, A.W.D.; McNamara, P. Effect of grain-boundaries on 

uranium and oxygen diffusion in polycrystalline UO2. In IAEA, Symp. Thermodynamics, Vienna, 
Austria, July 22-27, 1965; SM-66/36., p. 57. 

35. Mikhlin, Ya. The mobility of intragranular gas bubbles in uranium dioxide. J. Nucl. Mater. 1979, 
87, 405-408. 

36. MacEwan, J.R.; Hayashi, J. Grain growth in UO2. Proc. Br. Ceram. Soc. 1967, 7, 245-272. 
 
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 
This article is an open-access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


