Quick Rinse, Strong Bond? Comparing Short Water Rinsing and Advanced Cleaning Methods After Hydrofluoric Etching of Lithium Disilicate Glass Ceramic
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Preparation and Test Groups
- No additional procedure, just the above-described cleaning with water spray for 15 s (W15).
- No additional procedure, just an extended cleaning time with water spray for 60 s (W60). Control group.
- Additional brushing with a disposable toothbrush (medium hard) without paste for 20 s (BRU).
- Additional ultrasonic bath with distilled water for 2 min (UBW).
- Additional ultrasonic bath with 99% isopropanol for 2 min (UBA).
- Additional cleaning with 37% phosphoric acid for 2 min followed by an ultrasonic bath with distilled water for 2 min (PHA + UBW).
2.2. Microleakage
2.3. Tensile Bond Strength Test
2.4. Failure Modes
- Adhesive failure (A): debonding at the lithium disilicate ceramic surface.
- Cohesive failure (C): failure within the luting resin composite or within the acrylic glass tube-filling resin composite.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiaoping, L.; Dongfeng, R.; Silikas, N. Effect of etching time and resin bond on the flexural strength of IPS e.max Press glass ceramic. Dent. Mater. 2014, 30, e330–e336. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Zafiropoulou, M.; Zinelis, S.; Silikas, N.; Eliades, G. Silane reactivity and resin bond strength to lithium disilicate ceramic surfaces. Dent. Mater. 2019, 35, 1082–1094. [Google Scholar] [CrossRef]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-ceramic bonding: A review of the literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef]
- Margvelashvili-Malament, M.; Thompson, V.; Polyakov, V.; Malament, K.A. Over 14-year survival of pressed e.max lithium disilicate glass-ceramic complete and partial coverage restorations in patients with severe wear: A prospective clinical study. J. Prosthet. Dent. 2025, 133, 737–746. [Google Scholar]
- Villalobos-Tinoco, J.; Floriani, F.; Rojas-Rueda, S.; Mekled, S.; Conner, C.; Colvert, S.; Jurado, C.A. Enhancing Smile Aesthetics and Function with Lithium Disilicate Veneers: A Brief Review and Case Study. Clin. Pract. 2025, 15, 66. [Google Scholar] [PubMed]
- Kern, M.; Thompson, V.P. A simple test design for universal testing adhesion in the tensile bond strength test [in German]. Dtsch. Zahnärztl Z. 1993, 48, 769–772. [Google Scholar]
- Zogheib, L.V.; Bona, A.D.; Kimpara, E.T.; McCabe, J.F. Effect of hydrofluoric acid etching duration on the roughness and flexural strength of a lithium disilicate-based glass ceramic. Braz. Dent. J. 2011, 22, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Jardel, V.; Degrange, M.; Picard, B.; Derrien, G. Surface energy of etched ceramic. Int. J. Prosthodont. 1999, 12, 415–418. [Google Scholar]
- Lapinska, B.; Rogowski, J.; Nowak, J.; Nissan, J.; Sokolowski, J.; Lukomska-Szymanska, M. Effect of Surface Cleaning Regimen on Glass Ceramic Bond Strength. Molecules 2019, 24, 389. [Google Scholar] [CrossRef]
- Ramakrishnaiah, R.; Alkheraif, A.A.; Divakar, D.D.; Matinlinna, J.P.; Vallittu, P.K. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics. Int. J. Mol. Sci. 2016, 17, 822. [Google Scholar] [CrossRef]
- Poulon-Quintin, A.; Ogden, E.; Large, A.; Vaudescal, M.; Labrugere, C.; Bartala, M.; Bertrand, C. Chemical surface modification of lithium disilicate needles of a silica-based ceramic after HF-etching and ultrasonic bath cleaning: Impact on the chemical bonding with silane. Dent. Mater. 2021, 37, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Bruzi, G.; Carvalho, A.O.; Giannini, M.; Maia, H.P.; Magne, P. Post-etching cleaning influences the resin shear bond strength to CAD/CAM lithium-disilicate ceramics. Appl. Adhes. Sci. 2017, 5, 17. [Google Scholar] [CrossRef]
- Zogheib, L.V.; Lopes, G.R.; Matos, J.D.; Castro, D.S.; Bottino, M.A.; McCabe, J.; Kimpara, E.T. Effect of neutralization and hydrofluoric acid precipitate remotion on the compressive strength of monolithic lithium disilicate crowns. Minerva Stomatol. 2020, 70, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, T.C.; Villada, V.R.; Castillo, M.P.; Gomes, O.M.; Bittencourt, B.F.; Dominguez, J.A. Active and Passive Application of the Phosphoric Acid on the Bond Strength of Lithium Disilicate. Braz. Dent. J. 2016, 27, 90–94. [Google Scholar] [CrossRef]
- Belli, R.; Guimaraes, J.C.; Filho, A.M.; Vieira, L.C. Post-etching cleaning and resin/ceramic bonding: Microtensile bond strength and EDX analysis. J. Adhes. Dent. 2010, 12, 295–303. [Google Scholar]
- Cotes, C.; Zogheib, L.; Macedo, V.; Carvalho, R.; Martinelli, C.; Kimpara, E. Influence of post-etching surface treatment and thermo-mechanical cycling on fracture strength of ceramics. Minerva Stomatol. 2016, 65, 291–298. [Google Scholar]
- Dos Santos, D.M.; Bitencourt, S.B.; da Silva, E.V.; Matos, A.O.; Benez, G.C.; Rangel, E.C.; Pesqueira, A.A.; Barao, V.A.; Goiato, M.C. Bond strength of lithium disilicate after cleaning methods of the remaining hydrofluoric acid. J. Clin. Exp. Dent. 2020, 12, e103–e107. [Google Scholar] [CrossRef]
- Ozcan, M.; Volpato, C.A. Surface conditioning protocol for the adhesion of resin-based materials to glassy matrix ceramics: How to condition and why? J. Adhes. Dent. 2015, 17, 292–293. [Google Scholar]
- Agarwal, N.; Bansal, S.; Pai, U.Y.; Rodrigues, S.J.; Shetty, T.B.; Saldanha, S.J. Effect of post etching cleansing on surface microstructure, surface topography, and microshear bond strength of lithium disilicate. J. Indian Prosthodont. Soc. 2020, 20, 363–370. [Google Scholar] [CrossRef]
- Attia, A.; Kern, M. Long-term resin bonding to zirconia ceramic with a new universal primer. J. Prosthet. Dent. 2011, 106, 319–327. [Google Scholar] [CrossRef]
- Passia, N.; Lehmann, F.; Freitag-Wolf, S.; Kern, M. Tensile bond strength of different universal adhesive systems to lithium disilicate ceramic. J. Am. Dent. Assoc. 2015, 146, 729–734. [Google Scholar] [CrossRef]
- Samran, A.; Ali, S.; El Bahra, S.; Hashem, A.W.; Elbeshri, M.; Wille, S.; Kern, M. Durability of resin bonding to translucent zirconia materials: An in vitro study. J. Prosthet. Dent. 2025, 133, 1583.e1–1583.e8. [Google Scholar] [CrossRef]
- Azar, B.; Eckert, S.; Kunkela, J.; Ingr, T.; Mounajjed, R. The marginal fit of lithium disilicate crowns: Press vs. CAD/CAM. Braz. Oral. Res. 2018, 32, e001. [Google Scholar]
- Tysowsky, G.W. The science behind lithium disilicate: A metal-free alternative. Dent. Today 2009, 28, 112–113. [Google Scholar] [PubMed]
- Elsayed, A.; Younes, F.; Lehmann, F.; Kern, M. Tensile bond strength of so-called universal primers and universal multimode adhesives to zirconia and lithium disilicate ceramics. J. Adhes. Dent. 2017, 19, 221–228. [Google Scholar] [PubMed]
- Guers, P.; Wille, S.; Strunskus, T.; Polonskyi, O.; Kern, M. Durability of resin bonding to zirconia ceramic after contamination and the use of various cleaning methods. Dent. Mater. 2019, 35, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Kern, M. Durability of the resin bond strength to the alumina ceramic Procera. Dent. Mater. 2004, 20, 498–508. [Google Scholar] [CrossRef]
- Klosa, K.; Wolfart, S.; Lehmann, F.; Wenz, H.J.; Kern, M. The effect of storage conditions, contamination modes and cleaning procedures on the resin bond strength to lithium disilicate ceramic. J. Adhes. Dent. 2009, 11, 127–135. [Google Scholar]
- Turp, L.; Loewe, P.; Yazigi, C.; Kern, M. Influence of pretreating enamel on the durability of resin bonds. J. Prosthet. Dent. 2025, 133, 1054.e1–1054.e7. [Google Scholar] [CrossRef]
- Turp, L.; Lehmann, F.; Wille, S.; Kern, M. Influence of different airborne-particle abrasion pressures, cleaning methods, and artificial aging on zirconia ceramic bonding. J. Prosthet. Dent. 2025, 134, 230–236. [Google Scholar] [CrossRef]
- Yazigi, C.; Kern, M.; Chaar, M.S. Comparison of bond strength to three restorative materials after contamination and the use of two cleaning agents. J. Prosthet. Dent. 2025, 133, 1047–1053. [Google Scholar] [CrossRef]
- Paloco, E.A.; Berger, S.B.; Lopes, M.B.; Favaro, J.C.; Gonini-Junior, A.; Piauilino, A.I.; Borba, A.M.; Guiraldo, R.D. Influence of resin cement and thermocycling on milled lithium disilicate ceramic microshear bond strength. Acta Odontol. Latinoam. 2021, 34, 226–232. [Google Scholar] [CrossRef]
- Kappert, H.F.; Schreck, U.; Prünte, H.; Barucha, A.; Erpelding, E.; Banholzer, M. Testing metal/acrylic bonds for shear strength, axial tensile strength and maximum bending stress [in German]. Dtsch. Zahnarztl. Z. 1989, 44, 879–881. [Google Scholar]




| Material | Manufacturer | Composition | Batch No. |
|---|---|---|---|
| IPS e.max press | Ivoclar, Schaan, Liechtenstein | Lithium disilicate ceramic (SiO2 57–80%, Li2O 11–19%, K2O 0–13%, P2O5 0–11%, ZrO2 0–8%, ZnO 0–8%, other oxides and ceramic pigments 0–10%) | H21370 |
| Clearfil Core New Bond | Kuraray Medical, Osaka, Japan | Bisphenol A diglycidylmethacrylate (Bis-GMA), triethyleneglycol dimethacrylate (TEGDMA), silanated glass filler, colloidal silica, catalysts, accelerators | 000148 |
| Variolink esthetic DC | Ivoclar, Schaan, Liechtenstein | Urethane dimethacrylate, further methacrylate monomers, inorganic fillers 38% (ytterbium trifluoride, spheroid mixed oxide), initiators, stabilizers, pigments, additional ingredients | Z01579 |
| Hofmann’s Silan | Hoffman Dental Manufaktur, Berlin, Germany | Acetic acid in ethanol/water mixture, 3-methacryloxypropyl-trimethoxysilane in ethanol/water mixture | 8821/9078 |
| Liquid strip | Ivoclar, Schaan, Liechtenstein | >90% glycerine, silicon dioxide and alumina | Z017TO |
| Pluraetch | First Scientific Dental Materials, Elmshorn, Germany | 37% phosphoric acid on thixotropic gel base | 52003306 |
| IPS Ceramic Etching-gel | Ivoclar, Schaan, Liechtenstein | 5% hydrofluoric acid | Z015FK |
| Group | Storage Time | |||
|---|---|---|---|---|
| 3 Days Without TC | 150 Days/37,500 TC | |||
| Mean | SD | Mean | SD | |
| W15 | 48.0aAB | 13.3 | 42.2bAB | 19.4 |
| W60 | 49.7aA | 13.8 | 42.5bA | 19.5 |
| BRU | 47.0aAB | 15.3 | 42.6bAB | 13.4 |
| UBW | 48.6aAB | 17.4 | 37.0bAB | 30.6 |
| UBA | 47.7aAB | 7.1 | 33.9bAB | 23.7 |
| PHA + UBW | 40.6aB | 18.1 | 34.9bB | 24.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Brandl, V.; Kern, M.; Schlenz, M.A.; Wille, S. Quick Rinse, Strong Bond? Comparing Short Water Rinsing and Advanced Cleaning Methods After Hydrofluoric Etching of Lithium Disilicate Glass Ceramic. Materials 2026, 19, 299. https://doi.org/10.3390/ma19020299
Brandl V, Kern M, Schlenz MA, Wille S. Quick Rinse, Strong Bond? Comparing Short Water Rinsing and Advanced Cleaning Methods After Hydrofluoric Etching of Lithium Disilicate Glass Ceramic. Materials. 2026; 19(2):299. https://doi.org/10.3390/ma19020299
Chicago/Turabian StyleBrandl, Viktoria, Matthias Kern, Maximiliane Amelie Schlenz, and Sebastian Wille. 2026. "Quick Rinse, Strong Bond? Comparing Short Water Rinsing and Advanced Cleaning Methods After Hydrofluoric Etching of Lithium Disilicate Glass Ceramic" Materials 19, no. 2: 299. https://doi.org/10.3390/ma19020299
APA StyleBrandl, V., Kern, M., Schlenz, M. A., & Wille, S. (2026). Quick Rinse, Strong Bond? Comparing Short Water Rinsing and Advanced Cleaning Methods After Hydrofluoric Etching of Lithium Disilicate Glass Ceramic. Materials, 19(2), 299. https://doi.org/10.3390/ma19020299

