Controllable Preparation and Optimisation of Bi4O5Br2 for Photocatalytic Reduction of CO2 to CO
Abstract
1. Introduction
2. Experimental Procedure
2.1. Synthesis of Bi4O5Br2
2.2. Sample Characterisation
2.3. Photocatalytic Reactions
3. Results and Discussion
3.1. Influence of pH and the Bi/Br Ratio on the Phase Composition
3.2. Influence of pH and the Bi/Br Ratio on the Morphology
3.3. Surface XPS Spectra
3.4. Electronic Band Structure
3.5. Specific Surface Area and CO2 Adsorption
3.6. Photocatalytic CO2 Reduction Performance

4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Urbanek, K.; Jakimińska, A.; Spilarewicz, K.; Rokicińska, A.; Kuśtrowski, P.; Macyk, W. Cu-Doped CdS-TiO2 Combined with Upconverting Particles for NIR-induced Photocatalytic CO2 Reduction. Acta Mater. 2024, 273, 119980. [Google Scholar] [CrossRef]
- Mao, D.; Hu, Y.; Yang, S.; Liang, J.; He, H.; Yang, S.; Xu, Z.; Sun, C.; Zheng, S.; Jiang, Z.; et al. Oxygen-Vacancy-Induced Charge Localization and Atomic Site Activation in Ultrathin Bi4O5Br2 Nanotubes for Boosted CO2 Photoreduction. Chem. Eng. J. 2023, 452, 139304. [Google Scholar] [CrossRef]
- Qian, X.; Ma, Y.; Xia, X.; Xia, J.; Ye, J.; He, G.; Chen, H. Recent Progress on Bi4O5Br2-Based Photocatalysts for Environmental Remediation and Energy Conversion. Catal. Sci. Technol. 2024, 14, 1085–1104. [Google Scholar] [CrossRef]
- Guo, S.; Ma, Z.; Wang, Q.; Wang, J.; Guo, H.; Chen, C.; Hou, B.; Jia, L.; Li, D. Effect of Different Alkaline Earth Metals on the Adsorption and Catalytic Behavior of Cobalt Fischer-Tropsch Synthesis. Mol. Catal. 2024, 557, 113962. [Google Scholar] [CrossRef]
- Shen, M.; Cai, X.; Cao, B.; Cao, J.; Xu, Y. Boron-Doped Ultrathin BiOBr Nanosheet Promotion for Photocatalytic Reduction of CO2 into CO. J. Alloys Compd. 2024, 981, 173727. [Google Scholar] [CrossRef]
- Shaikh, J.S.; Rittiruam, M.; Saelee, T.; Márquez, V.; Shaikh, N.S.; Khajondetchairit, P.; Pathan, S.C.; Jiraborvornpongsa, N.; Praserthdam, S.; Praserthdam, P. High Entropy Materials Frontier and Theoretical Insights for Logistics CO2 Reduction and Hydrogenation: Electrocatalysis, Photocatalysis and Thermo-catalysis. J. Alloys Compd. 2023, 969, 172232. [Google Scholar] [CrossRef]
- Dong, X.; Xu, L.; Ma, J.; Li, Y.; Yin, Z.; Chen, D.; Wang, Q.; Han, J.; Qiu, J.; Yang, Z.; et al. Enhanced Interfacial Charge Transfer and Photothermal Effect via In-Situ Construction of Atom Co-Sharing Bi Plasmonic/Bi4O5Br2 Nanosheet Heterojunction Towards Improved Full-Spectrum Photocatalysis. Chem. Eng. J. 2023, 459, 141557. [Google Scholar] [CrossRef]
- Liu, D.; Hua, J.; Zhang, W.; Wei, K.; Song, S.; Wang, Q.; Song, Z.; Han, H.; Ma, C.; Feng, S. Efficient Photocatalytic CO2 Reduction Achieved by Constructing Bi4O5Br2/Bi-MOF Z-scheme Heterojunction. Colloids Surf. A 2024, 695, 134101. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, G.; Xia, A.; Wang, Z.; Wu, X.; Guo, L.; Zeng, C.; Liu, Y.; Liu, T.; Yang, Q.; et al. Dual Strategies for Enhancing Piezoelectric Catalytic Ability of Energy Storage BiOBr@Bi4O5Br2 Heterojunction: Interfacial Electric Field and Intrinsic Polarization Electric Field. Appl. Catal. B 2024, 352, 124021. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Meng, J.; Ban, C.; Duan, Y.; Feng, Y.; Jing, S.; Ma, J.; Yu, D.; Gan, L.; et al. Constructing Atomic Surface Concaves on Bi5O7Br Nanotube for Efficient Photocatalytic CO2 Reduction. Nano Energy 2023, 109, 108305. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, J.; Ma, N.; Li, Z.; Wu, M.; Xu, D.; Zhang, S.; Feng, W.; Zhu, Y. Bi4O5Br2 Nanosheets with Vertical Aligned Facets for Efficient Visible-Light-Driven Photodegradation of BPA. Appl. Catal. B 2021, 286, 119937. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, W.; Zhu, Y.; Xu, Y.; Cui, F. Enhanced Photoactivity and Oxidizing Ability Simultaneously via Internal Electric Field and Valence Band Position by Crystal Structure of Bismuth Oxyiodide. Appl. Catal. B 2020, 262, 118262. [Google Scholar] [CrossRef]
- Cai, H.; Chen, F.; Hu, C.; Ge, W.; Li, T.; Zhang, X.; Huang, H. Oxygen Vacancies Mediated Ultrathin Bi4O5Br2 Nanosheets for Efficient Piezocatalytic Peroxide Hydrogen Generation in Pure Water. Chin. J. Catal. 2024, 57, 123–132. [Google Scholar] [CrossRef]
- Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H.; Zhou, Y.; Ye, L. Ultrathin Bi4O5Br2 Nanosheets for Selective Photocatalytic CO2 Conversion into CO. Chem. Eng. J. 2019, 360, 473–482. [Google Scholar] [CrossRef]
- Mi, Y.; Li, H.; Yu, X.; Zhang, Y.; Zeng, S.; Wang, L.; Hou, W. One-Pot Synthesis of Bi2S3/Bi4O5Br2 S-scheme Heterojunction Hierarchical Microbelts with Enhanced Photocatalytic Activity in Contaminant Degradation. Appl. Surf. Sci. 2024, 655, 159573. [Google Scholar] [CrossRef]
- Diercks, C.S.; Liu, Y.; Cordova, K.E.; Yaghi, O.M. The Role of Reticular Chemistry in the Design of CO2 Reduction Catalysts. Nat. Mater. 2018, 17, 301–307. [Google Scholar] [CrossRef]
- Mao, D.; Ding, S.; Meng, L.; Dai, Y.; Sun, C.; Yang, S.; He, H. One-pot Microemulsion-Mediated Synthesis of Bi-rich Bi4O5Br2 with Controllable Morphologies and Excellent Visible-light Photocatalytic Removal of Pollutants. Appl. Catal. B 2017, 207, 153–165. [Google Scholar] [CrossRef]
- Zhang, P.; Lou, X.W. Design of Heterostructured Hollow Photocatalysts for Solar-to-Chemical Energy Conversio. Adv. Mater. 2019, 31, 1900281. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Q.; Li, Y.; Cui, S.; Zhao, C.; Yang, J. Enhanced Photocatalytic Degradation of Oxytetracycline by Z-scheme Heterostructure ZIF-8/Bi4O5Br2. Appl. Catal. A-Gen. 2024, 681, 119786. [Google Scholar] [CrossRef]
- Yang, K.; Lv, X.; Meng, J.; Wang, H.; Guo, L.; Li, X.; Su, F.; Lan, Q.; Li, Z.; Wang, W.; et al. Bi4O5Br2 Co-Modified with Oxygen Vacancy and Bi Metal for Efficient Photothermal Conversion of CO2 to C2 Hydrocarbons. Vacuum 2024, 227, 113458. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, G.; Liu, Y.; Xu, Z.; Shen, H.; Sheng, Y.; Zhu, Y.; Wu, S.; Liu, L.; Shan, Y. Zinc-Doped C4N3/BiOBr S-scheme Heterostructured Hollow Spheres for Efficient Photocatalytic Degradation of Tetracycline. Phys. Chem. Chem. Phys. 2024, 26, 19658. [Google Scholar] [CrossRef]
- Liu, G.; Li, L.; Yang, J.; Dong, J.; Wang, B.; Zhu, W.; Xia, J.; Li, H. Enhanced CO2 Photoreduction Over Bismuth-Rich Bi4O5Br2: Optimized Charge Separation and Intrinsic Barriers. Sep. Purif. Technol. 2024, 349, 127658. [Google Scholar] [CrossRef]
- Chen, X.; Qi, M.; Li, Y.; Tang, Z.; Xu, Y. Enhanced Ambient Ammonia Photosynthesis by Mo-Doped Bi5O7Br Nanosheets with Light-Switchable Oxygen Vacancies. Chin. J. Catal. 2021, 42, 2020–2026. [Google Scholar] [CrossRef]
- Zha, M.; Ai, L.; Tan, C.; Jia, D.; Guo, N.; Wang, L. 2D/2D Layered Bi12O15Cl6/Bi4O5Br2 Heterostructure Facilitated Photocatalytic CO2 Reduction in Aerobic Environments. Sep. Purif. Technol. 2025, 368, 132995. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, P.; Tuerhong, R.; Chai, K.; Du, X.; Su, X.; Zhao, L.; Han, L. Regulating the Electronic Structure of BiOBr by Cu-Doping to Promote Efficient Photocatalytic Nitrogen Fixation Reaction. Sep. Purif. Technol. 2025, 364, 132501. [Google Scholar] [CrossRef]
- Shen, M.; Cai, X.; Cao, B.; Cao, J.; Zhao, P.; Xu, Y. Construction of An S-scheme AgBr/BiOBr Heterojunction by in Situ Hydrolysis for Highly Efficient Photocatalytic Reduction of CO2 into CO. J. Alloys Compd. 2024, 1009, 176905. [Google Scholar] [CrossRef]
- Mao, D.; Yang, S.; Hu, Y.; He, H.; Yang, S.; Zheng, S.; Sun, C.; Jiang, Z.; Qu, X.; Wong, P.K. Efficient CO2 Photoreduction Triggered by Oxygen Vacancies in Ultrafine Bi5O7Br Nanowires. Appl. Catal. B 2023, 321, 122031. [Google Scholar] [CrossRef]
- Wang, C.; Chen, F.; Chen, E.; Chen, T.; Ma, T.; Huang, H. Unveiling Strong Electric Fields of Ultrafine Hollow Nanotubes Axially Orienting Asymmetric Polar [Bi5O7] Units for Efficient Piezocatalytic Water Splitting. ACS Nano 2025, 19, 22387–22401. [Google Scholar] [CrossRef]
- Huang, J.; Shi, W.; Xu, S.; Luo, H.; Zhang, J.; Lu, T.; Zhang, Z. Water-Mediated Selectivity Control of CH3OH Versus CO/CH4 in CO2 Photoreduction on Single-Atom Implanted Nanotube Arrays. Adv. Mater. 2024, 36, 2306906. [Google Scholar] [CrossRef]
- Li, W.; Cao, J.; Liang, Y.; Masuda, Y.; Tsuji, T.; Tamura, K.; Ishiwata, T.; Kuramoto, D.; Matsuoka, T. Evaluation of CO2 Storage and Enhanced Gas Recovery Potential in Gas Shale Using Kerogen Nanopore Systems with Mesopores and Micropores. Chem. Eng. J. 2024, 486, 150225. [Google Scholar] [CrossRef]
- Kohnke, A.; Wilczewska, P.; Brzeski, J.; Szczodrowski, K.; Ryl, J.; Malankowska, A.; Bielicka-Giełdoń, A.; Siedlecka, E.M. Holes-Mediated Photocatalytic Activation of PDS for Enhanced Ifosfamide Removal with MWCNTs-X/DBOB: Role of Bi4O5Br2 and Bi24O31Br10 Phases. Sep. Purif. Technol. 2025, 375, 133747. [Google Scholar] [CrossRef]
- Kajiwara, T.; Ikeda, M.; Kobayashi, K.; Higuchi, M.; Tanaka, K.; Kitagawa, S. Effect of Micropores of A Porous Coordination Polymer on the Product Selectivity in RuII Complex-Catalyzed CO2 Reduction. Chem. Asian J. 2021, 16, 3341–3344. [Google Scholar] [CrossRef]
- He, Y.; Yin, L.; Yuan, N.; Zhang, G. Adsorption and Activation, Active Site and Reaction Pathway of Photocatalytic CO2 Reduction: A Review. Chem. Eng. J. 2024, 481, 148754. [Google Scholar] [CrossRef]
- Asadollahpour, M.; Ghazi, M.M. Development of A Polyethyleneimine-Functionalized Mixed Ligand ZIF-7-8 for Enhanced CO2 Adsorption Efficiency. J. Solid State Chem. 2025, 350, 125516. [Google Scholar] [CrossRef]
- Jovita, S.; Melenia, A.T.; Santoso, E.; Subagyo, R.; Tamim, R.; Asikin-Mijan, N.; Holilah, H.; Bahruji, H.; Nugraha, R.E.; Jalil, A.A.; et al. Mesoporous Aluminosilicate from Nanocellulose Template: Effect of Porosity, Morphology and Catalytic Activity for Biofuel Production. Renew. Energy 2025, 250, 123293. [Google Scholar] [CrossRef]
- Bhattacharya, G.; Manna, R.; Sardar, P.; Rahut, S.; Kumar, S.; Samanta, A.N. Excellent Electrochemical Activities of Sn Doped In2S3 with Microflower Morphology for CO2 Reduction to Formic Acid and Methanol. J. Environ. Chem. Eng. 2025, 13, 117451. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, G.; Wang, Y.; Qian, W.; Wang, X. Recent Advances in Phase-Engineered Photocatalysts: Classification and Diversified Applications. Materials 2023, 16, 3980. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, S.; Zhong, Q.; Zhu, G.; Zhu, J.; Li, D.; Jiang, D. Improving Charge Separation in B-Doped PCN/C-doped PHI via Synergy of Homojunction and Doping Engineering for Enhanced Photocatalytic CO2 Reduction. J. Photochem. Photobiol. A Chem. 2025, 471, 116688. [Google Scholar] [CrossRef]
- Hua, J.; Feng, S.; Ma, C.; Huang, H.; Wei, K.; Dai, X.; Wu, K.; Wang, H.; Bian, Z. An Innovative 2D/2D Bi5O7Br/NiFe-LDH Z-scheme Heterojunction for Enhanced Photoreduction CO2 Activity. J. Environ. Chem. Eng. 2023, 11, 111290. [Google Scholar] [CrossRef]
- Barrocas, B.T.; Ambrožová, N.; Kočí, K. Photocatalytic Reduction of Carbon Dioxide on TiO2 Heterojunction Photocatalysts—A Review. Materials 2022, 15, 967. [Google Scholar] [CrossRef]
- Meng, J.; Jin, X.; Zhao, M.; Chen, Z.; Hao, W. Construction of Core-Shell Bi4O5Br2 Structure for Efficient Photocatalytic CO2 Reduction. Vacuum 2025, 233, 114022. [Google Scholar] [CrossRef]
- Wang, X.; Hu, B.; Li, Y.; Yang, Z.; Zhang, G. Dipole Moment Regulation by Ni Doping Ultrathin Bi4O5Br2 for Enhancing Internal Electric Field Toward Efficient Photocatalytic Conversion of CO2 to CO. Chin. J. Catal. 2024, 66, 257–267. [Google Scholar] [CrossRef]
- Zeng, J.; Jiang, Z.; Lv, K.; Ahmad, S.A.; Chen, X.; Zhang, W.; Xie, J.; Zhu, T. Experimental and Calculation Investigations of the Photocatalytic Selective and Performance for CO2 Reduction by Cobalt-Doped Bi4O5Br2 Nanosheets. Ceram. Int. 2025, 51, 1801–1812. [Google Scholar] [CrossRef]
- Jin, X.; Lv, C.; Zhou, X.; Xie, H.; Sun, S.; Liu, Y.; Meng, Q.; Chen, G. A Bismuth Rich Hollow Bi4O5Br2 Photocatalyst Enables Dramatic CO2 Reduction Activity. Nano Energy 2019, 64, 103955. [Google Scholar] [CrossRef]
- Jin, X.; Cao, J.; Wang, H.; Lv, C.; Xie, H.; Su, F.; Li, X.; Sun, R.; Shi, S.; Dang, M.; et al. Realizing Improved CO2 Photoreduction in Z-scheme Bi4O5Br2/AgBr Heterostructure. Appl. Surf. Sci. 2022, 598, 153758. [Google Scholar] [CrossRef]











| Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bi/Br ratio | 1:1 | 2.55:1 | 3:1 | 1:1 | 2.55:1 | 3:1 | 1:1 | 2.55:1 | 3:1 | 2:1 | 4:1 | 8:1 |
| PH value | 5 | 5 | 5 | 7 | 7 | 7 | 9 | 9 | 9 | 11 | 11 | 11 |
| Sample Number | Element Type and Atomic Percent | |||
|---|---|---|---|---|
| Bi (at.%) | O (at.%) | Br (at.%) | Bi/Br (Ratio) | |
| Sample-1 | 14.55 | 74.30 | 11.15 | 1.3:1 |
| Sample-11 | 23.97 | 70.57 | 5.46 | 4.4:1 |
| Sample-12 | 26.27 | 70.35 | 3.38 | 7.8:1 |
| Samples | BET Surface (m2·g−1) | Pore Volume (cm3·g−1) | Pore Diameter (nm) | CO2 Adsorption Capacity (cm3·g−1) |
|---|---|---|---|---|
| Sample-3 | 19.95 ± 0.12 | 0.16 | 26.6 ± 5.6 | 1.18 |
| Sample-5 | 16.41 ± 0.35 | 0.09 | 20.9 ± 1.1 | 0.86 |
| Sample-9 | 32.07 ± 0.28 | 0.18 | 20.5 ± 2.7 | 1.88 |
| Sample-11 | 19.40 ± 0.18 | 0.06 | 13.78 ± 0.89 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Jing, B.; Li, R.; Ma, Y.; Cao, B.; Xu, Y. Controllable Preparation and Optimisation of Bi4O5Br2 for Photocatalytic Reduction of CO2 to CO. Materials 2025, 18, 5442. https://doi.org/10.3390/ma18235442
Cai X, Jing B, Li R, Ma Y, Cao B, Xu Y. Controllable Preparation and Optimisation of Bi4O5Br2 for Photocatalytic Reduction of CO2 to CO. Materials. 2025; 18(23):5442. https://doi.org/10.3390/ma18235442
Chicago/Turabian StyleCai, Xiaolong, Baiquan Jing, Rong Li, Yongbo Ma, Baowei Cao, and Yunhua Xu. 2025. "Controllable Preparation and Optimisation of Bi4O5Br2 for Photocatalytic Reduction of CO2 to CO" Materials 18, no. 23: 5442. https://doi.org/10.3390/ma18235442
APA StyleCai, X., Jing, B., Li, R., Ma, Y., Cao, B., & Xu, Y. (2025). Controllable Preparation and Optimisation of Bi4O5Br2 for Photocatalytic Reduction of CO2 to CO. Materials, 18(23), 5442. https://doi.org/10.3390/ma18235442

