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Abstract

An analysis of free vibrations for thin functionally graded plate bands is presented in this
work. On the microlevel these plate bands have a tolerance-periodic microstructure in
planes parallel to the mid-plane. Partial differential equations with tolerance-periodic,
highly oscillating, non-continuous coefficients describe the vibrations of such plates. Here,
the influence of microstructure inhomogeneity is shown on free vibration frequencies of
these plate bands with different boundary conditions. This analysis was carried out within
the framework of two models of these plates. The models are represented by equations
with smooth, slowly varying coefficients. One of these models, called the tolerance model,
takes into account the effect of the microstructure size. Hence, it leads not only to formulas
of fundamental lower-order vibration frequencies, but also to formulas of higher-order
vibration frequencies, which are related to the microstructure. The analyses of free vibration
frequencies for thin functionally graded plate bands with different boundary conditions are
presented. The formulas of frequencies are obtained using the Ritz method. A comparison
of some calculated results to the results obtained by the FEM is also shown.

Keywords: functionally graded plates; tolerance-periodic microstructure; effect of
microstructure; tolerance modelling; free vibrations

1. Introduction
1.1. Subject of Analysis and Aim of the Work

Microheterogeneous structures, including beams, plates, and shells, are typically
distinguished by their adequate rigidity and minimal weight. Consequently, they are
frequently employed as a constituent element in a variety of structural systems within
civil engineering, marine engineering, mechanical engineering, aerospace engineering,
and railway engineering. This paper focuses on functionally graded (FG) plate band
structures with a tolerance-periodic (non-periodic) microstructure. These plate structures
are composed of numerous small elements, which may be called cells (see Figure 1).

The main aim of this work is to consider free vibrations of tolerance-periodic plate
bands with different boundary conditions using the tolerance and asymptotic models of dynamic
problems for thin elastic tolerance-periodic (functionally graded with microstructure) plates, cf. [1-3].
Moreover, the aim is also to investigate the influence of the various material tolerance-
periodic cell structures and the various forms of edge support on free vibration frequencies.
Applying the Ritz method, the formulae of these frequencies are derived. Some results are
compared and justified by the finite element method. This work, despite its similar subject
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matter to that presented in [4], constitutes an interesting and valuable extension of it, as it
deals with plate bands of functionally graded properties with microstructure. The analysed
computational examples take into account different distributions of material properties in
the plate plane, defined by different functions.
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Figure 1. A fragment of a thin tolerance-periodic plate band.

1.2. Literature Review

Because the microstructure of these plate bands is tolerance-periodic (non-periodic)
along their span, their macrostructure can be regarded as functionally graded along this
direction (see Suresh and Mortensen [1], WozZniak et al. [2]). These plate structures fre-
quently find applications across numerous fields of modern engineering. The dynamic
problems for the thin FG plates under consideration are governed by partial differentiation
equations with highly oscillating, tolerance-periodic, and non-continuous coefficients. This
form of the governing equations is, however, not convenient for their further analytical or
numerical treatment. Consequently, various approximate averaging methods are typically
introduced in the literature.

Some averaging techniques are devised for the analysis of periodic structures. Such
methods are frequently used in the study of microstructured, functionally graded media,
including plate structures (see [1,2]). Averaged models with effective (or homogeneous)
properties—for instance plate stiffness or mass density—are then formulated within many
of these methods. Among them, models based on asymptotic homogenisation [5] deserve
special mention. In these models, plate behaviour is described by governing equations
for a homogeneous plate with constant effective stiffness and mass density (see [6-8]).
The asymptotic homogenisation procedure involves solving boundary value problems
for the representative periodic cell to compute these effective properties. This procedure
typically involves retaining only the first approximation, while microstructure size effects
are neglected in the resulting macroscopic equations.

Other modelling approaches for composite media are successfully formulated
and implemented in related problems. Some of these methods are referenced in this
paper—predominantly in relation to plate and shell structures. Homogenisation with
microlocal parameters is used to investigate periodic plate structures [9], microperiodic com-
posite half-planes with slant lamination [10], or a semi-infinite homogeneous medium
with a multilayer coating assembly of periodic cells [11]. The free vibration frequen-
cies of thick square panels made of orthotropic or hexagonal materials are considered
in [12]. The stability of multicell thin-walled columns is studied in [13]. Two approximate
methods—orthogonalisation and finite difference are used in [14] to investigate dynamics
for sandwich annular plate structures with a viscoelastic core. Buckling and post-buckling
problems of shells of revolution with non-classical geometry are shown in [15] employing
analytical-numerical models. Furthermore, analytical-numerical approaches are used
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in [16] to consider the buckling of sandwich polyethylene plates under a magnetic field.
Paper [17] shows that computer simulations enable the study of the effective properties
and dynamic response of a sandwich panel with an auxetic core. An analytical-numerical
approach is applied in [18] to investigate dynamic problems related to fluid flow in plate
structures with different Poisson’s ratios. In [19] a comparison of the blast resistance for
auxetic and non-auxetic sandwich plates is made using the finite element method. A certain
computational approach based on polygonal meshes to describe free vibrations, buckling,
and dynamic instability problems of the sandwich plate structures with an auxetic honey-
comb core is proposed in [20]. Sandwich plates with an auxetic, anti-tetrachiral core are
analysed under steady-state harmonic base motion in [21] with the aid of the finite element
method. The results for auxetic sandwich plates are then contrasted with those for standard
honeycomb-cored structures. Orthogonalisation and the finite difference method are used
for composite annular plate structures with auxetic properties under static stability [22] or
dynamic stability [23]. The exact strong form of the equations for Timoshenko-Ehrenfest
beams with geometric nonlinearity is derived in [24], and their weak form is subsequently
obtained by the finite element method. Natural frequencies, mode shapes, and nonlinear
free vibrations are computed. In [25], the dynamic stability of a Mindlin—Reissner plate is
investigated employing a variational approach to construct its stiffness matrix alongside
Floquet theory and a first-order approximation.

Numerous works present a range of theoretical and numerical results for various
problems related to functionally graded structures. Higher-order theories for thermomechan-
ical problems in functionally graded, microstructured composite materials are developed
in [26-29]. The boundary element method is successfully used to conduct thermal analysis
of composite materials with fibres in [30]. Furthermore, a specialised implementation of
the finite element method for functionally graded materials is considered in [31]. The
stability of cylindrical shells with functionally graded structures is investigated in [32] and
shown to be in accord with Donnell-type dynamic stability equations. Meshless methods
are applied in [33] to compute the natural frequencies of composite plate structures, while
in [34] the dynamic response of sandwich beams with a functionally graded core is stud-
ied. In [35] vibrations of functionally graded plates are analysed using higher-order plate
theories and a collocation method. A GDQ solution is applied in [36] for free vibrations
of shells. Thermomechanical problems of a functionally graded plate and shell structures
are considered in [37,38] using higher-order shear deformation plate theories. In [39-41]
the static behaviour of doubly curved, functionally graded shells is investigated. The
thermal buckling of annular functionally graded plates is considered in [42], applying the
non-classical FG plate model, based on the modified couple stress theory, where size effects
related to couple stress are taken into account. In [43] free vibrations of functionally graded
thick plates are investigated with consideration of both normal and shear deformations.
Paper [44] shows an application of higher-order plate theory to vibrations of rectangu-
lar FG plate structures. A nonlinear analysis employing shear deformation plate theory
is presented in [45]. The chaos phenomenon for a rectangular FG plate is investigated
in [46]. A strong-form formulation employing the GDQ technique alongside the finite
element method for multilayered plate structures is presented in [47], while [48] shows a
strong-form isogeometric analysis for composite multilayer plate structures. The differen-
tial quadrature method and a layer-wise plate theory are used to compute vibrations of
plate structures in [49]. A new low-order shell element for composite shell structures with
functional gradation is introduced in [50]. The differential quadrature method is success-
fully used in many related problems—for instance, to compute the natural frequencies of
sandwich shells [51] or to assess their dynamic stability [52]. Furthermore, sinusoidal shear
deformation plate theory is applied to investigate bending of piezoelectric functionally
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graded plate structures resting on a foundation and free vibrations of functionally graded
composite polymer nanoplates in [53,54]. The classical laminate plate theory is employed
to propose a semi-analytical method for analysing bending, post-buckling, and dynamic
problems in functionally graded thin plate structures (see [55]). Columns with open or
closed cross-sections made of laminate plate structures are analysed (see [56-58]) using
the classical laminate plate theory. Free vibrations of sandwich functionally graded plates
under thermal loadings are considered applying a 3D finite element formulation in [59].
Transient behaviour under in-plane displacements and temperature effects is investigated
in [60], employing a new semi-analytical algorithm. In [61] an analytical method using
complex variables is applied to compute forces and moments in infinite, symmetric, func-
tionally graded plate structures with a hole. A four-node finite element based on a simple
high-order shear deformation theory is presented in [62] to analyse buckling problems
of functionally graded rectangular plates under mechanical and thermal loading. A new
analytical model for sandwich plate structures is proposed in [63] and subsequently gener-
alised to account for a thickness-wise variation in their mechanical properties. The model
is developed within a nonlinear theory in which a straight normal to the plate’s mid-plane
deforms. A bending of a clamped sandwich beam with a functionally graded core under
a uniformly distributed load is considered in [64] using a nonlinear shear deformation
theory with the classical shear stress formula for beams. In [65] static temperature dis-
tribution in a three-layered, annular plate with heterogeneous facings made of material
with radially variable parameters and with a thicker foam core is analysed by applying the
finite difference method. An analytical model for the elastic buckling of a sandwich plate
with an individually graded core, employing the nonlinear shear deformation theory of
a straight normal, is shown in [66]. The vibrations of porous, functionally graded mate-
rial plate resting on a Winkler foundation are investigated in [67] using first-order shear
deformation plate theory alongside the variational Galerkin-Vlasov method. Vibrations
of FG plate structures are considered in [68] applying the dynamic stiffness method. Pa-
per [69] introduces a unified solution for the transient state vibrations of porous FG plate
structures employing a combination of the Jacobi-Ritz method and a higher-order shear
deformation plate theory. In [70] a unified size-dependent shear deformation theory based
on consistent couple stress theory is proposed to consider the dynamics of a functionally
graded magneto-electro-elastic microplate under biaxial compression, magnetic and electric
potentials, and uniform temperature changes. Using the generalised differential quadrature
method, vibrations of nanocomposite FG shells are analysed in [71-73]. In [74] a highly
accurate and convenient analytical model for statical mechanics of pressurised FG annular
structures with arbitrary stiffness variation in the radial direction is shown. In [75] an
investigation into low-frequency vibrations of a thin-walled FG cylinder employing a plane
strain framework is performed. Subsequently, an asymptotic analysis of the dynamic rela-
tionships in elasticity is carried out across the cylinder’s cross-section, yielding a consistent
approximate equation of motion for its mid-plane.

It should be marked, however, that equations of models derived within the framework
of the methods discussed above typically neglect microstructure size effects—a consid-
eration that can be significant in the context of vibrations in microstructured media. As
Brillouin [76] observes, there are relationships between macro- and microvibrations—the
former pertaining to the macrostructure and the latter to its microstructure. To account for
this, specialised methods are implemented in numerous studies. This includes periodic
structures, as documented in many subsequent works. In [77] a spectral element method
is used to analyse the characteristics of vibration band gaps in Mindlin’s periodic plate
structures. In [78,79] a centre-difference method is employed to study band gaps in peri-
odic thin plate structures with and without damping. In [80] the differential quadrature
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element method is used to investigate the flexural wave band gaps in composite periodic
plate structures.

The tolerance method (also called tolerance modelling) offers a powerful alternative for
analysing different mechanical problems in microstructured media—whether periodic or
non-periodic. For further details, see the monograph by WozZniak and Wierzbicki [81] or
Wozniak et al. [2,82]. This method applies to a range of problems governed by partial
differential equations with functional highly oscillating, non-continuous coefficients. In its
framework, the exact governing equations are replaced by averaged ones with constant
or slowly varying coefficients. Some of these coefficients are explicitly dependent on the
microstructure size.

This procedure makes it possible to investigate a range of dynamical, stability, and
thermo-elastic problems related to periodic structures, as discussed in numerous articles.
Some noteworthy examples include the analysis of fluid-saturated periodic grounds [83]
or the vibrations of periodic plane structures [84]. Applications to dynamics of periodic
medium-thickness plate structures are presented in [85], but for in-plane periodic thin plate
structures with thicknesses less than the periodic cell dimension, see [86]. The vibrations
of wavy periodic plate structures are studied in [87]. The dynamics of thin periodic plate
structures with stiffeners are investigated in [88]. The vibrations of periodic thin plate
structures with a microstructure size comparable to plate thickness are considered in [89].
Applications to various thermomechanical problems, including stability and vibrations
of thin cylindrical shells with two-directional or one-directional microperiodicity, are
shown in [90-92]. Periodic plate structures with medium deflections are considered in [93],
while [94] studied the geometric nonlinearity in periodic beams. A specialised tolerance
model for vibrations in periodic, sandwich plate structures is presented in [95], with a
comparison of several dynamic models, and in [96]. The tolerance method is also applied
to analyse a problem of heat transfer for periodic laminates with probabilistic distribution
of material properties in [97]. The tolerance method alongside the finite difference method
is used to investigate the heat conduction process in biperiodic composite materials [98,99].
A certain generalised tolerance model of dynamics and stability for visco-elastic periodic
beams on a periodic damping foundation is proposed in [100]. The multiscale stress
distribution in composite periodic thin plate structures is considered in [101].

The tolerance method is also successfully applied to the modelling of non-periodic,
microstructured media. Thermo-elastic problems in transversally graded laminates are
investigated in [102]. The vibrations of longitudinally graded plate structures are stud-
ied in [103,104], while their stability is examined in [105]. In [106,107] the authors use
tolerance models for the dynamic analysis of thin-walled structures with dense stiffening
elements. Heat transfer in cylindrical composite conductors with non-uniform distribution
of constituents is investigated in [108,109]. A further study of conductive properties under
Robin boundary conditions for multilayer structures with grading in material properties
is presented in [110]. A certain generalisation of existing tolerance models of heat con-
duction in two-component stepwise functionally graded materials is considered in [111].
The vibrations of thin, transversally graded plate structures with a thickness less than the
microstructure size are shown in [2,3]. The free vibrations of thin, functionally graded plate
structures with a microstructure size on the order of plate thickness are analysed in [112],
but for medium thickness plates, see [113]. The dynamic problems of functionally graded
microstructured thin shells are considered in [114-116], and their stability is considered
in [117]. However, it is worth noting that these works do not encompass all the problems
previously discussed in the literature related to tolerance modelling for microstructured
media; therefore, the state of knowledge in this area cannot be considered exhaustive.
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2. Foundations
2.1. Preliminaries

Notations for coordinates are introduced: x =x1, z=x3,x € [0, L],z € [-d/2,d/2],
with d as a constant plate thickness, and L as a span of the plate band. The considerations
are assumed to be independent of the x;-coordinate. The plate band is determined by
an interval I'l, IT = (0, L). Moreover, what is called “the basic cell” A =[-1/2,1/2] x {0}
is introduced as an interval in I1, with [ being the cell length, which satisfies conditions
d << I << L. It is assumed that the plate band consists of two elastic, isotropic materials,
perfectly bonded across interfaces. Their properties are denoted as Poisson’s ratios ¢/, v,
Young’s moduli E/, E”, and mass densities p’, p”. In the next considerations, it is assumed
that ' = 0", and E’ # E” or p’ # p”. Indices A, B, ... run over 1, ..., N and summation
convention holds for them. Let d denote the first derivative with respect to x, and 0"—the
derivative of the n-th order; however, the overdot and the overdots denote derivatives with
respect to the time coordinate.

The plate band properties are described by tolerance-periodic functions in x: the
bending stiffness b, the mass density p, the rotational inertia j, given by:

3 3
bx) = 3y B W) = do(x), () = J30(x). (D
Let w(x,t) denote the deflection of the plate band (x € I1, ¢ € (¢, t1)). Using the well-
known assumptions of the Kirchhoff-type plate theory, free vibrations of thin functionally
graded plate band are described by the fourth-order partial differential equation in the
following form:
0%(bd*w) + uiv — jo*w = 0, @)

which has discontinuous and highly oscillating, tolerance-periodic functional coefficients.
Hence, using various mathematical approaches this equation is often replaced by an
averaged equation, with smooth coefficients.

In order to maintain the possibility to analyse the effect of microstructure size in this
study, a folerance modelling method is employed.

2.2. The Tolerance Modelling

The tolerance modelling method includes some introductory concepts, as were defined
in a general form in the book [2] and also for various media in a series of papers, e.g., for
beams in [94,100], and for non-periodic plates in [3,112]. Thus, they are only listed here,
i.e., the averaging operator <-> (which is presented below for plate bands), the tolerance
parameter, the tolerance-periodic function TP(A), the highly oscillating function HO(A), the
fluctuation shape function FS(A), and the slowly varying function SV(A).

Let us introduce a cell at x € ITp: A(x) = x + A, ITp = {x€Il: A(x) C I1}. For plate bands
the averaging operator is formulated as

<fr@=07"[ F@d xeT Ak, ®

with f being an integrable function. If function f is tolerance-periodic in x, its averaged
value from (3) is a slowly varying function.

Let us also recall another important concept, that of the fluctuating shape function,
¢ € FS(A), which is continuous together with gradient d'¢ and with a piecewise continuous
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and bounded gradient 9%¢. It depends on the microstructure parameter /, and satisfies the
following conditions:

iyokg e O(1* ) fork=0,1,...,0, «=2,3% =g,
g §=8

(i) <g> (x) = 0Vx € I,. (4)

Condition (i7) may be replaced by <ug > (x) =~ 0 for every x € II, with u>0as a
certain tolerance-periodic function.

The tolerance modelling is based on some fundamental assumptions, which are
formulated in the book [2] in their general form. Their proper formulation for thin mi-
crostructured plates can be found, e.g., in [2,3,112]. Below, these assumptions are presented
for thin tolerance-periodic plate bands.

The micro—macro decomposition assumes that the deflection can be decomposed as:

w(x,t) = W(x,t) +h(x)Q*(x,t), A=1,...,N, (5)

using the basic unknowns: the macrodeflection W(-,t), the fluctuation amplitudes QA(-b),
W(-,t), QA(-,t) € SV(A), and the known fluctuation shape functions #(-) € FS(A).
Fluctuation shape functions can be solutions to eigenvalue problems posed on the basic
cell. However, they can usually be assumed in an approximate form as trigonometric
functions [3], or saw-type functions [113].

The tolerance averaging approximation, on the other hand, assumes that terms O(5) are
negligibly small in the modelling procedure, and can be neglected in the formulas:

() <¢>@)=<9>()+00),
(i) < ¢F > (x)= <> (x)F(x) +0(),
(iii) < gd(gF) > (x) = < gdg > (x)F(x) +O(0),

(6)
)+
xe€ll; 0<d<<1, ¢ € TP(A), F € SV(A), g € FS(A).

Tolerance modelling is predicated on a foundation of introductory concepts and basic
assumptions (5) and (6).

The modelling procedure itself can be carried out in a number of ways. Firstly,
the virtual work principle, as outlined in [4], can be employed. Secondly, an averaged
Lagrangian, as described in [112], can be utilised.

Alternatively, as in [100], a residual field r(:), defined as the left-hand side of
Equation (2), can be formulated after inserting a micro-macro decomposition:

r(-) = ?[bo*(W(x,t) XhA(X)QA(x/t))H . )
W (x, ) + b (0)Q (x,1)] = j*[W(x, 1) + 1A (x)Q (x,1)].

This field can then be restricted by introducing an additional assumption of the residual
orthogonality condition:

<r>(xt)=0, <rh®> (xt)=0. 8)

All the above-mentioned ways of carrying out the tolerance modelling procedure lead
to the same averaged governing equations of plates or beams with microstructure.
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3. Governing Equations of Tolerance-Periodic Plate Bands
3.1. Tolerance Model Equations
Introduce denotations:
B=<b>, BA=<bd?h4 >, BAB = < ba2hA92hB >,
m=<pu> miA=12<uht >, mAB=1"*<uhtnb >, )

d=<j> M =ll<jont>, 0B =1"2<jontond >.

Using the last of the abovementioned tolerance modelling procedures, the system of
equations for the macrodeflection W and the fluctuation amplitudes of the deflection Q* is
derived (here, in the form for tolerance-periodic plate bands):

. LA . LA
02(Ba’W + BAQA) + mW + PmAQ  — 99*°W — 1949Q =0, (10)
. . .. B
BAG*W + BABQE 4 ZmAW + 1840W + 2(IPmAB + 948)Q = 0.

Equation (10) constitutes the tolerance model of free vibrations of thin elastic tolerance-periodic
plate bands, with slowly varying functional coefficients. These model equations, using terms
with the microstructure parameter /, allow the effect of the microstructure size on the plate
band’s free vibrations to be taken into account. Moreover, it should be noted that the basic
unknowns of (10) have to be slowly varying functions in x, W(-,t), Q*(-,t) € SV(A). For
these equations boundary conditions only for the macrodeflection W have to be defined.

3.2. Asymptotic Model Equations

In order to evaluate the results obtained with the tolerance model, a model that does
not take into account the influence of microstructure size, i.e., an asymptotic model, will
also be introduced. Its equations can be obtained by carrying out a formal asymptotic
procedure, e.g., [82,112,113] or by simply deriving directly from Equation (10) by omitting
components of order O(I"),n=1,2, .. ..

Using such transformations, the equations of the asymptotic model of free vibration for
plate bands under consideration are obtained:

92(B2W + BAQA) + mW — 99°W = 0,
Ay2 ABHB a1
B40°W + B2PQ° =0,
with all slowly varying functional coefficients.
Therefore, the asymptotic model of free vibrations of thin elastic tolerance-periodic plate
bands is defined by Equation (11) with boundary conditions also formulated only for the
macrodeflection W.

4. Free Vibration Analysis for Tolerance-Periodic Plate Bands with
Different Support Conditions

4.1. Introduction

The two plate band materials are characterised by constant Poisson’s ratios v/ = v/ = v, the
variable Young’s moduli E/, E”, and mass densities p’, p”. These materials are tolerance-
periodically distributed along the x-axis and also perfectly bonded on interfaces.

It is assumed that the properties of the plate band under consideration are described
as follows:

E', o' fory € ((1—7(x))1/2,(1+7(x))!/2),

£, o fory € [0,(1—v()/20[(1 +y()i/2,n, 0D

E(,y), o(y) = {
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where y(x) is the distribution function of the material properties (Figure 2); y € A(x). Under
the above assumptions, the influence of the tolerance-periodic material structure on the
free vibrations is considered by taking the following parameter values: E”/E’€[0, 1],
v'=v'=v=03,p"/0'€[0,1], h/1€(0; 0.1].

d E"p" E'p’ E'p”
47 e A A N A A A A R
X
V.
(@2, @l (@2,
l l l

Figure 2. Tolerance-periodic plate band cell.

The impact of the above parameters is considered using the example of the first
vibration frequencies, only—lower and higher (for the tolerance model).

Furthermore, only one fluctuation shape function h(x) = hl(x), A =N =1, is assumed.
Denote Q = Q!. Then micro-macro decomposition (5) of the deflection w(x,t) of the plate
band takes the form of

w(x,t) = W(x, t) +h(x)Q(x, 1), (13)

where W(-,t), Q(-,t) € SV(A) for every t € (to,t1), h(-) € FS(A).
For a given cell, as illustrated in Figure 2, a periodic approximation of the fluctuation
shape function h(x) is employed, of the following form:

h(x,y) = I*[cos(2rty /1) 4+ c(x)], y € A(x), x €T], (14)

where c(x) is determined by the condition < wh > = 0:

() = S (0)](e" —p")
=) = @ + o 1AW %)

with 7(x) as the periodic approximation of the distribution function of material properties.

The quantity c(x) is a slowly varying function of the argument x. By determining the
derivatives of the fluctuating shape function (performing a differentiation within the cell,
relative to y € A(x)), the quantity c(x) can be treated as a constant, obtaining;:

oh(y) = —2nlsin(2my /1), 9%*h(y) = —4m? cos(2my/1). (16)
For one fluctuation shape function assumed as (14), denotations (9) can be written as:

B=<b>, Bl=<0bdh>, B! = < ba%ho?h >,
m=<pu> m=1"2<uh> ml=1"*<uhh>, (17)
d=<j>, O=1""<joh> o1 =1"2<johoh >;

and
m =12<uh>=0, ' =1"1<joh>=0. (18)

Thus, Equation (10) of the tolerance model can be represented as:

9?(Bo*W + B'Q) + mW — 99*°W = 0,
) (19)
B'o?W + B Q + 2(IPm' + 9'1)Q =0,
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After simple transformations from the second formula in Equation (11), the fluctuation
amplitude Q can be determined. Then, this formula is substituted for the function Q in the
first formula in these equations, and after rearranging the asymptotic model equation, it
can be written as a single equation only for the macrodeflection W:

82{[B — (31)2/311]a2w} +mW — 99PW = 0. (20)

Despite the simplification of the primary Equation (2) (with strongly oscillating, dis-
continuous functional coefficients), finding analytical solutions of the averaged equations
presented above (19) or (20) (with continuous functional coefficients) is still very difficult
or even impossible; so approximate methods are used for this purpose. In this paper, the
Ritz method is used to write approximate formulae for the natural frequencies of the plates
under consideration.

4.2. The Application of the Ritz Method

The Ritz method may be used to derive the free vibration frequency formulae for
functionally graded plate bands with tolerance-periodic microstructure, which are different
support conditions, cf. [3,4]. This method uses the concepts of maximum strain energy Umax
and maximum kinetic energy Knax, for which the relevant formulae must be formulated.

Assume solutions to Equation (20) and Equation (19) for the considered plate bands in
the following form:

W(x,t) = Aw®(ax) cos(wt), Q(x,t) = Ag¥(ax)cos(wt), (21)

where o is a wave number, w is a free vibration frequency, and Ay and Ag are amplitudes.
Functions ®(-) and Y(-) are eigenfunctions for the macrodeflection and the fluctuation
amplitude, respectively, which have to satisfy the given boundary conditions for x = 0, L.
Also denote the first- and second-order derivatives of functions ®(-) and ¥(-) by:

0d(nx) = ad(ax), ¥ (ax) = a¥(ax),

00D (ax) = a?>®(ax), 99¥(ax) = ¥ (ax). (22)
The following analysis will be carried out for four cases of boundary conditions:
e  The simply supported plate band
®(0) = 0990P(0) = P(L) = 99P(L) =0; (23)
e  The plate band clamped on both edges
®(0) =0P(0) = P(L) =0P(L) =0; (24)
e  The clamped-hinged plate band
®(0) =0P(0) = P(L) = 09P(L) =0; (25)
e  The cantilever plate band
®(0) = 0P(0) = 00P(L) = 900P(L) = 0. (26)

The eigenfunctions ¥(-) and ®(-) from the solutions of (21) can be taken as a homo-
geneous plate band satisfying the proper boundary conditions (23)-(26). The notation of
these solutions uses a combination of trigonometric-hyperbolic functions:

S(ax) = Y[cosh(ax) + cos(ax)], T(ax) = J[sinh(ax) + sin(ax)]

U(wx) = L[cosh(ax) — cos(ax)], V(ax) = &[sinh(ax) — sin(ax)]. @7)
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Therefore, the eigenfunctions ¥(-) and ®(-) take the form:
e  The simply supported plate band
P(ax) = ¥(ax) = sin(ax); (28)
e  The plate band clamped on both edges
P(ax) = ¥(ax) = U(ax) — Z?;EEZB _2?;((:(5)) V(ax); (29)
e  The clamped-hinged plate band
P(ax) = ¥(ax) = U(ax) — coth(aL)V (ax); (30)
e  The cantilever plate band
P(ax) = ¥(ax) = U(ax) sinh(al) — sin(aL) V(ax). (31)

™
Umax -

N =

~ cosh(aL) + cos(aL)

It is now necessary to determine the formulae for the maximum strain energy Umax
and maximum kinetic energy Knax for both the tolerance and asymptotic models within
the Ritz method. The conditions of the Ritz method are then used:

a([-Imax - Kmax) — 0 a([-Imax - Kmax)

A dAq =0 (32)

which allow the formulae for the free vibration frequencies to be determined.
After substituting into (17) the fluctuation shape function (14), the functions of material
properties (12), and eigenfunctions ®(-) and ¥(-), denotations (17) can be written as:

- d3 L ., N B - )
B = G vy (E'I - 70l 3@ E} [@(ax)]dx,
md® L .
B= 30 ilVZ) (E' — E”)OfSin(ﬂ’ﬂX))(I)(ucx)‘I’(ax)dx,
= (md)® L ., N ' B ) )
B = 31— V2>6f{(E — E")[27ty(x) + sin(27y(x))] + 2E” ¥ (ax)] dx,
n= dofL {[1=F(x)]p" +7(x)p' }[@(ax))] dx
k= 46;0} {0’ = p") 277 (x) + sin(2717(x))] + 27p" [¥ (ax) P dx—+ (33)
+%(p’ - P”)OfLC(X)[ﬂC(xW(X) — 2sin(77 (x))][¥ (ax)]*dx+
L

+dp” [ [e(x)]*[¥ (ax)]?dx,

- 3L ~ 2
0 =35 [ {L=7()]e" +7(x)p"}[P(ax)] dx,
0

— adl _ ) _ 2
7= T J (/=027 (x) —sinrF()] + 20" ¥ (@)

Using (21) and the above notations (33), formulae of the maximal strain energy Umax and
the maximal kinetic energy Kmax for the plate band by the tolerance model take the form:

(BA}ya* +2BAwAga® + BAL), KIM — L+ 9a2) A3, + (P + ) A%]w?. (34)

2

After substituting formulae (34) into the conditions of the Ritz method (32), the
following system of linear algebraic equations is obtained:
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AW[§a4 —(pn+ Eaz)uﬁ] + ApBa? =0,

_ ~ _ (35)
AwBa? + Ag[B — I2(u? + 9)w?] = 0.

Assigning the determinant of the system (35) to zero gives the following free vibration
characteristic equation for a tolerance-periodic plate band according to the tolerance model:

P2 +0)(1k + 8a?)w* — [Ba*2(f? +8) + B(k + 842)]w? + BBa* — (Ba?)> = 0. (36)

The solutions to Equation (36) can be written in the following form:

(w )2 _ A2 +9)B+(fi+ 902) B
2(u2+8)(ut 9a2)12

\/ AP (R29) B— (1t 902) B] -+4a2 (H2-4) (ji+ 902) B
2£H12+§)£ﬁ+;ﬂ/a2)12 ’ (37)
(w )2 _ oAP(P4+8)B+(n+0a%)B
* 2(W248) (it 802)12

- - —~ 2 -
N \/[a412(ﬁ12+5) B—(i+042)B] +4a42(fl2+9)(1i+ 0a2)B
22 4D) (Rt Ba2)2

7

where w_ is the lower-order (fundamental) free vibration frequency, and w is the higher-order
free vibration frequency of the plate band under consideration according to the tolerance model.

Proceeding similarly within the asymptotic model, using the Ritz method, expressions
for the maximum energies can be written down:

~—

1= - ~ 1,
UAM — E(BAévoc‘JL +2BAwAga® + BA), Ky = S+ da?) A%, w?. (38)

Applying conditions (32) to formulae (38) after some manipulations, the following
system of linear algebraic equations is obtained:

AW[§a4 —(n+ 5042)(»2] + ApBa? =0, (39)

AwBa? + AgB = 0.

Similarly, as above for the tolerance model, the determinant of the system (39) should

be assigned to zero, obtaining the characteristic equation for the plate band under consider-
ation according to the asymptotic model:

—~

“B(ii + #a®)w? + BBa* — (Ba?)* = 0. (40)
The solution to Equation (40) takes the form:
o B2
BB —-B
w? = ﬁl’ﬁ/ (41)
(L + 9a2)B
which is the lower-order (fundamental) free vibration frequency w of the tolerance-periodic plate
band according to the asymptotic model.
The above analytical results make it possible to observe that the influence of mi-
crostructure size can be studied in the tolerance model in terms of higher-order free vibra-

tion frequencies, (37),, while only lower-order free vibration frequencies can be analysed in
the asymptotic model, (41).
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4.3. Calculation of Free Vibration Frequencies
Dimensionless frequency parameters are introduced:
12(1 —v2)p’ 12(1 —v2)p’ 12(1 —v2)p’
02 2 R0V 2 gr 120 V0a 2 e 1200000 o 2)

E’ E' E'

with the free vibration frequencies w_, w,, and w determined by Equations (37) and (41),
respectively.

The analysis will be carried out for five distribution functions of material properties
v(x), whose periodic approximations are assumed as follows, cf. Figure 3:

— et
—2
— =3

b=4
— =5

0 0.2 0.8 1

0.4

0.6

Figure 3. Graphs of distribution functions of properties according to (43)—(47).

-variant1(p =1)

F(x) = sin?(7tx/L); (43)

- variant 2 (¢ = 2)
F(x) = cos?(rtx/L); (44)

- variant 3 (¢ = 3)
7(x) = (x/L)% (45)

-variant 4 (¢ = 4)
¥(x) = sin(mx/L); (46)

- variant 5 (¢ = 5)
F(x) = 0.5. (47)

The results of the free vibration frequency calculations of the tolerance-periodic plate bands
shown in the graphs in Figures 4-19 were obtained using formulas (42) and (37), (41).

Calculations are made for different types of support (cf. (23)—(26)) and for various
distribution functions of properties (formulae (43)—(47)).

The Poisson’s ratio of v = 0.3 is assumed in the calculations; the thickness of the considered
plate band satisfies the condition d/I = 0.1. The wave number « corresponds to the first form of
natural vibration of the homogeneous plate band for each considered support case, i.e., x =7
for (23), o« = 4.7300 for (24), o« = 3.9266 for (25), and o = 1.8751 for (26).

Figures 4-7 show the dependence of the lower frequency parameters (), (3_ on the
Young’s modulus quotient E” /E’ (for p” /p' = 0.25, p”" /p’ =0.50, p” /p' = 0.75, p”' /p" = 0.90).
Figures 8-11 present the curves of the lower frequency parameters (), (3_ as a function
of the density quotient p” /¢’ (for E” /E' =0.25, E” /E' =0.50, E’ /E' = 0.75, E" /E’ = 0.90).
The individual curves correspond to assumed distribution functions of the properties,
cf. (43)-(47).
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Figure 4. Plot of the lower frequency parameters (), ()_ for a simply supported plate band as a
function of the parameter E” /E’ for a fixed ratio: (a) p”/p’ = 0.25; (b) p” /o' = 0.50; (c) p” /p’ = 0.75;
(d) p"/p' =0.90.
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Figure 5. Plot of the lower frequency parameters (), ()_ for a clamped plate band as a function of the
parameter E /E’ for a fixed ratio: (a) p” /p’ = 0.25; (b) p”’ /p’ = 0.50; (c) " /p’ = 0.75; (d) "/ p’ = 0.90.
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Figure 6. Plot of the lower frequency parameters (), Q)_ for a clamped-hinged plate band as a
function of the parameter E” /E’ for a fixed ratio: (a) p”/p’ = 0.25; (b) p” /o' = 0.50; (c) p” /p’ = 0.75;
(d) " /p’ =0.90.
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Figure 7. Plot of the lower frequency parameters (), Q)_ for a cantilever plate band as a function of the
parameter E” /E’ for a fixed ratio: (a) p”/p’ = 0.25; (b) p”/p’ = 0.50; (c) " /p’ = 0.75; (d) p” /p’ = 0.90.
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Figure 8. Plot of the lower frequency parameters (), ()_ for a simply supported plate band as a
function of the parameter p” /p’ for a fixed ratio: (a) E” /E' = 0.25; (b) E” /E' = 0.50; (c) E" /E' = 0.75;
(d) E"/E' =0.90.
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Figure 9. Plot of the lower frequency parameters (), ()_ for a clamped plate band as a function of the
parameter p”’ /o’ for a fixed ratio: (a) E”/E' = 0.25; (b) E” /E' = 0.50; (c) E” /E' = 0.75; (d) E" /E' = 0.90.
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Figure 10. Plot of the lower frequency parameters (), ()_ for a clamped-hinged plate band as a
function of the parameter p”/p’ for a fixed ratio: (a) E” /E' = 0.25; (b) E” /E' = 0.50; (c) E" /E' = 0.75;
(d) E"/E' =0.90.
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Figure 11. Plot of the lower frequency parameters (), ()_ for a cantilever plate band as a func-
tion of the parameter p” /p’ for a fixed ratio: (a) E”/E' = 0.25; (b) E” /E' = 0.50; (c) E"/E' = 0.75;
(d) E”/E" = 0.90.
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Figure 12. Plot of the higher frequency parameters (). for a simply supported plate band as a

function of the parameter E” /E’ for a fixed ratio: (a) p”/p’ = 0.25; (b) p” /o' = 0.50; (c) p” /p’ = 0.75;
(d) " /o’ =0.90.
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Figure 13. Plot of the higher frequency parameters (), for a clamped plate band as a function of the
parameter E” /E’ for a fixed ratio: (a) p”’ /p’ = 0.25; (b) p”"/p' = 0.50; (c) p” /p' = 0.75; (d) p"" /p’ = 0.90.
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Figure 14. Plot of the higher frequency parameters (), for a clamped-hinged plate band as a
function of the parameter E” /E’ for a fixed ratio: (a) p”/p’ = 0.25; (b) p” /o' = 0.50; (c) p” /p' = 0.75;
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Figure 15. Plot of the higher frequency parameters (), for a cantilever plate band as a function of the
parameter E” /E’ for a fixed ratio: (a) p”’ /p’ = 0.25; (b) p”'/p' = 0.50; (c) p” /p' = 0.75; (d) p”" /p’ = 0.90.
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Figure 16. Plot of the higher frequency parameters (). for a simply supported plate band as a
function of the parameter p”’ /p’ for a fixed ratio: (a) E” /E' = 0.25; (b) E”’ /E' = 0.50; (c) E" /E' = 0.75;
(d) E”/E" = 0.90.
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Figure 17. Plot of the higher frequency parameters (), for a clamped plate band as a function of the
parameter p” /o' for a fixed ratio: (a) E”/E' = 0.25; (b) E” /E' = 0.50; (c) E” /E' = 0.75; (d) E"" /E' = 0.90.
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Figure 18. Plot of the higher frequency parameters (), for a clamped-hinged plate band as a
function of the parameter p”/p’ for a fixed ratio: (a) E” /E' = 0.25; (b) E” /E' = 0.50; (¢) E" /E' = 0.75;
(d) E”/E" =0.90.
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Figure 19. Plot of the higher frequency parameters (), for a cantilever plate band as a function of the
parameter p” /o’ for a fixed ratio: (a) E”/E' = 0.25; (b) E” /E' = 0.50; (c) E” /E' = 0.75; (d) E” /E' = 0.90.
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Analysing the graphs presented in Figures 4-11, the following observations can
be made:

(1) The values of the lower frequencies determined according to the tolerance model
and the asymptotic model are almost identical.

(2) The following can be observed:

- For a simply supported plate band, the smoothest increase (Figure 4) or decrease
(Figure 8) in the values of the lower frequencies is for the distribution function of properties
¥(x) = sin(mx/L), ¢ = 4; the same applies to a clamped band (Figures 5 and 9, respectively)
and a clamped-hinged plate band (Figures 6 and 10, respectively).

- For a cantilever plate band, the smoothest increase (Figure 7) in the values of (2, ()_
is for the distribution function of properties ¥ (x) = cos?(7tx/L), ¢ = 2, while the decrease
(Figure 11) in these values is for the distribution function of properties 7(x) = (x/L)?,
$=3.

(3) The highest values of the lower frequency parameters (), ()_ at fixed parameters
d/land p”/p’ are obtained for the following:

- A simply supported plate band for the distribution function of properties
¥(x) = sin(nx/L), ¢ = 4, when E"/E' < E"¢/Ey, and for the function
Y(x) = cos?(rtx/L), & =2, when E" /E' > E"o/FE'y, Figure 4.

- A plate band clamped on both edges for the distribution function of properties
Y(x) = cos?(rtx/L), & =2, when E” /E' € [0,1], Figure 5.

- A clamped-hinged plate band:

o when p”/p’ = 0.25 and p”/p’ = 0.50—for the distribution function of properties
Y(x) = cos?(rtx/L), & =2, when E” /E' € [0,1], Figure 6.

o when p”/p’ = 0.75 and p”/p’ = 0.90—for the distribution function of prop-
erties ¥(x) = sin(nix/L), ¢ = 4, when E"/E' < E"¢/Ey, and for the function
Y(x) = cos?(rx/L), ¢ =2, when E” /E' > E"/Ey, Figure 6.

- A cantilever plate band for the distribution function of properties ¥ (x) = cos?(7tx/L),
¢ =2, when E" /E' < E"y/Ey, and for the function ¥(x) = sin?(7x/L), ¢ = 1, when
E"/E > E"y/Ey, Figure7.

(4) The lowest values of the lower frequency parameters (), ()_ at fixed parameters
d/land p"/p’ are obtained for the following:

- A simply supported plate band for the distribution function of properties
F(x) = (x/L)% ¢ = 3, when E" /E' < E"(/E'y, and for the function 7(x) = sin(7rx/L),
¢ =4, when E” /E' > E"(/Ey, Figure 4; the same applies to a clamped-hinged plate band,
Figure 6.

- A clamped plate band:

o when p”/p’ = 0.25 and p”/p’ = 0.50—for the distribution function of properties
Y(x) = sin®(7tx/L), =1, when E” /E' < E"(/E’y, and for the function ¥(x) = sin(rx/L),
¢ =4, when E" /E' > E"y/Ey, Figure 5.

o when p”/p’ = 0.75 and p”/p' = 0.90—for the distribution function of properties
F(x) = (x/L)? ¢ =3, when E" /E' < E"y/Ey, and for the function 7(x) = sin(7x/L),
¢ =4, when E" /E' > E"y/Ey, Figure 5.

- A cantilever plate band for the distribution function of properties 7(x) = (x/L)?,
¢ =3, when E” /E' € [0,1], Figure 7.

(5) The highest values of the lower frequency parameters (), Q)_ at fixed d/l and E” /E’
parameters are obtained for the following:

- A simply supported plate band for the distribution function of properties
Y (x) = cos?(rtx/L), & =2, when p” /p' < p"/p'y, and for the function ¥(x) = sin(7x/L),
¢ =4, when p" /p’ > p” /9o, Figure 8; the same applies to a clamped-hinged plate band,
Figure 10.
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- A clamped plate band for the distribution function of properties 7 (x) = sin?(7tx/L),
¢ =1, when p” /9 € [0,1], Figure 9.

- A cantilevered plate band for the distribution function of properties
¥(x) = sin’(mx/L), ¢ = 1, when p"/p' < p"o/p'y, and for the function
Y(x) = cos?(rtx/L), d =2, when p” /p' > p"/p'y, Figure 11.

(6) The lowest values of the lower frequency parameters (), ()_ at fixed parameters
d/land E" /E' are obtained for:

- A simply supported plate band:

o when E” /E' = 0.25—for the distribution function of properties ¥(x) = 0.5, ¢ =5,
when p” /p' < p"/p’y, and for the function ¥(x) = sin(ntx/L), ¢ =4, when p" /p’ >
p"o/p o, Figure 8; the same applies to a clamped-hinged plate band, Figure 10.

owhen E"”/E' =050, E"” /E' =0.75, and E” /E' = 0.90—for the distribution function of
properties y(x) = sin(mtx/L), ¢ =4, when p” /p’ € [0, 1], Figure 8; the same applies to a
clamped-hinged plate band, Figure 10.

- A clamped plate band:

o when E” /E' = 0.25—for the distribution function of properties 7(x) = sin?(7tx/L),
® =1, when p"/p' < p"o/p'o, and for the function 7(x) = (x/L)% ¢ = 3, when
p"/p' > p"o/p o, Figure 9.

owhen E"/E' =0.50, E"" /E' =0.75, and E” /E' = 0.90—for the distribution function
of properties 7(x) = sin(nx/L), ¢ =4, when p” /p’ < p”¢/p’y, and for the function
F(x) = (x/L)? ¢ =3, when p” /p' > p"o/ ¢y, Figure 9.

- A cantilever plate band for the distribution function of properties 7(x) = (x/L)?,
¢ =3, when p” /p’ € [0,1], Figure 11.

The next graphs in Figures 12-15 show the dependence of the higher frequency
parameters (), on the Young’s modulus quotient parameter E”/E’ for fixed density
quotient ratios.

Figures 16-19 show graphs of the dependence of the higher frequency parameters ().,
as a function of the density quotient p”/p’ (for E”/E' = 0.25, E" /E' = 0.50, E” /E' = 0.75,
E"/E' =0.90).

Based on Figures 12-19, we can make the following observations:

(1) The following can be seen:

- For a simply supported plate band, the smoothest increase (Figure 12) or decrease
(Figure 16) in the values of the higher frequency parameters ()+ is for the distribution function
of properties y(x) = sin(mrx/L), ¢ = 4; the same applies to a clamped band (Figures 13 and 17,
respectively) and a clamped-hinged plate band (Figures 14 and 18, respectively);

- For a cantilever plate band, the smoothest increase (Figure 15) or decrease (Figure 19)
in the values of the higher frequency parameters QO+ is for the distribution function of
properties 7(x) = cos?(rx/L), ¢ =2.

(2) The highest values of the higher frequency parameters Q+ at fixed d/I and p" /p’
are obtained for the following:

- A simply supported plate band:

o when p”/p’ = 0.25—for the distribution function of properties ¥(x) = 0.5, ¢
=5, when E”/E' < E"y/E'y, and for the function ¥(x) = cos?*(mx/L), ¢ = 2, when
E"/E' > E"y/Ey, Figure 12; the same applies to a clamped band, Figure 13, and a clamped—
hinged plate band, Figure 14.

o when p”/p’ =0.50, p""/p’ = 0.75, and p"'/p’ = 0.90—for the distribution function
of properties ¥(x) = sin(nx/L), ¢ = 4, when E” /E' < E"¢/E’y, and for the function
Y(x) = cos?(nx/L), & =2, when E"/E' > E"y/E'y, Figure 12; the same applies to a
clamped band, Figure 13, and a clamped-hinged plate band, Figure 14.

- A cantilever plate band:
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o when p”/p’ = 0.25—for the distribution function of properties ¥(x) = 0.5, ¢ =5,
when E” /E’ € [0, 1], Figure 15.

o when p"/p' =0.50, p""/p’ = 0.75, and p"'/p’ = 0.90—for the distribution function
of properties y(x) = cos?(rtx/L), ¢ =2, when E” /E' < E"¢/E'y, and for the function
¥(x) = sin®(7tx/L), & = 1, when E” /E' > E"/E/q, Figure 15.

(3) The lowest values of higher frequency parameters O+ at fixed d/l and p”/p’ are
obtained for the following:

- A simply supported plate band for the distribution function of properties
¥(x) = cos’(mx/L), & = 2, when E"/E' < E’q/Es, and for the function
¥(x) = sin(nx/L), ¢ = 4, when E"/E' > E"¢/Ey, Figure 12; the same applies to a
clamped band, Figure 13, and a clamped-hinged plate band, Figure 14.

- A cantilever plate band for the distribution function of properties 7 (x) = sin?(7tx/L),
¢ =1, when E"/E' < E"y/E'y, and for the function 7(x) = cos?*(mx/L), & = 2, when
E"/E' > E"y/Ey, Figure 15.

(4) The highest values of higher frequency parameters Q)+ at fixed d/I and E” /E are
obtained for:

- A simply supported plate band for the distribution function of properties
F(x) = (x/L)*, ¢ =3, when p" /p' < p"(/py, and for the function 7(x) = sin(7x/L),
¢ =4, when p” /p' > p"o/p'y, Figure 16; the same applies to a clamped band, Figure 17,
and a clamped-hinged plate band, Figure 18;

- A cantilever plate band for the distribution function of properties y(x) = 0.5, ¢ =5,
when p” /p’ < p”y/po, and for the function 7 (x) = (x/L)z, ¢ =3, when p” /p' > p"/00,
Figure 19.

(5) The lowest values of the higher frequency parameters Q+ at fixed d/I and E” /E’
are obtained for the following:

- A simply supported plate band for the distribution function of properties
¥(x) = sin(rtx/L), & =4, when p” /p’ < p"/p’y, and for the function ¥(x) = cos?(rrx/L),
¢ =2, when p” /p' > p"o/p'o, Figure 16; the same applies to a clamped band, Figure 17,
and a clamped-hinged plate band, Figure 18.

- A cantilever plate band for the distribution function of properties ¥ (x) = cos?(7x/L),
¢ =2, when p”/p’ < p"y/p'y, and for the function 7(x) = sin®(7x/L), ¢ = 1, when
p"/p' > p"o/p g, Figure 19.

5. Comparison of Fundamental Frequencies Calculated Using the
Tolerance Model (TM) and the Finite Element Method (FEM)

This chapter presents a plate band analysis using the finite element method. The
purpose of this analysis is to compare the results obtained with the finite element method
and with the tolerance model.

The subject of the calculation is a plate band spanning L = L; = 10 m along the x; axis,
simply supported at the edges. For the calculations, the plate band under consideration
is assumed to have a width of L, = 50 m, along the x; axis. The characteristic dimension
of the base cell is | = 1 m. The plate band thickness is d = 10 cm. The considered plate is
made of two materials. Material 1 is characterised by the Young’s modulus E’ and the mass
density p’, which correspond to those of steel. Material 2, on the other hand, is an arbitrary
isotropic material whose characteristics E” and p” are defined with respect to Material 1.
Both materials have the same Poisson’s ratio v/ = v/ = v.

Material characteristic values adopt:

E' =210Gpa, p' =7860kg/m? v =03,

48
E=FE'/E, {=0"/0, v =03, )
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The following Table 1 shows a comparison of the results of the fundamental lower
free vibration frequencies obtained from the tolerance model ((2_) with the free vibration
frequencies obtained from Abaqus software v6.14 (()p) for the distribution functions of the
properties: ¢ = 1: ¥(x) = sin®(7rx/L); & = 2: 7(x) = cos?(mx/L); d = 5: ¥(x) = 0.5.

Table 1. Comparison of the results of the free vibration frequencies obtained within the framework of
the tolerance model ((_) with the free vibration frequencies obtained from the Abaqus program ()
for three distribution functions of properties: ¢ =1 — y(x) = sin?(mx/L); & =2 — y(x) = cos?(mx/L);

$=5—v(x)=05.

E'IE' =1.00 E'/E' =0.75 E"IE' = 0.50 E"IE' =0.30
(b p”/p/ 0, QO & [o/o] 0, Q() & [0/0] Q, 00 & [0/0] Q, 00 £ [O/o]
0.3 0.0329  0.0327 0.61 0.0318 0.0315 0.94 0.0305 0.0293 3.93 0.0294 0.0261 11.22
1 0.5 0.0319 0.0318 0.31 0.0309  0.0305 1.29 0.0296  0.0284 4.05 0.0285 0.0253  11.23
0.7 0.0311  0.0309 0.64 0.0300  0.0297 1.00 0.0288 0.0276 4.17 0.0277 0.0245 11.55
1.0 0.0299  0.0297 0.67 0.0289  0.0285 1.38 0.0277  0.0265 4.33 0.0267 0.0235 11.99
0.3 0.0433  0.0429 0.92 0.0390 0.0385 1.28 0.0338  0.0327 3.25 0.0285  0.0262 8.07
» 0.5 0.0378  0.0375 0.79 0.0340 0.0336 1.18 0.0294 0.0285 3.06 0.0248 0.0228 8.06
0.7 0.0339  0.0337 0.59 0.0305 0.0302 1.00 0.0264 0.0256 3.03 0.0223  0.0204 8.52
1.0 0.0299  0.0297 0.67 0.0269  0.0266 1.12 0.0233  0.0225 343 0.0196  0.0180 8.16
0.3 0.0370  0.0368 0.54 0.0344 0.0341 0.87 0.0306  0.0301 1.63 0.0261  0.0251 3.83
5 0.5 0.0345 0.0343 0.58 0.0320 0.0317 0.94 0.0285  0.0280 1.75 0.0243  0.0233 4.12
0.7 0.0324 0.0322 0.62 0.0301  0.0298 1.00 0.0268 0.0263 1.87 0.0228  0.0219 3.95
1.0 0.0299  0.0297 0.67 0.0277  0.0275 0.72 0.0247  0.0243 1.62 0.0211  0.0202 4.27

Abaqus is used for the finite element calculations. The band is modelled with shell
elements, four-node S4R. The number of elements generated by the programme is 51,500.
A mesh with a mesh size of 0.1 is adopted. Prior to the calculations, a convergence analysis
is carried out when compacting the mesh.

The comparisons are made only for the fundamental lower free vibration frequencies,
because they can only be calculated in the framework of the commercial computer programs
of the finite element method.

The results are shown in the form of dimensionless frequency parameters, defined
according to Equation (42); for the fundamental lower free vibration frequencies by the
tolerance model (), and for the frequencies obtained from the finite element method given

below Q):
12(1 —v2)p’
BUZVIY 2 2, (49)

where the free vibration frequency wy, is determined by the program Abaqus.

0f =

The difference parameter between the results according to the finite element method
and the tolerance model is defined by the formula:

Q- 0Q
=0 1100%.
‘ a ‘00/ (50)

Results are obtained for these tolerance-periodic plate bands for the following ratios:
Poisson’s ratios v/ = v/ =0.3; E” /E' =0.3, 0.5, 0.75, 1.0; o' /p’ = 0.3, 0.5, 0.7, 1.0. Addition-
ally the first lower frequency parameters for the proper homogeneous plate band with
these boundary conditions (v/ =v” =0.3; E”/E' = 1; p"'/p’ = 1) are shown, calculated by
applying the tolerance model (TM) (Q)— = 0.0299), the classical analytical solution (CPT)
(Q¢ =0.0299), and FEM (Q)g = 0.0297).

From the obtained calculation results, the following can be observed:
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- The calculation results obtained from the tolerance model (TM) are in agreement
with the results obtained from the FEM analysis.

- As the ratio E” /E' increases, the relative error between the results obtained according
to TM and FEM decreases; an increase in p” /p’ has no effect on the error considered.

- The largest relative errors are observed in the case of the plate band, for which
large differences between Young’s moduli are considered, with the largest differences
found for the function ¢ = 1—y(x) = sin?(7tx/L)—up to 12%, and the smallest for the
function ¢ = 5—y(x) = 0.5—about 4%; for structures with small material disproportions
(E"/E' € [0.75;1]), the relative error is less than 1.3%; as the stiffness differences (Young's
moduli) of the materials in the cell increase, the differences between the frequency values
from the tolerance model and the finite element method also increase.

- In each case considered, the results obtained from the FE analysis are lower than
those obtained from the tolerance modelling (TM) procedure.

6. Some Final Remarks

The work presented here is concerned with the free vibrations of thin plate bands
with different modes of support, with a tolerance-periodic structure at the microlevel
and a functionally graded structure in planes parallel to the mid-plane of the plate at
the macrolevel. The basis for the considerations is Kirchhoff’s thin plate theory. By
considering issues within this theory, equations with strongly oscillating, discontinuous,
and tolerance-periodic functional coefficients are obtained. The resulting equations are
too difficult to apply directly to the analysis of special cases. Therefore, various averaging
methods are used to replace the initial equations with equations with slowly varying
coefficients. However, most such methods lead to equations that do not describe the effect
of microstructure size.

Using the tolerance modelling technique in this paper, equations with the smooth and
slowly varying coefficients of the considered tolerance-periodic plate bands are obtained.
Two different models, the tolerance model and the asymptotic model, are compared to
show the advantages of the tolerance model.

The considerations presented here make it possible to formulate some general com-
ments common to the applications of the tolerance modelling method and to the analysis
of various microheterogeneous structures:

1. For the tolerance model, a system of differential equations is obtained in which some
components depend on the microstructure parameter I. This model makes it possible
to take into account the effect of the microstructure size on the tolerance-periodic thin
plate dynamics problems being solved, such as the “higher order” vibrations, related
to the microstructure of the plate.

2. The governing equations of the tolerance model make physical sense if their basic
unknowns, i.e., the macrodeflection, W, and fluctuation amplitudes, QA, A=1,..,N,
satisfy the a posteriori condition, i.e., they are slowly varying functions.

3. Inthe case of the asymptotic model, one differential equation is obtained for the macrode-
flection and a system of algebraic equations for the fluctuation amplitudes. These
equations do not take into account the effect of microstructure size. Only the basic
values of the quantities sought are obtained. It should also be noted that the equations
of the asymptotic model can be obtained by applying the appropriate asymptotic
modelling procedure, as shown in [3,82] and outlined here in Appendix A, or by
omitting components that depend on the microstructure parameter in the equations
of the tolerance model.

4. Using the asymptotic model, only the lower-order (fundamental) vibrations of the
tolerance-periodic plates can be analysed.
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The equations derived allow an analysis of the free vibration frequencies of tolerance-

periodic FGM-type thin plates. To summarise the application part, the following can be stated:

1.

Using the Ritz method of the tolerance model, it is possible to derive formulae for
lower-order (fundamental) and higher-order free vibration frequencies for different
boundary conditions.

A number of calculations were carried out for different boundary conditions and
different distribution functions of the properties, and the values obtained made it
possible to demonstrate the consistency of the results obtained within the tolerance
model and the asymptotic model.

The use of the finite element method made it possible to compare the results obtained
by applying the proposed models for the fundamental free vibration frequencies of a
thin tolerance-periodic plate band with a functional gradation of properties. It can be
seen that the relative error of the values obtained is related to the material proportions
assumed for the plate band under consideration. The greater the differences between
the Young’s moduli for Material 1 and Material 2 assumed for the calculations, the
greater the relative error obtained for the determined frequencies. Significant differ-
ences in the stiffness of cell fragments may limit the applicability of the tolerance
model.

Both the models—the tolerance and the asymptotic—allow the consideration of lower
free vibration (fundamental) frequencies; but only the tolerance model makes it
possible to analyse higher free vibration frequencies, associated with the plate band
tolerance-periodic microstructure.

The values of the lower free frequencies of the tolerance-periodic plate band are
dependent on the boundary conditions, as in the case of homogeneous plates.

The values of the higher free vibration frequencies of the tolerance-periodic plate
bands being considered also depend on the support conditions, unlike in the case of
periodic plate bands, cf. [4].

The influences of differences in material and geometrical parameters such as the
ratio of Young’s modulus (E” /E’), the ratio of density (p” /'), or thickness-to-plate
band span (d/L) on free vibration frequencies are similar in both lower and higher
frequency cases.

The effect of the distribution function material properties y(x) on the free vibration
frequencies, both lower and higher, is quite difficult to describe and different for both
types of frequency.

The influence of the distribution function of material properties y(x) on the free
vibration frequencies, both lower and higher, is also related to material parameters,
i.e., Young’s modulus ratio (E” /E’) and mass density ratio (p”/p’). In addition, the
influence also depends on the support conditions of the plate.

The rather wide analysis of the free vibration frequencies of tolerance-periodic plate

bands presented in this paper makes it possible to note the good utility of the tolerance

model when considering this type of issue. In future studies, the proposed tolerance

model may be employed to analyse the natural vibrations of rectangular plates with

different support conditions and to examine forced vibrations, with the influence of elastic

foundation also being taken into account. It is also possible to use this model to optimise

the plates of this type. This can be realised by selecting appropriate distribution functions

of properties, depending on the boundary conditions. Subsequent articles may also extend

the present framework by formulating models of similar plates, but with a plate thickness

comparable (of the same order) to the cell length.
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Appendix A. The Asymptotic Modelling

This Appendix presents the asymptotic modelling procedure, which was shown in
the book [82] in the general form. Here, this procedure is outlined for microheterogenous
functionally graded plate bands.

The starting point of this procedure is Equation (2). Using denotations ¢ € (0, 1]
as a parameter, A, = [—¢l/2,el/2] x {0} as an interval, and A.(x) = x + A, x € [T as
e-cell, we define f:(x,y) = f(x,y/e), fe(x,-) € HY(A:) C HY(A), y € Ae(x), x € TI,
for function f(x, ) € HY(A), ¥x € TL Let h(-), hA(-) € HO3(ILA),A=1,..., N, be
independent functions, and hA(x, -) be their periodic approximations, given by BA (x,y) =
B (x,y/€), y € Ae(x), for every x € TL

The fundamental assumption of the asymptotic modelling is the asymptotic decomposi-
tion for the deflection w(-,f):

we(x,y,t) = W(y,t) + szﬁf(x,y)QA(y,t), A=1,...,N, (A1)

wherey € A¢(x), t € (to,t1), and functions w, W, QA4 are continuous and bounded in TT with
their derivatives. Denote oh4(x,y) = edh” (x,7) J=y/er 02hA (x,y) = 20714 (x, ?)‘y:y /e
Taking into account e—0, since y € A¢(x), x € TI, the formulas of derivatives of the
deflection w, have the form:

we(x,y,t) = W(x,t) +O(e), dwe(x,y,t) = oW(y,t) + O(e),

P (x,y, 1) = PW(y, £) + 94 (x,1)QA(y, 1) + O(e). (82)

From the limit passage ¢ —0, terms O(¢) are neglected in the above relations. Then
Lagrangians Ae = /~\(x,y/£,8W, W, W, QA), y € Ae(x), x €TI, t € (to, t1), are introduced.
In the asymptotic procedure for e —0 functions A of y/e,y € Ae(x), tend to the averaged
function Ay. After some manipulations we arrive at the Lagrangian Ag:

Ap = _%{(< b > 02W +2 < bd?hB > QB)PW+ < ¢ > dWoW— 3
— <> WW+ < bd2h402%hE > QAQB}.
Applying the principle of the stationary of the functional to (A3), the Euler-Lagrange
equations are obtained in the form:

9%(BO®W + BAQA) + mW — 90*W = 0,

A4
BA9*W 4 BABQE — 0. (Ad)



Materials 2025, 18, 4629 29 of 33

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Suresh, S.; Mortensen, A. Fundamentals of Functionally Graded Materials; The University Press: Cambridge, UK, 1998.

Wozniak, C.; Michalak, B.; Jedrysiak, J. (Eds.) Thermomechanics of microheterogeneous solids and structures. In Tolerance
Averaging Approach; Publishing House of £.6dZ University of Technology: Lodz, Poland, 2008.

Kazmierczak, M.; Jedrysiak, J. Tolerance modelling of vibrations of thin functionally graded plates. Thin Walled Struct. 2011, 49, 1295-1303.
[CrossRef]

Jedrysiak, J. The Effect of the Material Periodic Structure on Free Vibrations of Thin Plates with Different Boundary Conditions.
Materials 2022, 15, 5623. [CrossRef] [PubMed]

Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures; Elsevier: Amsterdam, The Netherlands, 1978.
Kohn, R.V.; Vogelius, M. A new model of thin plates with rapidly varying thickness. Int. J. Solid Struct. 1984, 20, 333-350.
[CrossRef]

Duvaut, G.; Metellus, A.M. Homogéneisation d"une plaque mince en flexion des structure périodique et symmetrique. C. R. Acad.
Sci. 1976, 283, 947-950.

Caillerie, D. Thin elastic and periodic plates. Math. Methods Appl. Sci. 1984, 6, 159-191. [CrossRef]

Matysiak, S.J.; Nagorko, W. Microlocal parameters in the modelling of microperiodic plates. Ing. Arch. 1989, 59, 434—444.
[CrossRef]

Sebestianiuk, P.; Perkowski, D.M.; Kulchytsky-Zhyhailo, R. On stress analysis of load for microperiodic composite half-plane
with slant lamination. Meccanica 2019, 54, 573-593. [CrossRef]

Perkowski, D.M.; Kulchytsky-Zhyhailo, R.; Matysiak, S.J.; Tokovyy, Y.V. Thermal surface deflection of a medium with multilayer
coatings. Int. ]. Mech. Sci. 2025, 287, 109984. [CrossRef]

Batra, R.C.; Qian, L.F,; Chen, L.M. Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal
and triclinic materials. J. Sound Vib. 2004, 270, 1074-1086. [CrossRef]

Krélak, M.; Kowal-Michalska, K.; Mania, R.J.; Swiniarski, J. Stability and load carrying capacity of multi-cell thin-walled columns
of rectangular cross-sections. J. Theor. Appl. Mech. 2009, 47, 435-456.

Pawlus, D. Dynamic behaviour of three-layered annular plates with viscoelastic core under lateral loads. J. Sound Vib. 2015, 53, 775-788.
[CrossRef]

Grygorowicz, M.; Jasion, P.; Magnucki, K. Elastic buckling and post-buckling behaviour of shells of revolution with special
meridian. In Insights and Innovations in Structural Engineering, Mechanics and Computation; Zingoni, A., Ed.; CRC Press: Boca Raton,
FL, USA, 2016; pp. 789-792.

Smyczynski, M.].; Grygorowicz, M.; Kedzia, P. Buckling of three layer rectangular polyethylene plate with ferrofluid under
magnetic field. In Insights and Innovations in Structural Engineering, Mechanics and Computation; Zingoni, A., Ed.; CRC Press: Boca
Raton, FL, USA, 2016; pp. 924-928.

Strek, T.; Jopek, H.; Nienartowicz, M. Dynamic response of sandwich panels with auxetic cores. Phys. Status Solidi Basic Res. 2015,
252, 1540-1550. [CrossRef]

Burlaga, B.; Strek, T. The vibrations induced by fluid flow in plates with different Poisson’s ratios. Vib. Phys. Syst. 2020, 31, 2020301.
Michalski, J.; Strek, T. Blast resistance of sandwich plate with auxetic anti-tetrachiral core. Vib. Phys. Syst. 2020, 31, 2020316.
Nguyen, N.V,; Nguyen-Xuan, H.; Nguyen, T.N.; Kang, J.; Lee, ]. A comprehensive analysis of auxetic honeycomb sandwich plates
with graphene nanoplatelets reinforcement. Compos. Struct. 2021, 259, 113213. [CrossRef]

Michalski, J.; Strek, T. Numerical analysis of an auxetic anti-tetrachiral sandwich panel subjected to steady-state harmonic base
motion. Vib. Phys. Syst. 2022, 33, 2022323.

Pawlus, D. Static stability of composite annular plates with auxetic properties. Materials 2022, 15, 3579. [CrossRef]

Pawlus, D. The dynamic stability problem of composite annular plates with auxetic properties. Eng. Trans. 2023, 71, 329-349.
Firouzi, N.; Lenci, S.; Amabili, M.; Rabczuk, T. Nonlinear free vibrations of Timoshenko-Ehrenfest beams using finite element
analysis and direct scheme. Nonlinear Dyn. 2024, 112, 7199-7213. [CrossRef]

Firouzi, N.; Dohnal, F. Dynamic stability of the Mindlin-Reissner plate using a time-modulated axial force. Mech. Based Des.
Struct. Mach. 2024, 53, 446-463. [CrossRef]

Aboudi, J.; Pindera, M.-J.; Arnold, S.M. Thermo-inelastic response of functionally graded composites. Int. J. Solid Struct. 1995, 32, 1675-1710.
[CrossRef]

Aboudi, J.; Pindera, M.-].; Arnold, S.M. A coupled higher-order theory for functionally graded composites with partial homoge-
nization. Compos. Eng. 1995, 5, 771-792. [CrossRef]

Pindera, M.-].; Dunn, P. Evaluation of the higher-order theory for functionally graded materials via the finite-element method.
Compos. Part B 1997, 28, 109-119. [CrossRef]

Aboudi, J.; Pindera, M.-].; Arnold, S.M. Higher-order theory for functionally graded materials. Compos. Part B 1999, 30, 777-832.
[CrossRef]


https://doi.org/10.1016/j.tws.2011.05.001
https://doi.org/10.3390/ma15165623
https://www.ncbi.nlm.nih.gov/pubmed/36013759
https://doi.org/10.1016/0020-7683(84)90044-1
https://doi.org/10.1002/mma.1670060112
https://doi.org/10.1007/BF00534310
https://doi.org/10.1007/s11012-019-00970-z
https://doi.org/10.1016/j.ijmecsci.2025.109984
https://doi.org/10.1016/S0022-460X(03)00625-4
https://doi.org/10.15632/jtam-pl.53.4.775
https://doi.org/10.1002/pssb.201552024
https://doi.org/10.1016/j.compstruct.2020.113213
https://doi.org/10.3390/ma15103579
https://doi.org/10.1007/s11071-024-09403-3
https://doi.org/10.1080/15397734.2024.2366531
https://doi.org/10.1016/0020-7683(94)00201-7
https://doi.org/10.1016/0961-9526(95)00032-I
https://doi.org/10.1016/S1359-8368(96)00035-2
https://doi.org/10.1016/S1359-8368(99)00053-0

Materials 2025, 18, 4629 30 of 33

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Goldberg, R.K.; Hopkins, D.A. Thermal analysis of a functionally graded material subject to a thermal gradient using the
boundary element method. Compos. Eng. 1995, 5, 793-806. [CrossRef]

Martinez-Pafieda, M. On the finite element implementation of functionally graded materials. Materials 2019, 12, 287. [CrossRef]
Sofiyev, A.H.; Schnack, E. The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional
loading. Eng. Struct. 2004, 26, 1321-1331. [CrossRef]

Ferreira, A.].M.; Batra, R.C.; Roque, C.M.C,; Qian, L.F,; Jorge, RM.N. Natural frequencies of functionally graded plates by a
meshless method. Compos. Struct. 2006, 75, 593-600. [CrossRef]

Bui, T.Q.; Khosravifard, A.; Zhang, C.; Hematiyan, M.R.; Golu, M.V. Dynamic analysis of sandwich beams with functionally
graded core using a truly meshfree radial point interpolation method. Eng. Struct. 2013, 47, 90-104. [CrossRef]

Roque, C.M.C.; Ferreira, A.J.M.; Jorge, R M.N. A radial basis function approach for the free vibration analysis of functionally
graded plates using a refined theory. J. Sound Vib. 2007, 300, 1048-1070. [CrossRef]

Tornabene, F.; Liverani, A.; Caligiana, G. FGM and laminated doubly curved shells and panels of revolution with a free-form
meridian: A 2-D GDQ solution for free vibrations. Int. J. Mech. Sci. 2011, 53, 443-470. [CrossRef]

Akbarzadeha, A.H.; Abbasib, M.; Eslami, M.R. Coupled thermoelasticity of functionally graded plates based on the third-order
shear deformation theory. Thin Walled Struct. 2012, 53, 141-155. [CrossRef]

Oktem, A.S.; Mantari, ].L.; Guedes Soares, C. Static response of functionally graded plates and doubly-curved shells based on a
higher order shear deformation theory. Eur. J. Mech. A Solids 2012, 36, 163-172. [CrossRef]

Tornabene, F; Viola, E. Static analysis of functionally graded doubly-curved shells and panels of revolution. Meccanica 2013, 48, 901-930.
[CrossRef]

Tornabene, F; Fantuzzi, N.; Viola, E.; Batra, R.C. Stress and strain recovery for functionally graded free-form and doubly-curved
sandwich shells using higher-order equivalent single layer theory. Compos. Struct. 2015, 119, 67-89. [CrossRef]

Tornebene, F.; Fantuzzi, N.; Bacciocchi, M. On the mechanics of laminated doubly-curved shells subjected to point and line loads.
Int. J. Eng. Sci. 2016, 109, 115-164. [CrossRef]

Ashoori, A.R.; Sadough Vanini, S.A. Thermal buckling of annular microstructure-dependent functionally graded material plates
resting on an elastic medium. Compos. Part B Eng. 2016, 87, 245-255. [CrossRef]

Jha, D.K; Kant, T.; Singh, R K. Free vibration response of functionally graded thick plates with shear and normal deformations
effects. Compos. Struct. 2013, 96, 799-823. [CrossRef]

Sheikholeslami, S.A.; Saidi, A.R. Vibration analysis of functionally graded rectangular plates resting on elastic foundation using
higher-order shear and normal deformable plate theory. Compos. Struct. 2013, 106, 350-361. [CrossRef]

Derras, M.; Kaci, A.; Draiche, K.; Tounsi, A. Non-linear analysis of functionally graded plates in cylindrical bending based on a
new refined shear deformation theory. J. Theor. Appl. Mech. 2013, 51, 339-348.

Huangfu, Y.-G.; Chen, E-Q. Single-pulse chaotic dynamics of functionally graded materials plate. Acta Mech. Sin. 2013, 29, 593-601.
[CrossRef]

Fantuzzi, N.; Tornabene, E; Viola, E.; Ferreira, A.].M. A strong formulation finite element method (SFEM) based on RBF and GDQ
techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica 2014, 49, 2503-2542. [CrossRef]
Fantuzzi, N.; Tornabene, F. Strong Formulation Isogeometric Analysis (SFIGA) for laminated composite arbitrarily shaped plates.
Compos. Part B Eng. 2016, 96, 173-203. [CrossRef]

Liu, B.; Ferreira, A.J.M.; Xing, Y.F; Neves, A.M.A. Analysis of composite plates using a layerwise theory and a differential
quadrature finite element method. Compos. Struct. 2016, 156, 393-398. [CrossRef]

Kugler, S.; Fotiu, P.; Murin, J. The numerical analysis of FGM shells with enhanced finite elements. Eng. Struct. 2013, 49, 920-935.
[CrossRef]

Tornabene, F; Fantuzzi, N.; Bacciocchi, M.; Viola, E.; Reddy, ]. N. A numerical investigation on the natural frequencies of FGM
sandwich shells with variable thickness by the local generalized differential quadrature method. Appl. Sci. 2017, 7, 131. [CrossRef]
Tornabene, E.; Bacciocchi, M. Dynamic stability of doubly-curved multilayered shells subjected to arbitrarily oriented angular
velocities: Numerical evaluation of the critical speed. Compos. Struct. 2018, 201, 1031-1055. [CrossRef]

Arefi, M.; Bidgoli, E.M.R.; Dimitri, R.; Bacciocchi, M.; Tornabene, F. Application of sinusoidal shear deformation theory and
physical neutral surface to analysis of functionally graded piezoelectric plate. Compos. Part B Eng. 2018, 151, 35-50. [CrossRef]
Arefi, M.; Bidgoli, EM.R.; Dimitri, R.; Tornabene, F. Free vibrations of functionally graded polymer composite nanoplates
reinforced with graphene nanoplatelets. Aerosp. Sci. Technol. 2018, 81, 108-117. [CrossRef]

Kotakowski, Z.; Mania, R.J. Dynamic response of thin FG plates with a static unsymmetrical stable postbuckling path. ThinWalled
Struct. 2015, 86, 10-17. [CrossRef]

Mania, R.J.; Madeo, A.; Zucco, G.; Kubiak, T. Imperfection sensitivity of post-buckling of FML channel section column. Thin-Walled
Struct. 2017, 114, 32-38. [CrossRef]

Teter, A.; Mania, R.J.; Kotakowski, Z. Non-linear multi-mode buckling of non-symmetric FML/FGM thin-walled columns with
open cross-sections under compression. Compos. Struct. 2017, 167, 38—49. [CrossRef]


https://doi.org/10.1016/0961-9526(95)00030-Q
https://doi.org/10.3390/ma12020287
https://doi.org/10.1016/j.engstruct.2004.03.016
https://doi.org/10.1016/j.compstruct.2006.04.018
https://doi.org/10.1016/j.engstruct.2012.03.041
https://doi.org/10.1016/j.jsv.2006.08.037
https://doi.org/10.1016/j.ijmecsci.2011.03.007
https://doi.org/10.1016/j.tws.2012.01.009
https://doi.org/10.1016/j.euromechsol.2012.03.002
https://doi.org/10.1007/s11012-012-9643-1
https://doi.org/10.1016/j.compstruct.2014.08.005
https://doi.org/10.1016/j.ijengsci.2016.09.001
https://doi.org/10.1016/j.compositesb.2015.10.024
https://doi.org/10.1016/j.compstruct.2012.09.034
https://doi.org/10.1016/j.compstruct.2013.06.016
https://doi.org/10.1007/s10409-013-0054-x
https://doi.org/10.1007/s11012-014-0014-y
https://doi.org/10.1016/j.compositesb.2016.04.034
https://doi.org/10.1016/j.compstruct.2015.07.101
https://doi.org/10.1016/j.engstruct.2012.12.033
https://doi.org/10.3390/app7020131
https://doi.org/10.1016/j.compstruct.2018.06.060
https://doi.org/10.1016/j.compositesb.2018.05.050
https://doi.org/10.1016/j.ast.2018.07.036
https://doi.org/10.1016/j.tws.2014.09.004
https://doi.org/10.1016/j.tws.2017.01.033
https://doi.org/10.1016/j.compstruct.2017.01.072

Materials 2025, 18, 4629 31 of 33

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
77.

78.

79.

80.

81.

82.

83.

Kotakowski, Z.; Mania, R.J. Influence of the coupling matrix B on the interactive buckling of FML-FGM columns with closed
cross-sections under axial compression. Compos. Struct. 2017, 173, 70-77. [CrossRef]

Sadowski, T.; Burlayenko, V.N. Three-dimensional free vibration analysis of thermally loaded FGM sandwich plates. Materials
2019, 12, 2377. [CrossRef]

Cao, Z.; Liang, X.; Deng, Y.; Zha, X.; Zhu, R.; Leng, ]. Novel semi-analytical solutions for the transient behaviors of functionally
graded material plates in the thermal environment. Materials 2019, 12, 4084. [CrossRef] [PubMed]

Jafari, M.; Chaleshtari, M.H.B.; Abdolalian, H.; Craciun, E.-M.; Feo, L. Determination of forces and moments per unit length in
symmetric exponential FG plates with a quasi-triangular hole. Symmetry 2020, 12, 834. [CrossRef]

Tati, A. Finite element analysis of thermal and mechanical buckling behavior of functionally graded plates. Arch. Appl. Mech.
2021, 91, 4571-4587. [CrossRef]

Magnucki, K.; Magnucka-Blandzi, E. Generalization of a sandwich structure model: Analytical studies of bending and buckling
problems of rectangular plate. Compos. Struct. 2021, 255, 112944. [CrossRef]

Magnucki, K.; Sowinski, K. Bending of a Sandwich Beam with an Individual Functionally Graded Core. J. Theor. Appl. Mech. 2024,
62,3-17. [CrossRef]

Pawlus, D. Three-Layered Annular Plate Made of Functionally Graded Material Under a Static Temperature Field. Materials 2024,
17,5484. [CrossRef]

Magnucki, K.; Magnucka-Blandzi, E.; Sowinski, K. Elastic buckling of a rectangular sandwich plate with an individual functionally
graded core. |. Theor. Appl. Mech. 2024, 62, 171-185. [CrossRef]

Kumar, V; Singh, S.J.; Saran, V.H.; Harsha, S.P. Vibration Response Analysis of Tapered Porous FGM Plate Resting on Elastic
Foundation. Int. J. Struct. Stab. Dyn. 2022, 23, 2350024. [CrossRef]

Kumar, R;; Jana, P. Free vibration analysis of uniform thickness and stepped P-FGM plates: A FSDT-based dynamic stiffness
approach. Mech. Based Des. Struct. Mach. 2022, 52, 447-476. [CrossRef]

Zhao, Y.; Qin, B.; Wang, Q.; Liang, X. A unified Jacobi-Ritz approach for vibration analysis of functionally graded porous
rectangular plate with arbitrary boundary conditions based on a higher-order shear deformation theory. Thin Walled Struct. 2022,
173, 108930. [CrossRef]

Wu, C.P; Hsu, C.D. A Unified Size-Dependent Theory for Analyzing the Free Vibration Behavior of an FG Microplate Under
Fully Simply Supported Conditions and Magneto-Electro-Thermo-Mechanical Loads Considering Couple Stress and Thickness
Stretching Effects. J. Compos. Sci. 2025, 9, 201. [CrossRef]

Sobhani, E.; Masoodi, A.R. Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nanocomposites paraboloidal
and hyperboloidal shells based on multiscale approaches. Aerosp. Sci. Technol. 2021, 119, 107111. [CrossRef]

Sobhani, E.; Masoodi, A.R. On the circumferential wave responses of connected elliptical-cylindrical shell-like submerged
structures strengthened by nano-reinforcer. Ocean Eng. 2022, 247,110718. [CrossRef]

Sobhani, E.; Moradi-Dastjerdi, R.; Behdinan, K.; Masoodi, A.R.; Ahmadi-Pari, A.R. Multifunctional trace of various reinforcements
on vibrations of three-phase nanocomposite combined hemispherical-cylindrical shells. Compos. Struct. 2022, 279, 114798.
[CrossRef]

Shi, P; Xie, J.; Li, X. Multilayer heterostructure inhomogeneous model for pressurized functionally graded annular structures
(cylinder/sphere/annulus) with arbitrary elastic property along the radial direction. Compos. Struct. 2023, 322, 117425. [CrossRef]
Ege, N.; Erbas, B.; Kaplunov, J.; Noori, N. Low-frequency vibrations of a thin-walled functionally graded cylinder (plane strain
problem). Mech. Adv. Mater. Struct. 2023, 30, 1172-1180. [CrossRef]

Brillouin, L. Wave Propagation in Periodic Structures; Dover Pub. Inc.: Dover, UK, 1953.

Wu, Z.-].; Li, E-M.; Wang, Y.-Z. Vibration band gap properties of periodic Mindlin plate structure using the spectral element
method. Meccanica 2014, 49, 725-737. [CrossRef]

Zhou, X.Q.; Yu, D.Y,; Shao, X.; Wang, S.; Tian, Y.H. Band gap characteristics of periodically stiffened-thin-plate based on
center-finite-difference-method. Thin Walled Struct. 2014, 82, 115-123. [CrossRef]

Zhou, X.Q.; Yu, D.Y,; Shao, X.; Wang, S.; Zhang, S.Q. Simplified-super-element-method for analyzing free flexural vibration
characteristics of periodically stiffened-thin-plate filled with viscoelastic damping material. Thin Walled Struct. 2015, 94, 234-252.
[CrossRef]

Cheng, Z.B.; Xu, Y.G.; Zhang, L.L. Analysis of flexural wave bandgaps in periodic plate structures using differential quadrature
element method. Int. . Mech. Sci. 2015, 100, 112-125. [CrossRef]

Wozniak, C.; Wierzbicki, E. Averaging techniques in thermomechanics of composite solids. In Tolerance Averaging Versus
Homogenization; Pubishing House of Czestochowa University of Technology: Czestochowa, Poland, 2000.

Wozniak, C. (Ed.) Mathematical Modelling and Analysis in Continuum Mechanics of Microstructured Media; Publishing House of
Silesian University of Techn.: Gliwice, Poland, 2010.

Dell'Isola, F; Rosa, L.; WozZniak, C. A micro-structural continuum modelling compacting fluid-saturated grounds. Acta Mech.
1998, 127, 165-182. [CrossRef]


https://doi.org/10.1016/j.compstruct.2017.03.108
https://doi.org/10.3390/ma12152377
https://doi.org/10.3390/ma12244084
https://www.ncbi.nlm.nih.gov/pubmed/31817774
https://doi.org/10.3390/sym12050834
https://doi.org/10.1007/s00419-021-02025-w
https://doi.org/10.1016/j.compstruct.2020.112944
https://doi.org/10.15632/jtam-pl/174698
https://doi.org/10.3390/ma17225484
https://doi.org/10.15632/jtam-pl/178521
https://doi.org/10.1142/S0219455423500244
https://doi.org/10.1080/15397734.2022.2117192
https://doi.org/10.1016/j.tws.2022.108930
https://doi.org/10.3390/jcs9050201
https://doi.org/10.1016/j.ast.2021.107111
https://doi.org/10.1016/j.oceaneng.2022.110718
https://doi.org/10.1016/j.compstruct.2021.114798
https://doi.org/10.1016/j.compstruct.2023.117425
https://doi.org/10.1080/15376494.2022.2028948
https://doi.org/10.1007/s11012-013-9822-8
https://doi.org/10.1016/j.tws.2014.04.010
https://doi.org/10.1016/j.tws.2015.03.025
https://doi.org/10.1016/j.ijmecsci.2015.06.014
https://doi.org/10.1007/BF01170371

Materials 2025, 18, 4629 32 of 33

84.

85.
86.

87.
88.

89.

90.
91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

Wierzbicki, E.; Wozniak, C. On the dynamics of combined plane periodic structures. Arch. Appl. Mech. 2000, 70, 387-398.
[CrossRef]

Baron, E.; Wozniak, C. On the micro-dynamics of composite plates. Arch. Appl. Mech. 1995, 66, 126-133. [CrossRef]

Jedrysiak, J. Dynamics of thin periodic plates resting on a periodically inhomogeneous Winkler foundation. Arch. Appl. Mech.
1999, 69, 345-356. [CrossRef]

Michalak, B. The meso-shape functions for the meso-structural models of wavy-plates. ZAMM 2001, 81, 639-641. [CrossRef]
Nagorko, W.; Wozniak, C. Nonasymptotic modelling of thin plates reinforced by a system of stiffeners. Electr. ]. Pol. Agric. Univ.
Civ. Eng. 2002, 5, 8.

Mazur-Sniady, K.; Wozniak, C.; Wierzbicki, E. On the modelling of dynamic problems for plates with a periodic structure. Arch.
Appl. Mech. 2004, 74, 179-190. [CrossRef]

Tomczyk, B. Dynamic stability of micro-periodic cylindrical shells. Mech. Mech. Eng. 2010, 14, 137-150.

Tomczyk, B.; Gotabczak, M.; Litawska, A.; Golabczak, A. Extended tolerance modelling of dynamic problems for thin uniperiodic
cylindrical shells. Contin. Mech. Thermodyn. 2023, 35, 183-210. [CrossRef]

Tomczyk, B.; Bagdasaryan, V.; Golabczak, M.; Litawska, A. A new combined asymptotic-tolerance model of thermoelasticity
problems for thin biperiodic cylindrical shells. Compos. Struct. 2023, 309, 116708. [CrossRef]

Domagalski, L.; Jedrysiak, J. On the tolerance modelling of geometrically nonlinear thin periodic plates. Thin Walled Struct. 2015,
87,183-190. [CrossRef]

Domagalski, L.; Swiatek, M.; Jedrysiak, J. An analytical-numerical approach to vibration analysis of periodic Timoshenko beams.
Compos. Struct. 2019, 211, 490-501. [CrossRef]

Marczak, J.; Jedrysiak, J. Some remarks on modelling of vibrations of periodic sandwich structures with inert core. Compos. Struct.
2018, 202, 752-758. [CrossRef]

Marczak, J. A comparison of dynamic models of microheterogeneous asymmetric sandwich plates. Compos. Struct. 2021, 256,
113054. [CrossRef]

Ostrowski, P; Jedrysiak, J. Heat conduction in periodic laminates with probabilistic distribution of material properties. Heat Mass
Transf. 2017, 53, 1425-1437. [CrossRef]

Kubacka, E.; Ostrowski, P. Heat conduction issue in biperiodic composite using Finite Difference Method. Compos. Struct. 2021,
261, 113310. [CrossRef]

Kubacka, E.; Ostrowski, P. Influence of Composite Structure on Temperature Distribution-An Analysis Using the Finite Difference
Method. Materials 2023, 16, 5193. [CrossRef]

Jedrysiak, J. Non-asymptotic modelling of dynamics and stability for visco-elastic periodic beams on a periodic damping
foundation. Compos. Struct. 2021, 259, 113442. [CrossRef]

Marczak, J.; Michalak, B.; Wirowski, A. A multi-scale analysis of stress distribution in thin composite plates with dense system of
ribs in two directions. Adv. Eng. Softw. 2021, 153, 102960. [CrossRef]

Jedrysiak, J. On the tolerance modeling of thermoelasticity problems for transversally graded laminates. Arch. Civ. Mech. Eng.
2011, 11, 61-74. [CrossRef]

Michalak, B.; Wirowski, A. Dynamic modelling of thin plate made of certain functionally graded materials. Meccanica 2012, 47, 1487-1498.
[CrossRef]

Wirowski, A.; Michalak, B.; Gajdzicki, M. Dynamic modelling of annular plates of functionally graded structure resting on elastic
heterogeneous foundation with two modules. J. Mech. 2015, 31, 493-504. [CrossRef]

Perliniski, W.; Gajdzicki, M.; Michalak, B. Modelling of annular plates stability with functionally graded structure interacting with
elastic heterogeneous subsoil. J. Theor. Appl. Mech. 2014, 52, 485-498.

Michalak, B. 2D tolerance and asymptotic models in elastodynamics of a thin-walled structure with dense system of ribs. Arch.
Civ. Mech. Eng. 2015, 15, 449-455. [CrossRef]

Rabenda, M.; Michalak, B. Natural vibrations of prestressed thin functionally graded plates with dense system of ribs in two
directions. Compos. Struct. 2015, 133, 1016-1023. [CrossRef]

Ostrowski, P.; Michalak, B. The combined asymptotic-tolerance model of heat conduction in a skeletal micro-heterogeneous
hollow cylinder. Compos. Struct. 2015, 134, 343-352. [CrossRef]

Ostrowski, P.; Michalak, B. A contribution to the modelling of heat conduction for cylindrical composite conductors with
non-uniform distribution of constituents. Int. J. Heat Mass Transf. 2016, 92, 435-448. [CrossRef]

Pazera, E.; Ostrowski, P. Heat transfer in functionally graded laminate—Third type boundary conditions. AIP Conf. Proc. 2020,
2239, 020040.

Szlachetka, O.; Giorgio, I. Heat conduction in multi-component step-wise FGMs. Contin. Mech. Thermodyn. 2024, 36, 1393-1411.
[CrossRef]

Jedrysiak, ]. Tolerance modelling of free vibration frequencies of thin functionally graded plates with one-directional microstruc-
ture. Compos. Struct. 2017, 161, 453-468. [CrossRef]


https://doi.org/10.1007/s004199900070
https://doi.org/10.1007/BF00786695
https://doi.org/10.1007/s004190050225
https://doi.org/10.1002/1521-4001(200109)81:9%3C639::AID-ZAMM639%3E3.0.CO;2-A
https://doi.org/10.1007/s00419-003-0310-9
https://doi.org/10.1007/s00161-022-01175-8
https://doi.org/10.1016/j.compstruct.2023.116708
https://doi.org/10.1016/j.tws.2014.11.008
https://doi.org/10.1016/j.compstruct.2018.12.007
https://doi.org/10.1016/j.compstruct.2018.03.086
https://doi.org/10.1016/j.compstruct.2020.113054
https://doi.org/10.1007/s00231-016-1908-0
https://doi.org/10.1016/j.compstruct.2020.113310
https://doi.org/10.3390/ma16145193
https://doi.org/10.1016/j.compstruct.2020.113442
https://doi.org/10.1016/j.advengsoft.2020.102960
https://doi.org/10.1016/S1644-9665(12)60174-5
https://doi.org/10.1007/s11012-011-9532-z
https://doi.org/10.1017/jmech.2015.23
https://doi.org/10.1016/j.acme.2014.05.011
https://doi.org/10.1016/j.compstruct.2015.08.026
https://doi.org/10.1016/j.compstruct.2015.08.071
https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.092
https://doi.org/10.1007/s00161-024-01296-2
https://doi.org/10.1016/j.compstruct.2016.11.061

Materials 2025, 18, 4629 33 of 33

113.

114.

115.

116.

117.

Jedrysiak, J. Tolerance modelling of free vibrations of medium thickness functionally graded plates. Compos. Struct. 2018, 202,
1253-1262. [CrossRef]

Tomczyk, B.; Szczerba, P. Tolerance and asymptotic modelling of dynamic problems for thin microstructured transversally graded
shells. Compos. Struct. 2017, 162, 365-373. [CrossRef]

Tomczyk, B.; Szczerba, P. Combined asymptotic-tolerance modelling of dynamic problems for functionally graded shells. Compos.
Struct. 2018, 183, 176-184. [CrossRef]

Tomczyk, B.; Gotabczak, M.; Bagdasaryan, V. Tolerance modelling of vibrations of thin functionally graded cylindrical shells.
Compos. Struct. 2025, 356, 118890. [CrossRef]

Tomezyk, B.; Gotabczak, M.; Kubacka, E.; Bagdasaryan, V. Mathematical modelling of stability problems for thin transversally
graded cylindrical shells. Contin. Mech. Thermodyn. 2024, 36, 1661-1684. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.compstruct.2018.05.155
https://doi.org/10.1016/j.compstruct.2016.11.083
https://doi.org/10.1016/j.compstruct.2017.02.021
https://doi.org/10.1016/j.compstruct.2025.118890
https://doi.org/10.1007/s00161-024-01322-3

	Introduction 
	Subject of Analysis and Aim of the Work 
	Literature Review 

	Foundations 
	Preliminaries 
	The Tolerance Modelling 

	Governing Equations of Tolerance-Periodic Plate Bands 
	Tolerance Model Equations 
	Asymptotic Model Equations 

	Free Vibration Analysis for Tolerance-Periodic Plate Bands with Different Support Conditions 
	Introduction 
	The Application of the Ritz Method 
	Calculation of Free Vibration Frequencies 

	Comparison of Fundamental Frequencies Calculated Using the Tolerance Model (TM) and the Finite Element Method (FEM) 
	Some Final Remarks 
	Appendix A
	References

