Simulation and Process Optimization of Online Cooling for S460 Thick Plates
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructure
2.3. Mechanical Properties
2.4. Cooling Model
3. Results
3.1. Mechanical Properties and Microstructures
3.2. Cooling Model of Thick Plate
3.2.1. Thermal Physical Property Parameter Settings
3.2.2. Boundary Condition Settings
3.2.3. Model Prediction Results
3.3. Cooling Optimization
3.3.1. Optimization of Process Simulation
3.3.2. Process Optimization and Pilot Production
4. Discussion
4.1. Analysis of Factors Contributing to Increased Core Cooling Velocity
4.2. Microstructure Evolution Mechanism
4.3. Toughness Optimization Mechanism
4.3.1. Influence of Microstructure Content on Toughness
4.3.2. Influence of M-A Islands on Low-Temperature Toughness
4.3.3. Influence of Misorientation Angles on Toughness of Thick Plate S460
4.3.4. Influence of Grain Orientation on Toughness
5. Conclusions
- (1)
- The original TMCP-processed thick plate exhibited a bainite-ferrite-dominant microstructure with 8.7% pearlite formation at the 60 mm depth (60 mm depth). This caused severe toughness degradation, showing a −40 °C impact energy of 59 J at the 60 mm depth versus 242 J at 30 mm (quarter depth).
- (2)
- The calibration of the convective heat transfer coefficients using surface temperature recovery data improved the model accuracy. Simulations revealed a 60 mm depth cooling rate of 1.10 °C/s for the conventional processing. Optimized parameters (initial cooling temperature: 715 → 725 °C; cooling duration: 130 → 160 s) elevated the 60 mm depth cooling rate to 1.36 °C/s.
- (3)
- The optimized process enhanced the 60 mm depth toughness to 144 J (−40 °C), attributed to:
- Pearlite suppression (8.7% to <1%)
- M-A constituent refinement (50% reduction in large blocky M-A)
- Increased high-angle grain boundary density (0.41 to 0.5 μm−1)
- Elevated {110} texture component.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bounani, O.; Ech-Chhibat, M.E.H.; Sandabad, S. A Comprehensive Review of Materials Used in Marine Engineering: Advances, Challenges and Practices. In Proceedings of the 4th International Conference on Innovative Research in Applied Science, Engineering and Technology, Fez, Morocco, 16–17 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–8. [Google Scholar]
- Wang, Q.; Ye, Q.; Tian, Y.; Fu, T.; Wang, Z. Superior through-thickness homogeneity of microstructure and mechanical properties of ultraheavy steel plate by advanced casting and quenching technologies. Steel Res. Int. 2021, 92, 2000698. [Google Scholar] [CrossRef]
- Xie, B.S.; Cai, Q.W.; Yun, Y.; Li, G.S.; Ning, Z. Development of high strength ultra-heavy plate processed with gradient temperature rolling, intercritical quenching and tempering. Mater. Sci. Eng. A 2017, 680, 454. [Google Scholar] [CrossRef]
- Leng, J.; Di, X.; Li, C.; Cheng, S. Toughening mechanism of large heat input weld metal for marine engineering extra-thick plate. J. Shanghai Jiaotong Univ. 2024, 29, 349. [Google Scholar]
- Wu, B.B.; Huang, S.; Wang, Z.Q.; Zhao, J.X.; Wang, C.S.; Shang, C.J.; Misra, R.D.K. Crystallography analysis of toughness in high strength ultra-heavy plate steel. Mater. Lett. 2019, 250, 55. [Google Scholar] [CrossRef]
- Guo, K.; Pan, T.; Zhang, N.; Meng, L.; Luo, X.; Chai, F. Effect of microstructural evolution on the mechanical properties of Ni-Cr-Mo ultra-heavy steel plate. Materials 2023, 16, 1607. [Google Scholar] [CrossRef]
- Chen, Z.; Nash, P.; Zhang, Y. Correlation of cooling rate, microstructure and hardness of S34MnV steel. Metall. Mater. Trans. B 2019, 50, 1718. [Google Scholar]
- Graf, M.; Kuntz, M.; Autenrieth, H.; Müller, R. Investigation of size effects due to different cooling rates of as-quenched martensite microstructures in a low-alloy steel. Appl. Sci. 2020, 10, 5395. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Li, J. Thickness dependence of toughness in ultra-heavy low-alloyed steel plate after quenching and tempering. Metals 2018, 8, 628. [Google Scholar] [CrossRef]
- Cui, S.G.; Gu, G.C.; Shi, C.X.; Xiao, G.Y.; Lu, Y.P. Variations in microstructure and mechanical properties along thickness direction in a heavy high strength low alloy steel plate. J. Mater. Res. Technol. 2023, 26, 9190. [Google Scholar]
- Zhang, X.; Li, G.; Zhao, H.; Gao, J.; Wu, H.; Zhang, C.; Huang, Y.; Wu, G.; Wang, S.; Mao, X. Evolution of microstructure and mechanical properties along the thickness direction of 500 MPa HSLA steel heavy plates. Mater. Sci. Eng. A 2024, 913, 147097. [Google Scholar]
- El-Shenawy, E.; Reda, R. Optimization of TMCP strategy for microstructure refinement and flow-productivity characteristics enhancement of low carbon steel. J. Mater. Res. Technol. 2019, 8, 2819. [Google Scholar] [CrossRef]
- Um, K.K.; Kim, S.H.; Kang, K.B.; Park, Y.H.; Kwon, O. High performance steel plates for shipbuilding applications. In Proceedings of the 18th International Offshore and Polar Engineering Conference, Vancouver, BC, Canada, 6–11 July 2008; p. 277. [Google Scholar]
- Schwinn, V.; Schuetz, W.; Fluess, P.; Bauer, J. Prospects and state of the art of TMCP steel plates for structural and linepipe applications. In Proceedings of the 5th International Conference on Processing and Manufacturing of Advanced Materials, Vancouver, BC, Canada, 4–8 July 2006; p. 4726. [Google Scholar]
- Nie, Y.; Shang, C.J.; Song, X.; You, Y.; Li, C.; He, X.L. Properties and homogeneity of 550-MPa grade TMCP steel for ship hull. Int. J. Miner. Metall. Mater. 2010, 17, 179. [Google Scholar]
- Zhang, Z.H.; Lu, S.Y.; Ju, J.T. Effect of self-tempering temperature on microstructure and mechanical properties of 20MnSi steel. Iron Steel 2011, 46, 74. [Google Scholar]
- Cui, Z.B.; Wang, Q.; Cui, Z.H.; Fan, L.; Wang, Q.F.; Gao, Y.W. Effect of self-tempering temperature on microstructure and mechanical properties of a Q460E-class steel for high-rise building. J. Iron. Steel Res. Int. 2014, 26, 64. [Google Scholar]
- Tian, X.H.; Wang, Q.H.; Fu, T.L.; Wang, Z.D.; Wang, G.D. Heat transfer mechanism for roller quenching with an ultra-thick plate. Steel Res. Int. 2021, 92, 2000394. [Google Scholar] [CrossRef]
- Li, D.; Yang, C.M.; Hu, J.P.; Li, Y. FEM Simulation analysis on roller quenching process for NM500 plate with different thickness. Hot Work. Technol. 2014, 3, 197. [Google Scholar]
- Fu, T.L.; Tian, X.H.; Han, J.; Wang, Z.D. Thickness temperature drop regularity during roller quenching process for ultra-heavy steel plate. J. Harbin Inst. Technol. 2019, 51, 122. [Google Scholar]
- Yuan, G.; Wang, Z.D.; Wang, G.D.; Wang, L.J. Development and application of water-sprinkled cooling system to roller quenching machine. J. Northeast. Univ. Nat. Sci. 2009, 30, 1613. [Google Scholar]
- Yang, Y.; Pang, Y.; Sun, Q.; Dong, S.R.; Liu, D. Numerical simulation of temperature field in the roller quenching process considering actual boundary conditions. Mater. Rev. 2022, 36, 21050259-7. [Google Scholar]
- Wang, H.M.; Yu, W.; Cai, Q. Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling. J. Mater. Process. Technol. 2012, 212, 1825. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, Y.F.; Li, X.Q.; Yang, Z.; Li, J.L.; Xie, Z.H.; Wang, X.X.; Cai, J.J.; Xu, Q.Y. Two-dimensional transient heat transfer model of moving quenching jet based on machine learning. Int. J. Heat Mass Transf. 2022, 191, 112765. [Google Scholar] [CrossRef]
- Zhao, Z.; Stuebner, M.; Lua, J.; Phan, N.; Yan, J.H. Full-field temperature recovery during water quenching processes via physics-informed machine learning. J. Mater. Process. Technol. 2022, 303, 117534. [Google Scholar] [CrossRef]
- Yin, J.M.; Fu, T.L.; Liu, G.H.; Wang, Z.D. Optimization of variable period quenching process and heat transfer analysis of extra-thick steel plate. Trans. Mater. Heat Treat. 2022, 43, 167. [Google Scholar]
- Fu, T.L. Research of Medium Plate Roller Quenching Machine Cooling Process Mathematical Model and Establishment of Control System. Ph.D. Thesis, Northeastern University, Shenyang, China, 2010. [Google Scholar]
- Liang, X.G.; Han, H.Q.; Hu, J.P. Simulation software development for cooling temperature field of plate after Rolling. Steel Roll. 2011, 28, 46. [Google Scholar]
- Baek, M.S.; Kim, K.S.; Park, T.W.; Ham, J.; Lee, K.A. Quantitative phase analysis of martensite-bainite steel using EBSD and its microstructure, tensile and high-cycle fatigue behaviors. Mater. Sci. Eng. 2020, 785, 139375. [Google Scholar] [CrossRef]
- Luo, X.; Chen, X.H.; Wang, T.; Pan, S.W.; Wang, Z.D. Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel. Mater. Sci. Eng. A 2018, 710, 192. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Al | Cr | Nb | Ti | Ni | Cu | B |
---|---|---|---|---|---|---|---|---|---|---|---|
0.07 | 0.22 | 1.57 | 0.009 | 0.0014 | 0.03 | 0.17 | 0.041 | 0.012 | 0.63 | 0.21 | 0.0003 |
t (°C) | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
---|---|---|---|---|---|---|---|---|---|
λ (W·m−1·k−1) | 44.3 | 45.1 | 46.2 | 44.8 | 40.2 | 36.1 | 36.5 | 37.5 | 38.4 |
c (KJ·kg−1·K−1) | 525 | 575 | 610 | 627 | 640 | 652 | 662 | 669 | 675 |
h (N/s/mm/°C) | 5.9 | 4.4 | 3.3 | 2.4 | 2.1 | 1.5 | 9.9 | 8.5 | 6.3 |
h′ (N/s/mm/°C) | 2.3 | 2.8 | 3.3 | 2.5 | 2.2 | 1.9 | 1.6 | 1.5 | 1.2 |
Time (s) | 0 | 5 | 30 | 120 | 360 | 480 | 600 | 900 | 1080 |
---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 282 | 320 | 375 | 461 | 473 | 471 | 470 | 460 | 458 |
Number | Cooling Temperature (°C) | Cooling Time (s) |
---|---|---|
S0 | 715 | 130 |
S1 | 715 | 160 |
S2 | 725 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, Z.; Chai, F.; Wu, Z.; Luo, X.; Pan, T. Simulation and Process Optimization of Online Cooling for S460 Thick Plates. Materials 2025, 18, 2599. https://doi.org/10.3390/ma18112599
Wang G, Wang Z, Chai F, Wu Z, Luo X, Pan T. Simulation and Process Optimization of Online Cooling for S460 Thick Plates. Materials. 2025; 18(11):2599. https://doi.org/10.3390/ma18112599
Chicago/Turabian StyleWang, Guangyuan, Zhen Wang, Feng Chai, Zhongwen Wu, Xiaobing Luo, and Tao Pan. 2025. "Simulation and Process Optimization of Online Cooling for S460 Thick Plates" Materials 18, no. 11: 2599. https://doi.org/10.3390/ma18112599
APA StyleWang, G., Wang, Z., Chai, F., Wu, Z., Luo, X., & Pan, T. (2025). Simulation and Process Optimization of Online Cooling for S460 Thick Plates. Materials, 18(11), 2599. https://doi.org/10.3390/ma18112599