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Abstract: Due to their exceptional properties and diverse applications, including to magnetic devices,
thermoelectric materials, catalysis, biomedicine, and energy storage, nanoscale metallic multilayer
composites (NMMCs) have recently attracted great attention. The alternating layers of two or more
metals that make up NMMCs are each just a few nanometers thick. The difficulties in producing
and synthesizing new materials can be overcome by using nanoscale multilayer architectures. By
adjusting the layer thickness, composition, and interface structure, the mechanical properties of
these materials can be controlled. In addition, NMMCs exhibit unusually high strength at thin
layer thicknesses because the multilayers have exceptionally high strength, as the individual layer
thicknesses are reduced to the nanoscale. The properties of NMMCs depend on the individual
layers. This means that the properties can be tuned by varying the layer thickness, composition, and
interface structure. Therefore, this review article aims to provide a comprehensive overview of the
mechanical properties and the application of high-performance NMMCs. The paper briefly discusses
the fabrication methods used to produce these composites and highlights their potential in various
fields, such as electronics, energy storage, aerospace, and biomedical engineering. Furthermore, the
electrical conductivity, mechanical properties, and thermal stability of the above composite materials
are analyzed in detail. The review concludes with a discussion of the future prospects and challenges
associated with the development of NMMCs.

Keywords: metallic multilayer composites; synthesis methods; tensile behavior; fatigue endurance;
electrical resistivity

1. Introduction

High-performance nanoscale metallic multilayer composites (NMMCs) have drawn a
lot of interest in recent years because of their unique combination of properties and poten-
tial applications in various fields. These composites consist of alternating layers of different
metallic materials, typically with layers between a few nanometers and a few micrometers
thick. The precise control over layer thickness and composition allows for tailoring the
properties of these composites, making them highly versatile and desirable for numerous
applications, such as magnetic and electronic devices, structural materials, thermoelectric
materials, catalysis, biomedicine, and energy storage. The electrical, mechanical, and ther-
mal properties of high-performance NMMCs make them particularly attractive for use in
advanced electronic devices, structural materials, and thermal management systems [1].
The electrical conductivity of these composites can be significantly enhanced, compared
to their individual constituent materials, making them suitable for applications requiring
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efficient current flow [2,3]. Moreover, their exceptional mechanical strength and toughness
make them ideal candidates for structural components that require both high strength and
ductility [4,5]. In addition to their electrical and mechanical properties, the thermal conduc-
tivity of high-performance NMMCs can be tailored to meet specific requirements [6,7]. By
carefully selecting the constituent materials and layer thicknesses, it is possible to achieve
either high or low thermal conductivity values. This property makes these composites
highly desirable for applications such as heat sinks, thermoelectric devices, and thermal
barrier coatings. One investigation by Ma et al. [8] created and studied an ultrathin and
flexible Ni/Cu/metallic glass/Cu/Ni (Ni/Cu/MG) multilayer composite with alternate
magnetic and electrical structures. This composite was created by facial electroless plating
Cu and Ni on a Fe-based metallic glass, as shown in Figure 1, showing the structure of the
Ni/Cu/MG multilayer composite, its electromagnetic interference shielding effectiveness
(EMI SE) mechanism, and its mechanical performance by EMI SE/t versus tensile strength
graph. It should be noted that facial electroless plating is one type of metal plating that
does not need an external power source. The part is cleaned with chemical cleansers and
submerged in an aqueous solution, before anti-oxidant chemicals are added. Through this
process, the object’s entire surface can be consistently bathed in metal ions, producing a
plated part with a high level of corrosion and friction resistance [9].
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Ni/Cu/MG demonstrates excellent flexibility, superior tensile strength, and bending
stability, along with enhanced Joule heating characteristics and thermal stability. Specifically,
the Ni/Cu/MG composite has exceptional mechanical stability and a high tensile strength
of up to 1.2 GPa, allowing the EMI SE to remain unchanged after 10,000 bends. The
significant ohmic losses, the enhanced internal reflection/absorption, and the significant
interfacial polarization loss are the causes of the promoted EMI SE [8]. In another study,
Lee et al. [10] analyzed the production of multilayered composite electrodes with smart
lithium-ion storage applications produced through layer-by-layer spray printing. In this
regard, Figure 2 shows the structure of a layer-by-layer spray-printed hetero-electrode
multilayered composite consisting of high-power Li4Ti5O12 (LTO) and high-capacity SnO2.
In general, high-performance nanoscale metallic multilayer composites possess a variety of
exceptional properties that differ from those observed in monolithic films, including high
strength, ductility, energy absorption, thermal stability, and the enabling of self-propagating
reactions [11]. The abundance of interfaces and the thickness of the layering at the nanoscale
are the main factors contributing to these characteristics.
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The potential applications of high-performance NMMCs are vast and diverse, in-
cluding magnetic and electronic devices, structural materials, thermoelectric materials,
catalysis, biomedicine, and energy storage. They have been extensively investigated for
use in electronic devices, such as interconnects, electrodes, sensors, and energy storage sys-
tems [12,13]. Additionally, they hold promise in structural applications where lightweight
materials with exceptional strength are required [1]. Furthermore, their tunable thermal
conductivity makes them suitable for use in advanced cooling systems or as thermoelectric
materials for energy conversion [14,15]. Understanding the fundamental principles gov-
erning the electrical, mechanical, and thermal behavior of high-performance NMMCs is
crucial for optimizing their performance in specific applications. This paper will delve into
the underlying mechanisms that contribute to their unique properties by discussing topics
such as interface effects, grain boundary diffusion phenomena, dislocation interactions
across layers, and size effects at the nanoscale [16].

Overall, this paper aims to provide a comprehensive overview of the applications,
as well as the mechanical properties of high-performance NMMCs. The fabrication tech-
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niques used to produce these composites with precise control over layer thicknesses and
compositions are discussed. Furthermore, the various characterization methods employed
to evaluate their properties at the nanoscale level are presented. In conclusion, high-
performance NMMCs offer exciting opportunities for advancements in various fields due
to their exceptional combination of electrical conductivity enhancement and mechanical
property improvement, while maintaining ductility characteristics along with tunable
thermal conductivity values. This paper aims to provide a comprehensive understanding
of these materials by exploring their fabrication techniques, discussing their applications
across different industries, and highlighting key factors that influence their behavior, along
with mechanical strength enhancement mechanisms at interfaces between layers within
composite structures.

1.1. Background

High-performance NMMCs are a class of advanced materials that exhibit exceptional
mechanical, electrical, and thermal properties. The concept of metallic multilayer compos-
ites dates back to the 1960s, when researchers first discovered that alternating layers of
different metals could enhance the strength and hardness of materials [17]. These compos-
ites have very high strength due to the Orowan strengthening of the fine-scale layers [18].
However, it was not until recent advancements in nanotechnology and thin film deposition
techniques that high-performance NMMCs gained significant attention [19].

Multilayer metal composites have excellent properties, such as wear resistance and
synergistic strengthening and toughening behavior [20,21]. With a high fracture elongation
of 24%, these composites’ ultimate tensile strength can reach 1380 MPa [20]. The unique
properties exhibited by high-performance NMMCs are primarily attributed to the interface
between the different metallic layers. At these interfaces, a phenomenon known as the
Hall-Petch effect occurs, which leads to grain refinement and increased strength. Addition-
ally, the presence of interfaces can hinder dislocation movement, resulting in improved
mechanical properties, such as high strength, hardness, and wear resistance [22]. For
instance, dislocation glide in the layers is clearly visible in the deformation microstructure
of Cu/Nb multilayer composites, which reduces dislocation stacking [22].

Another important characteristic of multilayer composites is the heterostructure
strengthening effect. In multilayer composites, heterostructure strengthening describes the
improvement of the composite material’s mechanical characteristics as a result of interac-
tions between various layers or structural elements. Many heterostructure types, including
graphene-MoS2 heterostructures [23] and multilayer heterostructured composite material
systems for protective armors [24], have this strengthening behavior. Analytical formulae,
which take into account the stacking sequence, the number of layers (n), and whether the
material is monoplanar or multiplanar, can be used to compute the effective mechanical
properties of multilayer nano-heterostructures [23]. Also, for both single and multiple lay-
ers, the effective elastic moduli and Poisson’s ratios can be predicted, offering information
about the mechanical properties of the composite material [23]. Because of the interactions
between various phases or components within the structure, heterostructured materials
can also have superior properties. Heterostructured lamellar structures have demonstrated
efficacy in generating strain hardening and strengthening due to high-density indentation
(HDI) [25]. The layered structure of maraging steel-carbon steel composites leads to the
formation of a strain gradient and back stress-strengthening effects, which are responsible
for the synergetic heterostructure effect [26].

The coordinated deformation concept in multilayer composites is a method to en-
hance strength and ductility by coordinating the deformation mechanisms of the different
layers within the composite material [20,27,28]. The goal of this approach is to simulta-
neously improve the material’s ductility and strength. Multilayer graphene (MLG) in
graphene/aluminum composites is one example of this, as it has been demonstrated to
enhance the composite material’s strength, ductility, and fracture behavior through a coor-
dinated deformation mechanism [29]. Studies have also been done on multilayer marag-
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ing/CoCrNi composites, where the superior interface bonding helps with the composites’
toughening and deformation coordination [20]. Furthermore, an analytical–numerical
method was proposed to determine the mechanical fields in the composite structures with
interphase ribbon-like deformable multilayered inhomogeneities under combined force
and dislocation loading. These studies focused on the deformation and strength parameters
of composite structures with thin multilayer ribbon-like inclusions [28,30,31].

One key advantage of high-performance NMMCs is their exceptional strength-to-
weight ratio. Due to their nanoscale structure and high strength, these composites can
be used in various applications where lightweight materials with superior mechanical
properties are required. For example, they have been explored for use in aerospace com-
ponents, automotive parts, sporting goods, and protective coatings [32–34]. Furthermore,
high-performance NMMCs exhibit excellent electrical conductivity due to their metallic
nature. This makes them suitable for applications requiring high electrical conductivity
combined with mechanical robustness. Examples include electrical contacts, interconnects
in microelectronic devices, and electromagnetic shielding [3,12]. Another notable character-
istic of high-performance NMMCs is their exceptional thermal stability. The presence of
multiple interfaces within the composite structure acts as a barrier for heat transfer path-
ways [1,35]. This property makes them promising candidates for applications involving
high-temperature environments or where efficient heat dissipation is crucial [1,35].

Despite their numerous advantages, there are challenges associated with high-performance
NMMCs. One major challenge is achieving good adhesion between different layers during
fabrication to prevent delamination or interfacial failure under mechanical stress [12,21,36].
Additionally, controlling the composition and thickness uniformity across large areas
remains a technical hurdle [5,37]. With ongoing research efforts focused on improving
fabrication techniques and addressing challenges related to scalability and reliability issues,
these composites have a lot of potential for use in numerous industries and applications.

1.2. Motivation

Exploring the strengthening effects of grain size reduction, or the Hall–Petch effect,
was the initial driving force behind the study of NMMCs [5,38]. These materials possess
unusually high strength at thin layer thicknesses, making them attractive for various
applications. NMMCs have been shown to have phonon-glass thermal conductivity, which
makes them attractive for high-performance thermal barriers [7]. These materials can be
used to make devices that require efficient heat management. Additionally, designing and
synthesizing new materials with enhanced properties requires an understanding of the
mechanical behavior of these materials. NMMCs have potential applications in various
fields, including electronics, energy, and biomedical engineering. So, these materials
can be used to make high-performance devices and structures. Studying NMMCs can
lead to fundamental insights into the behavior of materials at the nanoscale [39]. This
can help advance our understanding of materials science and eventually result in the
creation of new materials with enhanced properties. Overall, studying high-performance
NMMCs is motivated by the desire to understand and exploit the unique properties of these
materials for various applications. These materials possess high strength, unique thermal
conductivity, and tunable mechanical properties, making them attractive for various fields
of research.

2. Synthesis Methods

The fabrication techniques for high-performance NMMCs involve various methods,
such as physical vapor deposition, chemical vapor deposition, accumulative roll bonding
(this method can be utilized for the successful fabrication of layered structures [25,40]),
electrodeposition, and magnetron sputtering. These techniques allow precise control
over layer thicknesses and material compositions to tailor the desired properties of the
composite [41,42].
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2.1. Physical Vapor Deposition

The production of high-performance nanoscale metallic multilayer composites is a
common application for physical vapor deposition (PVD) techniques. Using physical
processes like sputtering or evaporation, the material is transferred from a solid source
to a substrate in the thin film deposition technique known as PVD [12,43]. In this regard,
Figure 3a illustrates the sputter deposition method as a PVD technique that is utilized to
deposit thin films onto a substrate by ejecting material from a “target” onto a “substrate”
using the phenomenon of sputtering. In the context of nanoscale metallic multilayer
composites, PVD methods are used to deposit alternating layers of different metals with
nanoscale thicknesses. These multilayer composites exhibit unique properties, due to the
interaction between the different layers at the nanoscale. There are several PVD methods
commonly employed in the fabrication of these composites, including the following:

I. Thermal Evaporation: in this method, a solid metal source is heated to its evaporation
temperature, and the resultant vapor condenses to create a thin film on a substrate.
The substrate can be rotated or tilted during deposition to achieve uniform layer
thicknesses [44];

II. Electron beam evaporation: similar to thermal evaporation, this method uses an
electron beam to heat the metal source and create a vapor that condenses onto the
substrate. Electron beam evaporation enables accurate control over deposition rates
and enables the fabrication of complex multilayer structures [45,46];

III. Sputtering: sputtering is the process of ejecting atoms or molecules from a target
surface by ionizing a target material with high energy. These ejected particles then
deposit on a substrate placed in close proximity to the target [47]. Magnetron sputter-
ing is commonly used for fabricating metallic multilayer composites, due to its high
deposition rates and ability to control film composition [48], as shown in Figure 3a.

IV. Ion beam-assisted deposition (IBAD): IBAD combines ion beam bombardment with
traditional PVD techniques. The ion beam assists in controlling film growth by en-
hancing adatom mobility on the substrate surface, resulting in improved film quality
and reduced defects [49,50]. In one study, Li et al. [51] produced heterogeneous
multi-nanolayer metallic architectures by means of magnetron sputtering. This hybrid
multilayered material is composed of alternating Cu/Zr bilayers, 10 nm and 100 nm
thick. Using the intrinsic strength, thickness, and strain hardening of the layers, it
deforms compatibly under both stress and strain; this effect is known as synergetic
deformation. Figure 3b,c shows the schematic architecture and microstructure of the
hybrid Cu/Zr multi-nanolayer metallic architecture. Significant synergistic strength-
ening was induced by the achieved compatible deformation, i.e., with a total strength
of 1.69 GPa, in comparison to the calculated results from the rule of mixtures (ROM),
reaching 768 MPa (an 83% increase).

These PVD methods offer several advantages for fabricating nanoscale metallic multi-
layer composites. They allow for atomic scale control over layer thicknesses, composition,
and microstructure. Additionally, PVD techniques can be easily scaled up for large-scale
production and offer excellent adhesion between layers. Overall, physical vapor deposition
methods play a crucial role in achieving high-performance NMMCs by enabling precise
control over their structure and properties.

2.2. Electrodeposition

Electrodeposition methods are commonly used in the fabrication of high-performance
NMMCs [52]. These composites consist of alternating layers of different metals or al-
loys, typically ranging from a few nanometers to a few micrometers in layer thickness.
Several electrodeposition techniques can be employed to fabricate these composites, in-
cluding pulse electrodeposition, direct current electrodeposition, and electrochemical
co-deposition [53,54]. Each method has its advantages and can be tailored to achieve
specific properties in the resulting composite [55].
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Pulse electrodeposition involves applying a series of current pulses with varying
amplitudes and durations to the substrate. This technique allows for precise control over
the deposition process, enabling the fabrication of multilayer composites with well-defined
layer thicknesses and compositions. By adjusting the pulse parameters, it is possible
to achieve different microstructural features, such as grain size, texture, and interface
morphology [54]. Direct current electrodeposition is a simpler method, where a constant
current is applied to deposit the metal layers onto the substrate. This technique is relatively
easy to implement and can produce multilayer composites with good adhesion between
layers. However, it may not offer as much control over layer thickness and composition
as pulse electrodeposition [56,57]. Electrochemical co-deposition involves simultaneously
depositing two or more metals in a single electrolyte solution. By controlling the deposition
conditions, such as current density and bath composition, it is possible to achieve precise
control over layer thicknesses and compositions in the resulting composite [58]. In one
study, Takane et al. [59] utilized an electrodeposition method, as shown in Figure 4a, to
fabricate Co/Cu multilayers. These Co/Cu multilayers were electrodeposited in a single
electrolyte onto a brass substrate with a target layer thickness of 4 nm. As can be seen
in Figure 4b,c, each sample consisted of vertically oriented columnar crystal grains with
a multilayered Co/Cu structure in each grain. The layers formed a zigzag multilayered
structure as a result of the layers being regularly bent at certain boundary lines in the
cross section during the growth of the grains. This multilayered structure manifested
significantly increased coercivity [59].

In all these electrodeposition methods, careful selection of electrolyte composition,
deposition parameters (such as current density and deposition time), and substrate prepa-
ration are crucial for obtaining high-performance nanoscale metallic multilayer composites.
When compared to their bulk counterparts, the resulting composites may have improved
mechanical characteristics, like high strength, hardness, wear resistance, and improved
thermal stability [60]. Overall, electrodeposition methods provide an effective means for
fabricating high-performance NMMCs, with tailored properties for various applications in
fields like electronics, energy storage devices, catalysis, and biomedical engineering.
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2.3. Chemical Vapor Deposition

One technique for creating high-performing nanoscale metallic multilayer composites
is chemical vapor deposition (CVD). It involves the deposition of thin films of different
metals onto a substrate through a chemical reaction in the vapor phase [61]. In CVD, a
carrier gas and a precursor gas containing the desired metal atoms are introduced into a
reaction chamber. The precursor gas can be in the form of metalorganic compounds or
metal halides. The carrier gas helps transport the precursor gas to the substrate [62]. Inside
the reaction chamber, the precursor gas undergoes thermal decomposition or reacts with
other gases to form volatile metal compounds. These volatile compounds then come into
contact with the heated substrate, where they decompose and deposit metallic atoms onto
its surface. The deposition process can be controlled by adjusting various parameters,
such as temperature, pressure, and flow rates of gases [63]. By carefully controlling
these parameters, the multilayer composite’s layers can each have their thickness and
composition precisely controlled. The CVD techniques can be successfully utilized to
produce various types of multilayer structures and heterostructures, as demonstrated in
Figure 5 [64]. For instance, Figure 5a demonstrates how Chen’s group [65] used a two-
step CVD technique to produce a MoS2-MoSe2 lateral heterostructure film on a SiO2/Si
substrate. Initially, SiO2/Si substrate was used to grow triangular MoS2 monolayers. Next,
a continuous mosaic MoS2-MoSe2 lateral heterostructure membrane is created in the second
CVD step by combining large-area MoSe2 film with the triangular MoS2 monolayers created
in the first step. Furthermore, Li et al. [66] produced Au@MoS2 core-shell heterostructures
by growing the multilayer MoS2 shell, resembling a fullerene, directly on the cores of Au
nanoparticles. A MoS2 shell forms on the Au nanoparticles during deposition, as a result of
a reaction between sulfur vapor and volatile MoO3 and its partially decomposed suboxides.

The NMMCs fabricated using CVD exhibit unique properties, due to their layered
structure. The interfaces between different layers act as barriers for dislocation move-
ment, resulting in improved mechanical strength and hardness, compared to bulk ma-
terials [67]. Additionally, CVD allows for precise control over layer thicknesses at the
nanoscale level, enabling the tailoring of properties such as electrical conductivity and
thermal stability [12,68]. Overall, CVD methods play a crucial role in fabricating high-
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performance NMMCs by providing precise control over layer thicknesses and compositions,
leading to enhanced mechanical and functional properties.
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the MoS2 shell growth process via CVD on Au nanoparticles [66].

2.4. Accumulative Roll Bonding

NMMCs can be produced using the accumulative roll bonding (ARB) process, which
is a widely accepted method for fabricating multi-layered metal composites with mi-
croscale and nanoscale layer thickness [69–71]. Strong bonds are formed between the
layers as a result of the material being repeatedly pressed and rolled during the ARB pro-
cess [72]. Studies on nanostructured multilayers made by the ARB process, like Cu/Ni and
Al/Cu/Mn, have been carried out on their mechanical characteristics and microstructural
evolution [69,72]. Comparing ARB-produced NMMCs to conventional materials, these
studies have shown that they have the potential to display superior mechanical properties
like increased ductility and high strength [73,74].

In an investigation by Sun et al. [69], ARB was used to fabricate a nanoscale Cu/Ni
multilayer up to seven cycles by rolling pure Cu and Ni metal strips, leading to the overall
composition of Cu53Ni47. Twin boundaries formed during the first four ARB cycles, and
the Cu layer’s thickness, decreased slowly. The harder Ni layer is necked and fractured,
resulting in the formation of the Ni island-like regions. Cu and Ni single-layer thicknesses
homogenized after four ARB cycles; after seven ARB cycles, a single layer with a thickness
of less than 100 nm was formed. In this regard, Figure 6 demonstrates the microstructure
and distribution of Cu elements in the Cu/Ni multilayer after various ARB cycles. The
Cu/Ni multilayer composite was found to have better mechanical properties than both Cu
and Ni. For example, the multilayer’s ultimate tensile strength reached 950 MPa, which is
roughly five times higher than the original pure Cu metal [69].

In another study by Watanabe et al. [71], the ARB method was utilized to produce
nano-scale composite structures, and it was applied to thin Fe-Cu foils stacked alternately,
which did not lead to solid solutions. It was revealed that to avoid layer fusion and
separation during plastic deformation, the compression ratio for each pressing action needs
to be less than 50%. Also, as the rolling reduction per pass increases, the layer structure
gets smoother.
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2.5. Atomic Layer Deposition

In order to create high-performance nanoscale metallic multilayer composites, a thin
film deposition technique called atomic layer deposition (ALD) can be used. Thin films
can be deposited with atomic-level accuracy using the highly controlled and precise ALD
method. In ALD, the deposition process occurs in a cyclic manner, where there are two
half-reactions in each cycle [75]. In the first half-reaction, the substrate is exposed to a
precursor gas, which reacts with the surface to create an atomized monolayer. The second
half-reaction involves the exposure to another precursor gas that reacts with the previously
deposited monolayer, resulting in the growth of another atomic layer [76,77]; this process
is schematically shown in Figure 7a. ALD allows for precise control of film thickness and
composition, due to its sequential and self-limiting nature. It also enables conformal coating
on complex three-dimensional structures, making it suitable for fabricating NMMCs [78].
In a study by Wang et al. [79], a trilayer structure of Al2O3/HfO2/Al2O3-based functional
stacks on a TiN-coated Si substrate was fabricated by the ALD method, as shown in
Figure 7b. A characteristic bipolar, reliable, and repeatable resistive switching behavior
was displayed by this multilayer structure.
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Figure 7. (a) a schematic description of the atomic layer deposition process [80], (b) a diagram and
experimental setup of the ALD-produced TiN-coated Si Al2O3/HfO2/Al2O3 trilayer structure with
Pt top electrode [79], and (c) a cross-sectional TEM image of the Al2O3/HfO2/Al2O3 trilayer structure
on TiN-coated Si via ALD [79].

In the fabrication of high-performance nanoscale metallic multilayer composites, ALD
can be used to deposit alternating layers of different metals or metal alloys. By control-
ling the thickness and composition of each layer, it is possible to tailor the properties
of the composite material. ALD offers several advantages in fabricating these compos-
ites. Firstly, it provides excellent control over film thickness at an atomic level, ensuring
uniformity throughout the material. Secondly, it allows for precise control over com-
position by selecting different precursor gases for each layer. This enables the tuning
of mechanical, electrical, and thermal properties as desired. Furthermore, ALD can be
used to deposit ultra-thin layers with high density and low defect density. This results
in improved mechanical strength and enhanced performance, compared to conventional
deposition methods [81,82]. Overall, atomic layer deposition methods play a crucial role
in fabricating high-performance NMMCs by providing precise control over film thickness
and composition, while maintaining excellent material quality.

2.6. Other Fabrication Techniques

There are several other techniques for the fabrication of high-performance nanoscale
metallic multilayer composites, including spin and dip coatings, spray pyrolysis, elec-
trophoretic deposition, laser metal deposition, and aerosol-assisted catalytic chemical vapor
deposition (AACCVD). Spin and dip coatings are simple and low-cost methods for deposit-
ing thin films on substrates [83]. Spraying a precursor solution onto a heated substrate, a
process known as “spray pyrolysis”, allows the solution to break down [83]. Electrophoretic
deposition is a method that involves the deposition of charged particles onto a substrate
under the influence of an electric field [84]. Laser metal deposition is a technique that in-
volves the use of a laser to melt and deposit metal powders onto a substrate [84]. AACCVD
is a CVD technique that involves the use of an aerosol to transport the precursor gases to
the substrate, resulting in improved deposition efficiency and reduced waste [85].
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3. Mechanical Properties

High-performance NMMCs have unique mechanical properties that differ from those
of bulk materials, due to their structure being composed of two or more metals stacked in
alternating layers, with each layer only being a few nanometers thick. The mechanical prop-
erties of these composites are influenced by their microstructure, dislocation motion, and
interface structure [86]. Here are some of the mechanical properties of high-performance
nanoscale metallic multilayer composites:

I. Yield strength and hardness: due to the additional solid solution strengthening contri-
bution in the BCC layer, the hardness and yield strength of NMMCs are higher than
those of pure element FCC/BCC multilayers [5];

II. Ductility: the ductility of NMMCs is generally lower than that of bulk materials [21];
III. Fracture toughness: the fracture toughness of NMMCs is length-scale dependent, and

phase transformation can enhance toughening [21];
IV. Wear resistance: NMMCs have been shown to have excellent wear resistance [36,87];
V. Radiation-induced embrittlement: NMMs have been found to exhibit enhanced radia-

tion damage resistance [88]
VI. Plasticity instability: NMMs can exhibit plasticity localization and shear banding

behavior [89].

3.1. Strength and Hardness Enhancement

Strength and hardness enhancement are some of the key mechanical properties of
high-performance NMMCs. There are some ways to enhance the strength and hardness of
these composites. One way is to utilize solid solution strengthening. The higher hardness
of nanoscale metallic multilayers, compared to pure element FCC/BCC multilayers, has
been reported to be caused by the extra solid solution strengthening contribution in the
BCC layer [90]. In this regard, Misra and Kung [90] claimed that metallic multilayers
can possess ultra-high strengths under the condition that the bilayer periods range from
a few nanometers to several. In this regard, Figure 8 shows the possible strengthening
mechanisms of metallic multilayers. According to the Hall–Petch-based model depicted in
Figure 8a, dislocations continue to accumulate at grain/interphase boundaries until the
combined applied stress and stress concentration from the pile-up are greater than the
barrier strength, and allow slip across the boundary. Because there are fewer dislocations
in the pile-up when the grain size is smaller, there is less stress concentration. As a result,
slip transmission across boundaries requires greater applied stress, which raises strength
as the microstructural scale decreases. According to the equation of Hall–Petch, the yield
strength (σys) is inversely proportional to the square root of the layer thickness (h), where
σys ∝ h−1/2. This connection arises from the fact that shrinking grain size raises the yield
strength by increasing the amount of applied stress required to move a dislocation across
a grain boundary [90]. In the Orowan-based model shown in Figure 8b, at small layer
thickness, slip may occur by bowing of dislocations between interfaces, rather than pile-up
formation. This results in a correlation between layer thickness and yield strength that
follows the equation σys ∝ h−1ln(h), according to the Orowan model. The Burgers vector
of the shear dislocation loop, known as the Orowan loop, is parallel to the loop plane. The
Orowan model accurately predicts precipitate hardening in cases where the precipitates are
not shearable. The extra stress required for dislocations to bypass is thought to be caused
by order strengthening in the case of shearable particles, though. The dislocation character,
spatial distribution of precipitates, elastic anisotropy, stacking fault energy, coherency,
formation of ledges at the precipitate/matrix interface due to dislocation passage, and
formation of an antiphase boundary at the interface, all play a role in determining the
applicability limit of the Orowan model. Recent research has demonstrated the potential of
nanoscale precipitates to serve as long-lasting dislocation sources for improved ductility
and high strength [91–93]. As opposed to the Koehler-based model depicted in Figure 8c,
multilayers with a significant mismatch in the shear moduli of the layers are covered
by dislocations. In such circumstances, slip may not be transmitted across layers until a
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dislocation in the lower modulus phase has sufficiently overcome sizable repulsive image
stress from the higher modulus phase. This model is postulated for thin layers where
Frank–Read sources may not operate and dislocation pile-ups do not form. According
to the Koehler model, σys is independent of h. Koehler demonstrated that dislocations
would need to overcome the significant repulsive image stress if one of the constituent
layers had a significantly lower shear modulus. This is due to the repulsive force that the
higher modulus phase exerts on the dislocation in the lower modulus phase, which must
be overcome before slip can happen [90,94,95]. In the coherency stresses model illustrated
in Figure 8d, coherency stresses are considered stresses that arise from the lattice mismatch
between layers in very thin lattice-matched multilayers. Between layers, these stresses
alternate between compressive and tensile forces, which results in a cyclical resistance
to dislocation motion. In order to account for the misfit between layers, interfaces are
semi-coherent above the critical thickness for coherency loss and have dislocation arrays.
Dislocations cannot cross the interface because of the stress field created by the misfit
dislocation array [96]. Two coupled field quantities—the stress (or the elastic strain) and the
displacement field—determine the elastic state of such a coherent multilayer. In a regular
multilayer, however, when h exceeds a critical value, the interfaces are no longer coherent
and the stresses are no longer periodic. This is not the case when the layers are very thin,
where the stresses are independent of the multilayer wavelength h. Instead, dislocation
arrays are used in the interfaces to account for the misfit between layers [97–100].
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Figure 8. The schematic of possible strengthening mechanisms for metallic multilayers: (a) a model
based on the Hall–Petch equation grounded on dislocation pile-ups at grain or interface boundaries
(σys ∝ h−1/2), (b) an Orowan model rooted on dislocation bowing between obstacles (σys ∝ h−1lnh),
(c) a Koehler model on the basis of image stress on dislocation in layer A (low shear modulus phase)
from layer B (high shear modulus phase), and (d) alternating coherency stresses (±σ) between lattice-
matched layers, leading to periodic resistance to dislocation motion across layers. Note that h shows
the individual layer thickness in a multilayer where both layers have equal thicknesses, and σys is
yield strength.

In addition to the mentioned mechanisms, other procedures can lead to the improve-
ment of strength and hardness in multilayered structures, such as heterostructure strength-
ening, back stress strengthening, and heterogenous dislocation distribution strengthening.
In heterostructure strengthening, to increase a structure’s overall strength and failure re-
sistance, it is necessary to create a structure with numerous layers or materials, each with
a unique set of attributes. A higher degree of strength and hardness can be achieved
by the structure by combining the properties of various materials [101]. The back stress
strengthening technique involves applying compressive stress to the back of a structure
or material to improve its strength and stability. This can be achieved by using materials
with different thermal expansion coefficients or by applying an external load to the back of
the structure [101]. Heterogeneous dislocation distribution strengthening occurs when the
dislocations in a multilayered structure are distributed heterogeneously, leading to a more
efficient strengthening mechanism. The presence of dislocations can create localized stress
fields, which can help to distribute the applied load more evenly and improve the overall
strength of the structure [102].

Yang et al. [103] report notable strain hardening and back stress strengthening in
gradient-structured interstitial-free (IF) steel. When geometrically necessary dislocations
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(GNDs) accumulate, long-range stress, known as back stress, is produced. The gradient in
grain size of the gradient structure causes mechanical incompatibility. This creates a strain
gradient, which GNDs must account for. In addition to increasing yield strength, back stress
also dramatically improves strain hardening, which increases ductility. The occurrence of a
back-strengthening effect was also reported by Jin et al. [104] in the AlCoCr2FeNi2 high-
entropy alloy, which led to excellent mechanical properties with enhanced tensile strength.

The strengthening effect of heterogeneous dislocation distribution in metallic multi-
layers is a fundamental mechanism that enhances their mechanical properties. Increased
strength and hardness are the result of the multilayered structure’s uneven dislocation
distribution. Studies have indicated that ordered gradient nanotwinned (GNT) microstruc-
tures are highly controllable and can play a role in the basic mechanisms of strengthening
metallic materials [105]. In this regard, Cheng et al. [106] investigate the source of the addi-
tional strength in gradient nanotwinned Cu, using a combination of controlled material
processing, strain gradient plasticity modeling, back stress measurement, and dislocation
microstructure characterization. The extra back stress resulting from the nanotwin thick-
ness gradient is the main source of GNT Cu’s extra strength, whereas the effective stress
is largely unaffected by the gradient structures. In this regard, Figure 9 demonstrates the
mechanics of heterogeneous nanostructures in GNT Cu [106]. Furthermore, the presence of
multielement elements and their different local chemical orders (LCOs) cause differentially
active dislocations of the slip path and nanoscale segment detrapping processes to be
triggered at the nano level, which governs the durability of the alloy [107]. Additionally,
high dislocation density and heterogeneous nano/ultrafine particles have been shown to
contribute to enhancing the strength and ductility of steel [108].
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3.2. Ductility Improvement

The numerous interfaces and thin nanoscale layer thicknesses of NMMCs have been
shown to give rise to their exceptional properties [12]. However, low ductility has become
a crucial challenge in nanoscale materials, including metallic multilayers [109]. A study
conducted by Zan et al. [110] proposed a heterogeneous structure approach to achieve
good synergy between strength and ductility for Al matrix composites. Their suggested
heterogeneous lamella structure offered high elongation without compromising strength.
The fabrication process of this heterogeneous structure is illustrated in Figure 10. In the
beginning step, 2 wt.% n-Al2O3 particles were interspersed in the initial spherical Al
powders. Following 1 h of high-energy ball milling at 200 rpm, the original Al powders
(Figure 10a) were transformed and deformed into a lamellar shape and cold welded
(Figure 10b), while the distribution of n-Al2O3 was still non-uniform and there was clear
evidence of n-Al2O3 microclusters’ existence. There is a high possibility for cold welding in
the region where the n-Al2O3 content is relatively low. Subsequently, with the addition of
the rest of the n-Al2O3, they could only be scattered outside the welded powders, creating
a difference in the amount of nanoparticle inside, compared to outside. As a result, the
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welded powders may produce nanoparticle-poor/free zones (NPZ) [111]. It was also
claimed that the heterogeneous lamella composites with soft lamellar CG zones that were
embedded in the ultrafine grains (UFGs) have considerably better strength and ductility
performance over the other two conventional (bi-modal grain structure and the uniform
UFG structure) structures [112].
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Figure 10. The creation of the heterogeneous lamella structure. The original Al powders (a) were
deformed into a lamellar shape and cold welded after 1 h of high-energy ball milling at 200 rpm (b).
The two-step addition of n-Al2O3 formed additional nanoparticle poor/free zones and the relatively
short time of the milling process was only able to eliminate clusters by repeated deformation, fracture,
and cold welding of Al powders (c). After hot forging, the flaky CG zones were stretched, resulting
in a heterogeneous lamella structure (d). Note that green-colored locations represent nanoparticle-
poor/free zones, i.e., coarse grain (CG) zones [110].

Another study conducted by Fan et al. [113] demonstrated that coherent nano-lamellar
alloys, which display an unprecedented ultra-high strength (over 2 GPa yield strength)
and significant uniform tensile ductility, up to 16 percent, can achieve markedly enhanced
tensile ductility. To achieve extremely high strength and ductility performance in Ni-Fe-
Co-Cr-Al-Ti multicomponent alloys, they investigated a nanolamellar architecture using
coherent L12 structures. The lamellar boundary strengthening was responsible for the
extremely high strength of this composite, whereas the substantial ductility was brought on
by a progressive work-hardening mechanism controlled by the special nano-lamellar archi-
tecture. It was claimed that the presence of coherent lamellar boundaries was the reason for
facilitated dislocation transmission, removing boundary-related stress concentrations. Con-
currently, unusually large tensile ductility results from networks of deformation-induced
hierarchical stacking faults and associated high-density Lomer–Cottrell locks, which en-
hance the work hardening response [114]. In another study [21], a brief review of the
mechanisms underlying cracking and toughening in nanoscale metallic multilayer films
showed that the ductility and fracture toughness decrease with decreasing thickness below
a certain threshold.

3.3. Fatigue Resistance and Fracture Toughness

NMMCs have unique properties, but their fatigue resistance and fracture toughness
are still areas of research. The fracture toughness of metallic multilayer composites is
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influenced by interface slip resistance and strength, but limited decreases in overall strength
have been observed [115]. According to a report, the primary factor influencing fracture
and fatigue in thick, multilayer metallic systems is the resistance to slip transmission across
the interphase boundaries [116]. Also, the indentation fatigue life is significantly influenced
by hardness, and higher hardness is linked to longer fatigue lives [117].

Recently, Zauner et al. [118] proposed a novel method, using quasi-static and cyclic
bending of pre-notched, unstrained microcantilever beams in conjunction with an in-situ
synchrotron to study the fatigue resistance and fracture of nanostructured thin films. For
example, Zhou et al. [119] optimized the layer thickness to increase the fracture toughness
and crack resistance of Cu/Ru multilayer thin films. The films used to create the multi-
layered composites had equal individual layer thicknesses (h), ranging from 1.5 nm to
200 nm. It was found that as h was changed, a structure transition between the FCC and
HCP lattices in the Ru layer occurred, affecting the Cu/Ru multilayers’ fracture toughness
and length-scale-dependent cracking behavior. It is interesting to note that the Cu/Ru
multilayer fracture toughness increased uniformly as the h values decreased to 1.5 nm. The
main factors contributing to the improved toughness include the transformation of the
lattice structure, reduction of h, and coupling effects from the increased interface trans-
parency. In this regard, Figure 11 shows the fracture toughness schematic diagram for
FCC/HCP multilayers, with and without lattice transformation. As can be seen, the multi-
layer of FCC/FCC Cu1.5Ru1.5 with the (111) out-of-plane texture should have numerous
slip systems to support plastic deformation, as indicated in Figure 11’s left top corner. With
compressive (region I) and shear (region II) stresses, Figure 12 depicts the slip condition of
the Cu1.5Ru1.5 multilayer under nanoindentation. The (111) [110] slip systems of Cu1.5Ru1.5
could be triggered by further indenting of the indenter into the sample surface, which
would result in the formation of shear bands, due to both compressive and shear stresses in
the region I. Due to the limited number of slip systems present in the case of HCP Ru with
(0002) out-of-plane texture, deformation under compressive stress is difficult to occur. In
this regard, Figure 12 demonstrates SEM images of the indentation morphologies in Cu/Ru
multilayers with different layer thicknesses [120]. As can be observed in Figure 12a, the
remnant indentation of Cu1.5Ru1.5 only contained shear bands. In the Cu4Ru4 multilayer in
Figure 12b, a triangle-shaped residual indentation has a clear indication of fabrication in the
form of short cracks. Three mature radical cracks in Cu12Ru12 (Figure 12c) and Cu100Ru100
(Figure 12d) were revealed by a further h-increment. All Cu/Ru multilayers with different
layer thicknesses were found to have much better ductile properties than other Cu/Ru
multilayers, as the length of cracks decreased monotonically with decreasing h, until
h = 1.5 nm without any crack formation around residual indentation [119].

3.4. Plasticity Instability

NMMCs are considered a class of materials that exhibit unique plasticity and stability
characteristics [36]. However, NMMCs are prone to deformation-induced instabilities, such
as strain localization, which can lead to crack nucleation and subsequent fracture [21].
According to experimental data, the multilayered composite can exhibit plastic deforma-
tion instability as the grain length scales and individual layer thicknesses get closer to the
nanoscale. For instance, Zhang et al. [121] reported that, in the case of nanometric grain
size/individual layer thicknesses, inhomogeneous shear banding becomes predominant
in the multilayered Au/Cu composite. A substantial variation in shear banding behavior
is shown in Figure 13 by the focused ion beam (FIB) cross-sectional observation of the
indents in the Au/Cu multilayers with varying layer thicknesses, where the bright and
dark layers represent Au and Cu layers, respectively. Figure 13 demonstrates unequivo-
cally that as layer thicknesses are reduced, shear banding becomes more common. The
plasticity and dislocation stockpile in small-scale crystals are significantly restrained at
nanoscale grain size/layer thicknesses. Thus, with the aid of the very localized shear
banding, inhomogeneous deformation combined with grain boundary sliding and grain
rotation mechanism [121]. It has been proven that these multilayer NMMCs have limited
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deformability, as a result of localized deformation in the form of shear bands. The deforma-
tion mechanisms of NMMCs are length-scale-dependent, and the interface strengthening
in NMMCs can lead to high strength [122]. However, there is ongoing research into the
design of NMMCs for high strength, plasticity, and fracture resistance.
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Figure 13. The focused ion beam (FIB) cross-sectional observation of the indents in the Au/Cu
multilayers with varied layer thicknesses h: (a) 250 nm, (b) 100 nm, (c) 50 nm, and (d) 25 nm. Note
that the bright and dark layers demonstrate the Au and Cu layers, respectively.

3.5. Radiation-Induced Embrittlement

Radiation-induced embrittlement in multilayer composites refers to the loss of ductil-
ity and the increased susceptibility to fracture due to radiation exposure. This phenomenon
is attributed to various factors, including irradiation-induced defects such as dislocation
loops, voids, and solute segregation, which can lead to the degradation of mechanical
properties. Research has shown that radiation damage can result in amorphization, hard-
ening, embrittlement, and swelling, ultimately causing the failure of the material [123].
Irradiation-induced debonding at the fiber/matrix interface has also been identified as a
major cause of deterioration in various composites [124].

Radiation-induced embrittlement is a phenomenon that can occur in metallic nanolay-
ered composites due to the formation of helium bubbles along grain boundaries [125]. The
formation of these bubbles can lead to hardening, swelling, embrittlement, and surface
deterioration, which can degrade the mechanical properties of the material [126]. However,
metallic nanolayered composites have enhanced radiation resistance because of nanoscale
repeat layer spacing m causing an exceptionally high density of heterophase interfaces [127].
The effective restraint of dislocation movements by the dense interface structure is what
causes the strengthening mechanism in nanolayered structures. In some studies, the inter-
faces in Cu-V nanolayers prevented helium bubble aggregations, and it was determined
that as repeat layer spacing was decreased from 50 nm to 2.5 nm, radiation hardening and
swelling were significantly less severe in Cu-V nanolayers [127].

Figure 14a shows the V-graphene nanolayers with repeat layer spacings of 110 nm
and 300 nm, along with a pure V thin film. As seen in Figure 14b, nanopillars were
tested under compression after being synthesized from pure V. The average flow stress at
five percent plastic strain was found to be 2.5 GPa, 3.1 GPa, and 4.8 GPa for pure V and
V-graphene nanolayers with repeat layer spacings of 300 nm and 110 nm, respectively. It
has been previously reported that the effective constraint on the dislocation motion across
the interface is responsible for the strengthening effect of a single atomic layer thickness
in graphene. Using a TEM, the microstructure of the synthesized V-graphene nanolayers
with a 300 nm repeat layer spacing was examined. The V layers’ grain sizes are shown by
both the micrograph and the selected area diffraction (SAD) to be in the tens of nanometer
range (Figure 14c), which is substantially smaller than the grain sizes of Cu or Ni-graphene
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nanolayers that have previously been reported [128]. Also, SRIM (stopping and range
of ions in the matter) ion trajectories of He+ irradiation on V thin film under 120 keV
are shown in Figure 14d. In this regard, the radiation-induced grain growth after He+

irradiation was shown in the TEM images of Figure 14e. The research verified that the
V-graphene nanolayers exhibited fewer radiation-induced crystalline defect formations,
when compared to pure V. These findings aligned with the nanopillar compression results of
the irradiated specimen V-graphene, which demonstrated a decrease in radiation-induced
hardening and suppression of brittle failure [127].
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Figure 14. (a) Schematic for 110 nm and 300 nm repeat layer spacing (λ) in pure V and V-graphene
nanolayers, (b) the stress-strain curve was derived from nanopillar compression testing of pure V
and V-graphene nanolayers with repeated layer spacings of 110 nm and 300 nm, (c) TEM image
demonstrating V-graphene’s nanocrystalline structure with repeated layer spacing of 300 nm, (d) He+

irradiation on V thin film at 120 keV with SRIM ion trajectories, and (e) TEM image demonstrating
grain growth caused by radiation following He+ irradiation [127].

4. Applications
4.1. Aerospace Industry

Numerous exceptional characteristics of NMMCs have been demonstrated, many of
which are very different from those found in monolithic films. Due to their outstanding
qualities, NMMCs offer a practical means of resolving the difficulties associated with
developing and using new nanoscale engineering materials [12]. Nanocomposites have
offered several different material solutions to the aerospace sector, including NMMCs,
due to their advanced and immense mechanical properties. NMMCs’ application in the
aerospace sector can potentially revolutionize the industry by offering a fuselage and
structures that are lightweight and require minimal maintenance [129]. In this regard, as
an example of the aerospace application of multilayer composites, they can be applied for
a range of spacecraft, launch vehicles, and instruments operating in vacuum, multilayer
insulation (MLI) blankets (such as plastics and metallic materials), where they offer passive
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thermal control. Through several layers of thin reflectors and spacer materials, they reduce
the amount of radiative heat transfer, as shown in Figure 15 [130].
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Some of the benefits of NMMCs in the aerospace industry include the following:

I. Enhanced mechanical properties, such as high yield strength and hardness;
II. High temperature and corrosion resistance [129];
III. Low grain growth in extremely hot conditions;
IV. Possibility of lightweight, low-maintenance structures and fuselage [129].

In summary, NMMCs have exceptional properties that make them a viable route
to overcome the difficulties involved in creating and using new nanoscale engineering
materials. In the aerospace industry, NMMCs can potentially revolutionize the industry by
providing lightweight and low-maintenance fuselage and structures, enhanced mechanical
properties, and high temperature and corrosion resistance.

4.2. Thermal Management Systems

The thermal conductivity of NMMs is an important property for their applications
in various fields, such as thermal management in nanostructures, energy storage, and
electronics. The thermal conductivity of NMMs is affected by the number of interfaces, the
layer thicknesses, and the thermal conductivity of the individual materials. The thermal
conductivity of NMMs is generally lower than that of the individual materials, due to
the increased scattering of phonons at the interfaces [7]. For example, in the field of
thermal management in nanostructures, the thermal conductivity of NMMs is critical for
the design and optimization of thermal management strategies. The thermal conductivity
of NMMs can be tailored by adjusting the number of interfaces, the layer thicknesses, and
the thermal conductivity of the individual materials. This can help to improve the thermal
conductivity of the NMMs and reduce the risk of thermal failure in nanostructures. Also,
the thermal conductivity of NMMs can affect the performance of energy storage devices,
such as batteries and supercapacitors. For example, a high thermal conductivity can help
to improve the heat dissipation in energy storage devices, which can help to reduce the risk
of thermal failure and improve the overall performance of the device [7].

High-performance NMMCs can be used in thermal management systems for various
applications, including the ones that follow:

I. Battery thermal management system: phase-changing composite material coupled to
a metallic separator can be used for passive thermal design in large-format prismatic
battery packs [131]. Another innovative idea is a dual-phase change material battery
thermal management system based on petals [132];
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II. Electronic devices: electronic equipment and powerful electrical systems are fre-
quently cooled with heat sinks. Metal matrix composites can be used as reinforce-
ments in heat sinks to improve their thermal conductivity [133]. Graphite and carbon
nanofillers can also be used to improve the thermal performance of phase-change
materials (PCMs) used in thermal management systems for electronic devices [134]. In
this regard, Figure 16 shows the design of the CPU system and heat sink module [135].
The integrated heat spreader in this high-performance processor system is soldered
or adhered to the chip using thermal interface material. A thermal interface material
is used by the heat spreader to distribute heat from the chip to a larger area heat sink.

III. Satellite avionics: for satellite avionics and electronic components that are becoming
more compact and powerful, thermal management systems are crucial. Metallic
pin-fin geometries can be used to boost the thermal management performance of
PCM-based modules [134]. Multilayer metallic composites at the nanoscale can
also be used for thermal management in various systems and niche applications.
Figure 16 shows the advanced thermal interface materials for high-power electronics
applications with improved heat dissipation [136].
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One of the examples of NMMCs in thermal applications is liquid-based metallic
composites. Liquid-based metallic composites are materials that combine liquid metal
with other materials, such as metal nanoparticles, polymers, and drug molecules [137].
These composites have recently attracted attention, particularly in thermal applications
and flexible electronics applications, because of their distinctive characteristics [138]. Since
it can remain liquid at room temperature or below, liquid metal (LM) has generated a lot of
interest in thermal management [139]. Molecular thermal linkers have been used to create
liquid metal composites with improved thermal conductivity and stability [140]. Also,
liquid metal thermal interface materials (TIMs) outperformed traditional TIMs, in terms of
performance, which are limited by their relatively low thermal conductivity [141]. High
thermal and electrical conductivity, exceptional fluidity, and good biocompatibility have all
been achieved in liquid metal composites, which have potential applications in thermal
management. In this regard, Figure 17 shows some examples of liquid-based metallic
composites; Figure 17a shows the general structure of these composites, Figure 17b demon-
strates liquid metal-based nano-composites and their application in printable stretchable
electronics, and Figure 17c shows the basic synthesis routes for the production of liquid
metal-based nano-composites [142]. Additionally, Figure 17d demonstrates the use of a
layer-by-layer coating to create carbon fiber-reinforced polymer composites with high ther-
mal conductivity that contain inorganic crystal fillers [143]. Overall, liquid-based metallic
composites have shown great potential in thermal management applications due to their
unique properties, like high thermal conductivity, excellent fluidity, and biocompatibility.
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4.3. Automotive Industry

NMMCs have shown great potential in the automotive industry, particularly in the
development of cutting-edge tools and coatings for vehicles. By offering more wear
protection and better heat dissipation, NMMC coatings can be specifically designed to
increase tool durability and cutting efficiency [144]. These nanocoatings can be made
to reduce friction as well, increasing productivity and reducing tool wear. Additionally,
these coatings contain particular additive elements that support coating characteristics, like
lubricant retention, corrosion resistance, and increased thermal stability [145]. NMMCs
have been studied for their mechanical and fracture-related properties, including cracking
and toughening mechanisms [21]. All these advantageous aspects lead to numerous
applications in the automotive industry. For instance, nanomaterials have been investigated
for use in the fatigue strength of aluminum-based metal matrix composites in multi-material
vehicles with composite parts [146]. In this respect, Figure 18 shows some automobile
components produced from metal matrix composites, including engine covers, cam covers,
and oil pans [147].
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4.4. Electronics Industry

The development of new materials and structures for electronic devices is one area
where NMMCs have demonstrated great promise. Cu/Nb composites, for instance, can be
made sustainably and have excellent electrical conductivity and ultrahigh strength due to
their continuous laminated structure [148]. Here are some applications of NMMCs in the
electronics industry:

I. Printable stretchable electronics: liquid metal-based nanocomposites have been de-
veloped for printable stretchable electronics, which have potential applications in
wearable devices and soft robotics [142];

II. Embedded passives and interconnects: nanomaterials have been explored for use
in embedded passives and interconnects, which can improve the performance and
reliability of electronic devices [149];

III. Sensors: NMMCs have been explored for use in sensors, such as gas sensors and
biosensors, owing to their special qualities, which include sensitivity and a large
surface area [12];

IV. Transistors: NMMCs have been explored for use in transistors, which can improve
the performance and efficiency of electronic devices [12];

V. Memory devices: NMMCs have been explored for use in memory devices, such as
resistive random access memory (RRAM), which can improve the storage capacity
and speed of electronic devices [12].

In one study, Larmagnac et al. [150] show the successful fabrication of a stretchable
printed circuit board (PCB) from Ag-PDMS (poly(dimethylsiloxane) (PDMS)) composites,
as shown in Figure 19. Their suggested route integrates main standard PCB design condi-
tions such as connectivity, vias, straight traces, and solderability with standard hardware,
and can be utilized to design soft and stretchable PCBs the same way rigid or flexible
PCBs are designed. In another study, Deng et al. [149] fabricated SiO2-Pt nano-composite
ceramic metal using the co-sputtering method, which can be used for embedded pas-
sives and interconnects. Also, graphene oxide inclusions coated with polydopamine and
polydimethylsiloxane (PDMS) rubber have been incorporated into dielectric elastomer com-
posites that can be used for embedded passives and interconnects [151]. A nano-layered
Ni-P metallic glass composite coating with a compositionally modulated microstructure
that additionally utilizes electrodeposition has been created that can be applied to em-
bedded passives and interconnects [54]. Laterally embedded interconnects can also be
developed using high-aspect-ratio polymer structures with electroless copper plating [152].

4.5. Energy Storage Devices

High-performance NMMCs have shown great potential for energy storage applica-
tions. Some of the possible applications include:

I. Supercapacitors: due to their excellent energy storage qualities, NMMCs are a promis-
ing material for supercapacitors [153–155];

II. Batteries: HPNMMCs can also be used in batteries, including lithium-ion, sodium-ion,
and potassium-ion batteries [156];

III. Flexible energy storage devices: transition-metal chalcogenide nanostructures, includ-
ing nanocrystals and thin films, are promising for flexible supercapacitors [156]. In
this regard, Figure 20 shows some examples of energy storage applications of HP-
NMMCs, including (i) metal oxide nanoparticles fabricated from bulk metalorganic
frameworks (MOFs) (Co-based MOF, Co(mIM)2 (mIM = 2-methylimidazole) with
supercapacitor applications (Figure 20a) [154] and (ii) 2D/2D nanocomposite based
on graphene oxide-supported layered double hydroxides and MXenes with numerous
energy storage applications (Figure 20b) [153].
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Figure 19. Creating soft PCBs using stencil and screen printing: (a) stencil printing of Ag-PDMS com-
posites, (b) SEM micrograph of the stencil printed lines, (c) the cross section of stencil-printed
Ag-PDMS (25 vol% (top) and 13 vol% (bottom)), (d) the screen-printing setup on 8” wafers,
(e) a micrograph of the thinnest screen-printed lines (in black) and spaces (in white), (f) general flaws,
like short circuits or PDMS layer separation from the glass substrate, and (g) very long screen-printed
tracks. Note that scale bars are 0.1 mm in (c), 1 mm in (b,e), and 10 mm in (g) [150].
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4.6. Biomedical Engineering

NMMCs have been used in various biomedical engineering applications. Due to their
prevalence in both the human body and biomedical devices, metallic materials are among
the most common materials used in biomedicine. These systems’ organized crystalline or
amorphous structures, which are present at the nanoscale, have several unique properties
that support useful biomedical applications [157]. Here are some of the applications of
these composites in biomedical engineering:

I. Medical implants: metallic materials, including NMMCs, are used in the develop-
ment of medical implants, due to their excellent physical and mechanical properties.
These composites can be used to develop implants that are strong, durable, and
biocompatible [157];

II. Drug delivery: metallic nanomaterials, including NMMCs, can be used for drug de-
livery in biomedical applications. These composites can be designed to release drugs
in a controlled manner, which can improve the effectiveness of the treatment [158];

III. Biosensors: NMMCs can be used in the development of biosensors for the diagnosis
of diseases [159]. These composites can be designed to detect specific biomolecules,
which can help in the early detection of diseases;

IV. Therapeutics for radiotherapy: metallic nanomaterials, including NMMCs, can be
used in the development of therapeutics for radiotherapy [158]. These composites can
be designed to selectively target cancer cells, which can improve the effectiveness of
the treatment;

V. Tissue engineering: NMMCs can be used to develop scaffolds for tissue engineering,
as they can mimic the structure and mechanical properties of natural tissues [160].

In this regard, Figure 21 briefly introduces some of the biomedical applications of
nanoparticles and nanostructured materials. Overall, NMMCs have great potential in
biomedical engineering, and ongoing research is exploring their various applications in
this field.
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5. Conclusions and Future Perspectives

A comprehensive overview of the applications and mechanical properties of nanoscale
metallic multilayer composites was analyzed and explained in the present study through an
extensive review of existing literature and experimental studies, highlighting the potential
of NMMCs in various fields. The paper began by introducing the concept of nanoscale
metallic multilayer composites and their unique structural characteristics. Furthermore,
this paper thoroughly examined the mechanical properties of nanoscale metallic multilayer
composites. The key factors influencing the mechanical behavior of NMMCs, such as layer
thickness, interface structure, composition, and processing techniques, were thoroughly
discussed, presenting experimental results from various studies to support the findings.
The study then delved into the wide range of applications where these composites have
shown promise, including aerospace, automotive, electronics, and biomedical industries.
The present study emphasized the exceptional mechanical properties exhibited by these
composites that make them suitable for use in high-performance applications. The fact
that nanoscale metallic multilayer composites have better mechanical properties than
their bulk counterparts is one significant finding that is highlighted in this paper. These
properties include enhanced strength, hardness, wear resistance, fatigue life, and thermal
stability. These improvements were attributed to the unique microstructural features at the
nanoscale level.

Moreover, this study sheds light on the underlying mechanisms responsible for these
enhanced mechanical properties. It discusses concepts, such as the Hall–Petch strengthen-
ing effect, dislocation interactions at interfaces, grain boundary strengthening, and strain
partitioning between layers. Understanding these mechanisms is crucial for optimizing the
design and fabrication processes of nanoscale metallic multilayer composites. In summary,
this study provides a comprehensive analysis of the applications and mechanical properties
of nanoscale metallic multilayer composites. It highlights their potential in various indus-
tries and emphasizes their superior mechanical performance, compared to bulk materials.
The findings presented in this paper contribute to advancing our understanding of these
composites and pave the way for further research into optimizing their performance for
specific applications.

Future Perspectives

The field of high-performance nanoscale metallic multilayer composites is rapidly
evolving, and several exciting future perspectives can be explored. In this section, this
study discusses potential advancements in the applications and mechanical properties
of NMMCs:

I. Enhanced Mechanical Properties: One of the key areas for future development is the
improvement of mechanical properties in MMCs. Researchers can focus on optimizing
the layer thickness, composition, and interface design, to achieve superior strength,
hardness, and toughness. By tailoring these parameters at the nanoscale level, it is
possible to create NMMCs with unprecedented mechanical properties;

II. Multifunctional applications: NMMCs have already found applications in various
fields, such as aerospace, automotive, electronics, and energy sectors. However, there
is still immense potential for exploring new multifunctional applications. For instance,
researchers can investigate the integration of NMMCs into biomedical devices or
wearable electronics to enhance their performance and durability;

III. Environmental sustainability: as the world moves towards a more sustainable fu-
ture, it is crucial to consider the environmental impact of materials used in various
industries. Future research can focus on developing environmentally friendly synthe-
sis methods for NMMCs that minimize waste generation and energy consumption.
Additionally, exploring the recyclability and reusability aspects of NMMCs will be
essential for their long-term sustainability;

IV. Advanced manufacturing techniques: the development of advanced manufacturing
techniques will play a significant role in realizing the full potential of MMCs. Addi-
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tive manufacturing (3D printing) offers exciting possibilities for fabricating complex
geometries with precise control over material composition and microstructure. Fur-
ther advancements in this area can enable rapid prototyping and customization of
NMMC components;

V. Computational modeling and simulation: with the increasing complexity of NMMC
structures at the nanoscale level, computational modeling and simulation techniques
will become indispensable tools for understanding their behavior under different
loading conditions. Future research should focus on developing accurate models
that can predict mechanical properties and failure mechanisms in NMMCs with
high fidelity;

VI. Integration with other materials: combining NMMCs with other advanced materials,
such as polymers and ceramics, can lead to synergistic effects and open up new
avenues for applications. Future studies should explore hybrid material systems
that leverage the unique properties of each constituent material to achieve enhanced
performance across multiple domains

VII. Scale-up Challenges: while significant progress has been made in synthesizing
nanoscale metallic multilayer composites at laboratory scales, scaling up produc-
tion remains a challenge. Future research should address issues related to large-scale
synthesis techniques while maintaining control over microstructure and mechani-
cal properties.

In conclusion, high-performance NMMCs hold great promise for a wide range of appli-
cations, due to their exceptional mechanical properties. The future perspectives discussed
above highlight some key areas where further research efforts can be directed to unlock
their full potential and pave the way for innovative technologies across various industries.
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