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Abstract: Methoxy poly(ethylene glycol)-block-poly(L-lactide) (MPEG-b-PLLA) has a wide range of
applications in pharmaceuticals and biology, and its structure and morphology have been thoroughly
studied. In the experiment, we synthesized MPEG-b-PLLA with different block lengths using
the principle of ring-opening polymerization by controlling the amount of lactic acid added. The
thermodynamic properties of copolymers and the crystallization properties of blends were studied
separately. The crystallization kinetics of PDLA/MPEG-b-PLA and PLLA/MPEG-b-PLA composite
films were studied using differential scanning calorimetry (DSC). The results indicate that the
crystallization kinetics of composite films are closely related to the amount of block addition. The
crystallinity of the sample first increases and then decreases with an increase in MPEG-b-PLLA
content. These results were also confirmed in polarized optical microscope (POM) and wide-angle
X-ray diffraction (WAXD) tests. When 3% MPEG-b-PLLA was added to the PDLA matrix, the blend
exhibited the strongest crystallization performance.

Keywords: polylactic acid; polyethylene glycol; diblock copolymer; stereocomposite crystals;
homocrystals

1. Introduction

The fermentation of agricultural and sideline products produces lactic acid, and
polylactic acid (PLA) is polymerized from lactic acid monomers [1,2]. PLA can be naturally
degraded and is widely used in the field of biomedicine [3]. The crystallization performance
has a significant impact on the molding and processing of polymers [4,5], ultimately
affecting the performance of products. Stereocomplex (SCs) crystallization is a common
phenomenon in polymer crystallization [6], where polymer chains that are stereoisomeric
can undergo SCs crystallization in both blend systems and block copolymers [7]. The
SCs crystallization of PLA is the most representative of the SCs crystallization system. In
SCs-PLA, there are strong intermolecular interactions (hydrogen bonds) [8,9] between the
molecular chains, which can form tight packing [10]. This unique structure often makes
materials with stereocomposite crystallization have higher melting points [11,12] and better
crystallization ability [12], heat resistance [13], mechanical properties [14], and chemical
stability [15].

The melting temperature (Tm) of PLA is 150~170 ◦C, and its glass transition tempera-
ture (Tg) is 60 ◦C [16]. However, for traditional PLA materials, the disadvantages of low
usage temperature and poor durability limit their application. Block copolymerization is an
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effective method for improving the performance of a single PLA material. The addition of
PEG components can improve the hydrophilicity of PLA [17] while improving its resistance
to degradation [18] and other physical properties [19]. Therefore, PEG-PLA has many
applications in the field of drug release [20]. PEG-PLA block copolymers can form hydro-
gels [21], micelles [22], nanoparticles [23], etc. They have been used in biopharmaceutical
fields such as controlled drug release and tissue engineering [24,25]. For example, mor-
phology [26], self-organization [27], crystal structure [28], and crystallization rate [29,30]
have been discussed in a variety of situations. The crystallization characteristics of one
segment in block copolymers containing two crystal segments are influenced by the com-
position, structure, and size of the other segments [31]. Researching these impacts aids in
enhancing the comprehension of crystallization patterns exhibited by block copolymers. In
our previous work, we synthesized a block copolymer with a wide range of PLLA/PDLA
molecular weights to study crystallization and melting behaviors [32–34]. However, a
comprehensive investigation into the crystallization kinetics across various block lengths
has not been conducted, a factor that holds importance in the regulation of performance
and comprehension of crystallization tendencies exhibited by block copolymers.

This study synthesized MPEG-b-PLLA diblock copolymers with different PEG con-
tents. Then, the crystallization behavior of MPEG-b-PLLA and its composite films with
PDLA and PLLA was analyzed using differential scanning calorimetry (DSC). Simultane-
ously, these samples were isothermally crystallized at different times via a polarized optical
microscope (POM). The results indicate that the crystallization behavior of block polymer
MPEG-b-PLLA depends on its length; in contrast, for composite membrane samples, it
depends on the amount of MPEG-b-PLLA block polymer added. With an increase in
MPEG2-PLLLA2, the crystallization rate increases first and then decreases.

2. Materials and Methods
2.1. Synthesis of MPEG-b-PLLA Diblock Copolymers

The raw materials required for the experiment included tin(II)2-ethylhexanoate (Sn(Oct)2,
>99.9%), toluene (99.8%, anhydrous), ethyl ether (99.8%, anhydrous), CHCl3 (density
1.47–1.48 g/mL), L-lactic acid monomer, and MPEG (Mn = 2000 g/mol, Ð = 1.08).

The synthesis route is shown in Figure 1. PLLA was synthesized via the ring-opening
polymerization of L-lactide, following methods outlined in the existing literature [35,36].
Using Sn (Oct)2 as the catalyst and PEG as the initiator, MPEG-b-PLLA block copolymers
were synthesized via the ring-opening polymerization (ROP) of PLA intermediate lactide in
a toluene environment at 120 ◦C for 12 h. The copolymers were isolated via precipitation in
diethyl ether. The unreacted raw materials and impurities were consumed during treatment
with ethanol. MPEG and PLLA blocks were prepared with different molecular weights,
and they were named MPEG2-PLLA1, MPEG2-PLLA2, MPEG2-PLLA3, and MPEG2-PLLA4.
Numeric subscripts represent the proportion of each component in the polymer.
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2.2. Solution-Cast Composite Films

PLA composite films were produced using a technique known as solution casting, with
certain adjustments made to the process, as outlined in a prior scholarly article [37]. We
chose MPEG2-PLLA2. Various loadings (1, 2, 3, 5 and 10 wt %) of MPEG-b-PLLA were used
as fillers in the PDLA matrix to prepare PDLA/MPEG-b-PLLA and PLLA/MPEG-b-PLLA
films, which were named PDLA-1, PDLA-2, PDLA-3, PDLA-5, and PDLA-10. Similarly,



Materials 2024, 17, 2105 3 of 12

the same operations were applied with PLLA as a matrix, and these films were named
PLLA-1, PLLA-2, PLLA-3, PLLA-5, and PLLA-10. A specified amount of MPEG-b-PLLA
copolymer was mixed with 50 milliliters of CHCl3 and stirred magnetically at 500 rpm for
2 h. The solution was filtered to remove all insoluble impurities. After filtration, the filtrate
was transferred to a conical flask, PLLA or PDLA was added, and mixing was carried out
thoroughly for 2 h via magnetic stirring. After mixing, the solution was poured into a
suitably sized mold and left to stand in a fume hood for 12 h. Then, the resulting film was
dried in a vacuum oven at 40 ◦C for 12 h to eliminate any remaining solvents. Subsequently,
the prepared dry film was used for further analysis (Tables 1 and 2).

Table 1. Content of MPEG-b-PLLA in PLLA/MPEG-b-PLLA composite films.

Sample PLLA-1 PLLA-2 PLLA-3 PLLA-5 PLLA-10

MPEG2-PLLA2
content (%) 1 2 3 5 10

Table 2. Content of MPEG-b-PLLA in PDLA/MPEG-b-PLLA composite films.

Sample PDLA-1 PDLA-2 PDLA-3 PDLA-5 PDLA-10

MPEG2-PLLA2
content (%) 1 2 3 5 10

2.3. Characterizations
2.3.1. Analysis of Polymer Synthesis Results

The Fourier transform infrared spectrometer (FTIR) equipped with a DTGS detector
(FT-IR-360, Perkin Elmer Enterprise Management Co., Ltd., Shanghai, China) was measured.
The total attenuated reflectivity (ATR) technique is used for infrared measurement. The
spectrum was obtained through 64 scans with a resolution of 2 cm−1, and a scanning range
of 400–4000 cm−1 with a KBr pellet. All samples were dried in a vacuum oven at 40 ◦C for
48 h before testing.

The Mn values of MPEG-b-PLLA block copolymers were estimated by 600 MHz 1H-
NMR spectroscopy (Bruker, Biospin, Switzerland), and CDCl3 and TMS were adopted as
solvent and internal references, respectively.

The gel permeation chromatography (GPC) curve was measured by gel permeation
chromatography (Malvern Viscotek 270, Worcestershire, UK), with N,N-dimethylformamide
(DMF) used as a mobile phase at 40 ◦C. The sample was at a concentration of 1 mg/mL, with
a flow rate of 1 mL/min and an injection volume of 100 µL. Characterization of the average
molecular weight (Mn) and molecular weight distribution (Ð) was conducted via routine
calibration using a refractive index (RI) detector and narrow distribution polystyrene (PS)
as a standard.

2.3.2. Wide Angle X-ray Diffraction (WAXD)

WAXD patterns of the samples were obtained using an X-ray diffractometer (Rigaku
Corporation, Akishima, Japan) with Cu Kα radiation (λ = 0.154 nm) generated at 50 kV and
250 mA. Samples were scanned from 5◦ to 45◦ at a scanning rate of 5◦ min−1.

2.3.3. Differential Scanning Calorimeter (DSC)

The DSC test was carried out using a Nash DSC-200F3 differential scanning calorimeter
(NETZSCH-Ger ä tebau GmbH, Selb, Germany) equipped with an IC70 cooler under a
nitrogen atmosphere. The samples were heated from room temperature to 200 ◦C at a rate
of 10 ◦C min−1, and this was followed by heating for a duration of 5 min to eliminate any
prior thermal effects. Subsequently, samples were cooled to 30 ◦C at a rate of 10 ◦C min−1

and then reheated to 200 ◦C at the same heating rate.
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2.3.4. Thermogravimetric Analysis (TGA)

The TGA test was conducted on a NETZSCH-209F1 thermogravimetric analyzer
(NETZSCH-209 F1, Selb, Germany) equipped with a special IC40 cooler at a nitrogen flow
rate of 100 mL/min. The sample was approximately 3–5 mg and was heated from 20 ◦C to
600 ◦C at a heating rate of 10 ◦C min−1.

2.3.5. Polarized Optical Microscope (POM)

A polarizing microscope (POM) was used to observe the crystal morphology of
spherulites. POM images were collected under a nitrogen atmosphere using a polarizing
microscope (Eclipse E200 POL, Nikon, Japan) equipped with a hot table (LTS420; Linkam
scientific instruments, Redhill, UK). The sample was melted at 180 ◦C, and the crystal
morphology was observed at 120 ◦C. The overall crystallization behaviors of samples were
also monitored using digital images.

2.3.6. Environmental Scanning Electron Microscope (ESEM)

The morphology of the particles was monitored using a scanning electron microscope.
These images were taken with an FEI Model Quantum 200 in high vacuum mode and an
acceleration voltage of 15 kV. Using an ion coating device (FEI, Quanta 200, Hillsboro, OR,
USA), the sample was plated with 20 nm thick electroplated gold.

3. Results and Discussion
3.1. Evaluation of the Preparation Parameters

FTIR and 1H-NMR spectra of Supplementary Material confirmed the synthesis of
MPEG-b-PLLA material (Figures S1 and S2). As the molecular weight of the MPEG block
was definite, the number average molecular weight of PLLA was determined based on the
integral area ratio of 5.18 ppm (-CH-) and 3.66 ppm (-O-CH2-CH2-). The molecular weight
is presented in Table 3.

Table 3. HNMR results and component content of MPEGx-PLlAy.

Sample PEG Unit
Content (%)

PLLA Unit
Content (%)

Mn (NMR)
(g/mol)

Mn (GPC)
(g/mol)

Mw (GPC)
(g/mol) PDI

MPEG2-
PLLA1

46 54 4987 5532 5780 1.14

MPEG2-
PLLA2

30 70 7792 8131 9113 1.12

MPEG2-
PLLA3

22 78 7921 8294 8402 1.21

MPEG2-
PLLA4

18 82 9856 10,088 10,110 1.16

The polydispersity index (PDI) of PEG, PDLA, and PLLA samples was determined
via gel permeation chromatography (GPC). The specific data are shown in Table 4.

Table 4. Molecular weights and polydispersity index of PEG, PDLA and PLLA.

Sample Mp
(g/mol)

Mn
(g/mol)

Mw
(g/mol)

Mz
(g/mol)

Mz+1
(g/mol)

Mv
(g/mol) PDI

PEG 2002 2009 2560 2801 2944 2412 1.20

PDLA 4215 4963 6317 7782 9961 5756 1.25

PLLA 4021 4652 6203 8576 11,382 5910 1.33



Materials 2024, 17, 2105 5 of 12

3.2. Crystalline Species and Crystallinity of MPEG-b-PLLA Copolymers, PDLA/MPEG-b-PLLA
and PLLA/MPEG-b-PLLA Films

In order to determine the crystal types of MPEG-b-PLLA diblock copolymers, WAXD
measurements were conducted. The test results of copolymers and composite films are
shown in Figure 2. PLA is recognized as a thermoplastic with relatively slow crystallization
properties [38]. Pure PLA exhibits various polymorphs, including α, β, and γ forms. The α

form is the most stable [39]. Through our experiments, we found that the MPEG-b-PLLA
diblock polymer has a significant impact on the crystal structure of PDLA and PLLA blends.
As shown in Figure 2, the diffraction peaks at 12◦, 21◦, and 24◦ correspond to the (110),
(300/030), and (220) planes of stereocomposite crystals (SCs) [40,41]. The diffraction peaks
at 16◦ and 19.0◦ correspond to the (110/200) and (203) planes of the α-form of homocrystals
(HCs) [42,43]. The diffraction pattern in Figure 2 shows that the peaks related to the HCs
coexist with SCs.
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For the MPEG-b-PLLA diblock copolymer, all five peaks were observed, indicating
that with the addition of MPEG, both stereocomplexes and homocrystals were observed in
the polymer. For PDLA/MPEG-b-PLLA composite films, the peak values at 12◦ and 16◦

show a significant increase with an increase in MPEG-b-PLLA diblock copolymer content.
This result indicates that: (1) For block copolymers, the introduction of PEG enhances HCs
in the PLLA matrix, which is the role of melted PEG chain segments as the plasticizer
and diluting agent [33]. In MPEG2-PLLA1 and MPEG2-PLLA2 diblock copolymers, the
crystallization performs the best. (2) For composite films, PDLA-10 exhibits the strongest
SCs, and PLLA-3 exhibits the strongest HCs.

3.3. Crystallization Behavior of PDLA/MPEG-b-PLLA and PLLA/MPEG-b-PLLA
Composite Films

Figure 3 shows the DSC curve of PDLA/MPEG-b-PLLA and PLLA/MPEG-b-PLLA
composite films. The curves were analyzed, and we obtained the glass transition tem-
perature (Tg), cooling crystallization temperature (Tc), melting temperature (Tm), melting
enthalpy (∆H), and crystallinity (Xtc) of PDLA/MPEG-b-PLLA and PLLA/MPEG-b-PLLA
composite films. The Tg, Tc, and Tm of PLA films are 60.8, 134.3, and 159.5 ◦C, respectively.
By calculating the ratio of the melting enthalpy of the sample to the melting enthalpy of
fully crystallized PLLA (93.6 J/g) [44], we obtained the crystallinity of different samples.

For the PLLA/MPEG-b-PLLA composite films in Figure 3c, the addition of MPEG-
b-PLLA block polymers had almost no significant effect on their Tg, Tc, and Tm, but the
melting enthalpy and crystallinity first increased and then decreased with an increase in
MPEG-b-PLLA content.
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Figure 3. DSC thermograms of MPEG-b-PLLA and PLLA (a), PDLA/MPEG-b-PLLA (b) and
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Compared with the PLLA/MPEG-b-PLLA composite films, the Tc and Tm of the
PDLA/MPEG-b-PLLA composite films all increased. The addition of MPEG-b-PLLA had
a significant impact: (1) Tc first decreased and then increased. This is attributed to the
plasticizing effect of the MPEG block [45], which is beneficial for reducing the conformational
energy barrier and adjusting the regular stacking, and the PLLA chain was reset in order to
be neatly stacked. As MPEG content increased, the early crystallization process α’ began.
The increase in formation leads to an increase in Tc. (2) α’-to-α [31,46]. The increase in
the enthalpy value of the transformation indicates that during the early crystallization
process, α’ increased crystallization; in other words, it enhanced crystallization performance.
This can be attributed to the heat release signal of α’-to-α. Then, to a certain extent, the
competitive effect between the MPEG and PLLA crystallization processes inhibited PLLA
crystallization. Figure 4 provides a more intuitive representation of this principle.
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Figure 3a and Table 5 show that the Tc of MPEG-b-PLLA samples is significantly
reduced, as the addition of PEG acts as a plasticizer, promoting the migration of molecular
chains, and crystallization can be completed at lower temperatures. Figure 3b and Table 6
show that the crystallinity of PDLA/MPEG-b-PLLA composite films increased significantly
with the addition of MPEG-b-PLLA. Figure 3c and Table 7 show the crystallinity of the
PLLA/MPEG-b-PLLA composite films increased first and then decreased with an increase
in MPEG-b-PLLA addition. The results show that MPEG-b-PLLA acts as a nucleating agent
in the process of the recrystallization of composite films and improves the crystallization
ability of composite films [33]. It should be noted that in Table 6, the crystallinity of
the PLLA-10 sample decreased, which may be due to the entanglement of the MPEG-b-
PLLA block polymer with the pure polylactic acid chain, further reducing the segment’s
movement [12].
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Table 5. Thermal properties of MPEG-b-PLLA diblock copolymers.

Sample Tg (◦C) Tc (◦C) Tm (◦C) ∆H (J/g) X(t) (%)

PLLA 60.8 134.3 159.5 13.9 14.8

MPEG2-PLLA1 - 80.8 142.4 17.6 18.8

MPEG2-PLLA2 - 79.6 143.9 17.3 18.5

MPEG2-PLLA3 - 92.3 163.2 13.6 14.5

MPEG2-PLLA4 - 97.7 171.3 12.1 12.9

Table 6. Thermal properties of PDLA/MPEG-b-PLLA composite films.

Sample Tg (◦C) Tc (◦C) Tm (◦C) ∆H (J/g) X(t) (%)

PDLA-1 - 163.5 176.3 9.5 10.1

PDLA-2 - 163.1 175.7 9.6 10.2

PDLA-3 - 161.9 174.3 14.5 15.5

PDLA-5 - 163.1 175.3 14.8 15.8

PDLA-10 - 165.5 176.5 17.0 18.2

Table 7. Thermal properties of PLLA/MPEG-b-PLLA composite films.

Sample Tg (◦C) Tc (◦C) Tm (◦C) ∆H (J/g) X(t) (%)

PLLA-1 60.7 130.4 148.8 8.4 9.0

PLLA-2 59.8 129.2 147.6 9.6 10.3

PLLA3 59.4 127.0 147.0 9.9 10.6

PLLA-5 59.2 124.1 160.3 11.2 12.0

PLLA-10 62.7 127.7 164.7 5.3 5.7

3.4. Thermal Stability of MPEG-b-PLLA Diblock Copolymers

TGA curves of PEG, PLLA, and MPEG-b-PLLA diblock copolymers with different
chain lengths are shown in Figure 5. The weight loss of the test samples is 5% and 50%,
and the maximum degradation rate temperature (Tmax) data are shown in Table 8. The
thermogravimetric analysis results show that PEG and PLLA underwent a one-step thermal
degradation process. PLLA starts to decompose at 170.6 ◦C and completes decomposition
at 269.1 ◦C, with almost no residue. Due to its more stable ether bonds, PEG undergoes
thermal decomposition at temperatures higher than PLLA, with an initial temperature
of 352.2 ◦C and a stable temperature of 450.1 ◦C. The MPEG-b-PLLA diblock copolymer
underwent a two-step thermal degradation process, and the starting temperature for
thermal degradation is based on the intermediate values of MPEG and PLLA. The initial
thermal degradation temperature (T5%) of MPEG2-PLLA2 has decreased, which may be
due to the enhanced ester exchange effect of the PLLA segments at both ends under the
low melting point MPEG, promoting the thermal degradation of the copolymer. However,
for the copolymers of MPEG2-PLLA1, MPEG2-PLLA3, and MPEG2-PLLA4, there is a
certain degree of increase in T5% (~20 ◦C), which is explained by MPEG segments acting
as plasticizers during the heating process to enhance the interaction (hydrogen bonding)
between PLLA segments, thereby increasing the initial thermal degradation temperature
(T5%). Meanwhile, the maximum thermal degradation rate temperature (T1max) and final
decomposition temperature (Tfinal) confirm the above results.
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Table 8. Results of thermogravimetric analysis of PLLA, MPEG and MPEG-b-PLLA.

Sample T5% (◦C) a T50% (◦C) b Tfinal (◦C) c
Tmax(◦C) d

Step1 Step2

PLLA 204.6 241.0 319.6 249.2

MPEG 368.4 417.7 440.2 422.1

MPEG2-PLLA1 234.9 271.8 487.9 267.2 400.5

MPEG2-PLLA2 195.2 392.0 424.2 240.1 408.5

MPEG2-PLLA3 233.9 268.1 434.8 268.6 379.5

MPEG2-PLLA4 217.1 348.2 419.4 249.0 404.9
a: Temperature at 5% weight loss. b: Temperature at 50% weight loss. c: The temperature at the time of final
weightlessness. d: Temperature at maximum degradation rate.

3.5. Morphological Structures of MPEG-b-PLLA Diblock Copolymers

Polarization microscopy can be used to visually observe the spherical structure and
growth behavior of MPEG-b-PLLA diblock copolymers. As shown in Figure 6, clear
Maltese cross-shaped spherulites can be observed in all samples, indicating that the radial
orientation of the SCs layer from the center of the spherulites is not affected by the chain
segment’s length [33]. The higher the crystallinity, the stronger the crystallization ability
and the faster the crystallization rate of SCs before HCs crystallization. Moreover, the
number of spherical crystals per unit area is positively correlated with the molecular
weight of the copolymer. The crystallization ability of the composite film is significantly
enhanced with the addition of MEPG-b-PLLA.

In order to further explore the properties and characteristics of MPEG-b-PLLA copoly-
mers, SEM analysis was chosen as a tool to directly observe the morphological differences
between the particles of MPEG-b-PLLA copolymers with different structures. Figure 7
shows MPEG-b-PLLA copolymers with different surface structures. For the MPEG2-PLLA1
copolymer, its surface morphology and structure are relatively flat. The remaining sample
images exhibit irregular concave–convex structures that have begun to appear in relatively
dense surface morphology, with enhanced copolymer aggregation. In Figure 8, it can be
seen that when the amount of MPEG-b-PLLA added is small, such as PDLA-1, PDLA-2,
PLLA-1, and PLLA-2, the samples all exhibit a flat and smooth surface. As the content of
MPEG-b-PLLA increases, irregular concave–convex structures appear on the surface of the
composite film.
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4. Conclusions

This article describes the use of WAXD, DSC, POM, and other methods to investigate
the crystallization behavior and morphology of MPEG-b-PLLA and its composites with
PDLA and PLLA. The results show that the introduction of MPEG accelerated the crystal-
lization rate of PLLA, and the content of MPEG-b-PLLA had a significant impact on the
crystallinity of PLLA and PDLA. The crystallinity of the composite film increases with an
increase in block copolymer content. The isothermal crystallization of POM indicates that
the addition of PEG promotes the crystallization of the polymer, and PEG chains have a
nucleation effect on the formation of PLLA chain spherulites. During the heating process,
PEG segments act as plasticizers to enhance the interaction between PLLA segments and
form hydrogen bonds. In short, MPEG-b-PLLA copolymers regulate composites to achieve
specific structural forms and offer potential insights for polymer medical materials, such as
self-assembly.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma17092105/s1, Figure S1: FTIR spectra of PLLA, MPEG-b-PLLA;
Figure S2: 1H NMR spectra of MPEG-b-PLLA. References [24,47,48] are cited in the Supplementary
Materials.
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