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Abstract: In the realm of high-tech materials and energy applications, accurately measuring the
transient heat flow at media boundaries and the internal thermal conductivity of materials in harsh
heat exchange environments poses a significant challenge when using conventional direct measure-
ment methods. Consequently, the study of photothermal parameter reconstruction in translucent
media, which relies on indirect measurement techniques, has crucial practical value. Current research
on reconstructing photothermal properties within participating media typically focuses on single-
objective or time-invariant properties. There is a pressing need to develop effective methods for the
simultaneous reconstruction of time-varying thermal flow fields and internal thermal conductivity
at the boundaries of participating media. This paper introduces a computational model based on
the numerical simulation theory of internal heat transfer systems in participating media, stochastic
particle swarm optimization algorithms, and Kalman filter technology. The model aims to enable the
simultaneous reconstruction of various thermal parameters within the target medium. Our results
demonstrate that under varying levels of measurement noise, the inversion results for different target
parameters exhibit slight oscillations around the true values, leading to a reduction in reconstruction
accuracy. However, overall, the model demonstrates robustness and accuracy in ideal conditions,
validating its effectiveness.

Keywords: participatory medium; radiation–conduction coupling; inverse problem; multi-parameter
reconstruction of time-varying photothermal physical properties

1. Introduction

Translucent media, positioned between transparent and opaque media, are charac-
terized by limited optical thickness within specific wavebands. These materials are also
known as particle-containing, participating, absorbing and scattering, or dispersing media,
depending on the research domain or target [1]. Examples of translucent media range from
common substances like water, glass, air, and biological tissues to specialized materials used
in aerospace, defense, and military applications. In these sectors, translucent materials play
vital roles in various components such as spacecraft thermal protection materials, rocket en-
gine plumes, and ceramic parts for high-temperature environments [2–8]. Research on the
photothermal parameter field reconstruction of translucent media is significantly valuable
for advanced technology, non-destructive testing, medical imaging, and clinical practices.
For instance, the development of efficient thermal protection materials is essential for
spacecraft re-entry scenarios in which extreme aerodynamic heating occurs. Understand-
ing photothermal properties such as the thermal conductivity, absorption coefficient, and
temperature distribution is crucial to ensuring the suitability of materials for withstanding
high-temperature environments and designing effective thermal protection systems for
aerospace applications [9–13]. Accurate measurements of these physical parameters are
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essential for evaluating the thermal performance of translucent materials and optimizing
their use in real-world applications.

The increasing complexity of heat transfer systems across various fields has posed
challenges in exploring the thermophysical properties of materials at high temperatures
using traditional direct contact measurement methods. As a result, researchers worldwide
have focused on employing the concept of inverse heat transfer problems to deduce the
thermal properties of materials. The inverse heat transfer problem involves utilizing ob-
servable information from a system to reconstruct and calculate internal characteristics
or boundary parameters. The solution is often unstable and non-unique compared to the
forward heat transfer problem. Cui et al. [14] solved the heat conduction equation of the
second type of boundary condition based on the implicit finite difference method and used
the quantum behavioral particle swarm algorithm to invert the material physical properties
with a high level of accuracy. Zhou et al. [15] solved the problem of non-unique solutions
when converting thermophysical parameters from the space domain to the temperature do-
main by adding the constraint that the thermophysical parameters are piecewise functions
of the temperature. Yin et al. [16] used Abaqus 2019 to solve the forward problem based on
a heat-proof tile structure, combined with Isight 2019 for the inversion, and used the LM
algorithm to effectively invert the identification parameters. Tahmasbi et al. [17] proposed
using the idea of the inverse problem of heat conduction to invert the thermophysical
parameters of carbonized composite materials. Considering that carbonized composite ma-
terials are orthotropic materials, they established a simultaneous inversion of the thermal
conductivity coefficient in the plane and thickness directions using the multidimensional
inversion method. Yan et al. [18] used the cuckoo algorithm as the optimization algorithm
to establish a mathematical model for the nonlinear two-dimensional steady-state heat
conduction inverse problem and discussed the impact of the number of units, the number
of measuring points, the number of nests, and the measurement error on the inversion
results. Yang et al. [19] proposed an improved conjugate gradient algorithm to identify
the thermal physical property parameters of transient heat conduction problems when
dealing with thermal conduction problems in engineering composite materials. In the
forward problem, the integral method is used to obtain the temperature field of transient
heat conduction based on the radial boundary element method. In the inverse problem, the
complex variable function is introduced into the traditional conjugate gradient method,
which improves the accuracy when calculating the sensitivity matrix. Niu et al. [20] pro-
posed a method that combines the Gaussian parameter level set method and regularized
Landweber algorithm to reconstruct the temperature and concentration distribution of
the turbulent reaction flow, which makes up for the lack of prior knowledge of the in-
verse problem of tomography. Lou et al. [21] studied the inverse problem of coupled heat
transfer in one-dimensional emission, absorption, and isotropic scattering participating
media. The scattering coefficient and absorption coefficient of the media were inverted by
the decoupling reconstruction algorithm, and the temperature field inside the media was
reconstructed by the Tikhonov regularization method. Cui et al. [22] solved the forward
problem of radiative–thermal coupling heat transfer by using the domain method coupled
with the finite difference method.

In summary, current research on identifying the thermal physical property parame-
ters of materials primarily focuses on a single-objective parameter inversion, with limited
studies focusing on reconstructing photothermal parameters that vary over time. The
simultaneous reconstruction of multiple targets within translucent media holds significant
theoretical importance for applications such as the non-destructive testing of translucent
materials, high-temperature flame combustion diagnosis, and biological tissue tumor diag-
nosis and therapy. There is a need for in-depth research on time-varying multi-parameter
field reconstruction in translucent media to enhance its practical application value. This
paper conducts a simultaneous optimization and inversion study on the time-varying
boundary heat flow and various internal thermal characteristics of the target translucent
material and finally verifies the accuracy and robustness of the established model.
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2. Materials and Methods
2.1. Forward Model

Given an infinite plate of translucent material, the temperature gradient in the x-
direction significantly exceeds that in the other two directions. Consequently, the heat
transfer system can be simplified to a one-dimensional heat conduction problem, as illus-
trated in Figure 1. The diagram depicts a time-varying high heat flux applied to the left
boundary of the medium. Natural convection heat transfer takes place between the medium
boundary and the environment, with a constant heat transfer coefficient. Furthermore, to
simplify the mathematical analysis, the following assumptions are employed: (1) the physi-
cal properties of the medium are constant, implying that its dimensions remain unchanged
with temperature variations; (2) there is no phase change within the medium throughout
the heat transfer process; and (3) the medium boundary is considered an opaque gray
body boundary.
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Figure 1. One-dimensional translucent medium heat conduction system.

The energy equation of this model in Cartesian coordinate system can be expressed
as follows:

ρcp
∂T(x, t)

∂t
=

∂

∂x

[
λ

∂T(x, t)
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]
− ∂qr

∂x
+ Φ (1)

where ρ represents the density of the medium, kg/m3; cp represents the specific heat
capacity of the medium, J/(kg·K); T(x,t) represents the temperature of point x of the
medium at time t, K; λ represents heat conduction coefficient, W/(m·K); qr represents the
radiant heat flow; and Φ indicates the internal heat source.

For opaque diffuse boundaries, the boundary conditions of the energy equation can
generally be expressed as follows:

εσ
(

T4
s − T4

)
+ εw

(
qr − σT4

)
+ q(t) + qcv + qcd = 0 (2)

where q(t) represents the heat flow on the surface of the medium and εw represents the wall
emissivity. Tw and Ts refer to medium boundary temperature and ambient temperature,
respectively. qr, qcv, and qcd refer to radiative heat transfer, convective heat transfer, and
thermal heat flow on the surface of the medium, respectively.

The corresponding initial conditions can be expressed as follows:

T(x, t)|t=0 = T0 (3)

The corresponding boundary conditions can be expressed as follows:
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where q(r,t) represents the transient heat flow acting on the left boundary, W/m2; h rep-
resents the convection heat transfer coefficient; and Te and Tw represent the ambient
temperature and wall temperature, respectively, K.

The inner node method is used to discretize the solution region, and the radiative
transfer equation and the energy equation are calculated by the discrete coordinate method
and the finite volume method, respectively, to obtain the temperature field of the medium.

2.2. Inversion Model

Define the objective function as follows:

F(x) =
1
2

[
M − P(x)

M

]2
(6)

where x is the characteristic parameter to be inverted, M represents the measured signal,
and P indicates the predicted signal during the inversion calculation process.

If the predicted target parameters fall within the predetermined error threshold, they
are considered close to the actual target characteristics. Otherwise, an iterative correction of
the parameter prediction values is necessary. The predictive distribution of characteristics
undergoes repeated iterative optimization until final target functional size meets the speci-
fied threshold, signifying the completion of thermal characteristics′ inversion calculation.

2.2.1. SPSO Model

If Newton’s iteration method or its improved version is used, the results obtained are
often locally optimal because they depend on the selection of initial parameters. Therefore,
once there is a problem with the selection of parameters, the solution will fail. The particle
swarm algorithm (PSO) [23] is an excellent intelligent computing technology, which is
characterized by small population size, low initial parameter requirements, stable operation,
simple structure, fast convergence, and easy operation. Therefore, it has great practical
significance when dealing with complex nonlinear problems.

PSO functions as a heuristic intelligent optimization technique inspired by the collec-
tive intelligence observed in flocks of birds, fish, and groups of humans. During the quest
for optimal solution, each particle lacks knowledge of exact location of optimal solution but
is aware of the positional relationship between its current position and the optimal solution.
Furthermore, the entire particle swarm can ascertain the position of particle closest to
optimal solution within swarm during each iteration through collaborative mechanisms.
Subsequently, while seeking the optimal solution, each particle determines its subsequent
flight direction and speed based on its individual optimal position, flight direction, and
those of the overall population, as depicted in Figure 2.
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The stochastic particle swarm algorithm (SPSO) [24] is developed on the basis of
the standard particle swarm algorithm, which changes the original straight-line search
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and avoids the “premature” problem of standard PSO. The PSO problem assumes that
in a D-dimensional target search space, there are N particles forming a community, and
Xi = (xi1, xi2, · · · xiD), i = 1, 2, · · · , N is the i-th particle in a D-dimensional vector. The
“flying” speed of the i-th particle is also a D-dimensional vector, and Vi = (vi1, vi2, · · · , viD),
i = 1, 2, · · · , N is the “flying” speed of the i-th particle in a D-dimensional vector.

Let Pbest = (Pi1, Pi2, · · · , PiD), i = 1, 2, · · · , N be the individual extreme value, which
refers to the optimal position searched so far by the i-th particle, and gbest =

(
Pg1 , Pg2 , · · · , PgD

)
is the global extreme value, which refers to the optimal position searched so far by the
entire particle swarm.

When these two optimal values are found, the particle updates its speed and position
according to the following formula:

vid = ω × vid−1 + c1r1(pid − xid) + c2r2

(
pgd − xgd

)
(7)

xid+1 = xid + vid (8)

where v is the speed of the particle; ω is a weighting coefficient and its value is generally
taken as a number from 0.1 to 0.9; x is the current position of the particle; and r1, r2
are random numbers uniformly distributed between 0 and 1. c1 and c2 are called the
learning factor, usually taken as 2. In sociology, c1 and c2 represent the ability to summarize
oneself and learn from outstanding individuals in the group, respectively. The right side
of Equation (6) consists of three parts: “inertia” or “momentum” is the first part, which
represents the tendency of particles to maintain their previous speed, reflecting a particle’s
“habits” of motion; “cognition” is the second part, which represents the tendency of particles
to approach their best historical position, reflecting a particle’s memory or recollection of
its own historical experience; and “society” is the third part, representing the tendency of
particles to approach the best historical position of a group or neighborhood, which reflects
the group’s historical experience of collaboration and knowledge sharing among particles.

When ω = 0, the flight speed of the particle only depends on the current position of the
particle, the historical best position, and the historical best position of the particle group.
The speed itself has no memory. In this way, the particle located in the global best position
will remain stationary, while other particles tend to go to their own best positions and the
weighted center of the global best position. The new evolution equation is as follows:

vi(t + 1) = c1r1(pi(t)− xi(t)) + c2r2
(

pg(t)− xi(t)
)

(9)

xi(t + 1) = xi(t) + vi(t + 1) (10)

Therefore, the new evolutionary equation weakens the global search ability and
strengthens the local search ability. At the same time, when xi = pi = pg, the particles will
stop evolving. In order to improve the global search capability, pg can be retained as the
historical best position of the particle group, and the positions of particles are re-randomly
generated in the search space.

SPSO is widely used because of its efficient search capabilities. It can find the best
solutions among multiple targets and can simultaneously find multiple Pareto optimal
solutions in a parallel manner, thereby improving the efficiency and accuracy of solutions.
SPSO has a wide range of applications. It has the ability to handle various types of objective
functions and constraints. It can be combined with traditional optimization techniques
to improve efficiency and overcome limitations and plays a huge role in multi-objective
optimization problems.

2.2.2. KF Model

Kalman filtering technology (KF) is an efficient recursive filter (i.e., updating the
current time estimation based on the previous time estimation), which can estimate the
state of the dynamic system from a series of noisy observation data. Its main advantage
is that it can handle noise and uncertainty, while providing the ability to update in real
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time. With the development of technology, Kalman filter and its variants are more and
more widely used in modern engineering and science.

The dynamic system described by the following state space model is considered,
including state equation and observation equation [25]. Φ is the state transition matrix, Γ is
the noise driving matrix, and H is the observation matrix [26].

X(k + 1) = ΦX(k) + ΓW(k) (11)

Z(k) = HX(k) + V(k) (12)

where k denotes the discrete time, and X(k) and Z(k) correspond to the state vector and
measurement information of the dynamic system at time k, respectively. W(k) and V(k)
represent process noise and measurement noise, respectively.

In the derivation of KF model, the following two assumptions need to be estab-
lished [27]:

Assumption 1. The process noise W(k) and the measurement noise V(k) are uncorrelated Gaussian
noises with a mean of zero and variance of Q and R, respectively.

Assumption 2. The initial state X(0) of the dynamic system is not related to the process noise W
(k) and the measurement noise V(k).

The Kalman filtering problem can be expressed as follows. Based on the measurement
information {Z(1), Z(2), . . ., Z(k)}, the linear minimum variance estimation result X̂(j/k) of
the state vector X(j) is obtained, and the minimization index can be expressed as follows:

J = E
[(

X(j)− X̂(j/k)
)T(X(j)− X̂(j/k)

)]
(13)

For j > k, j = k, and j < k, corresponding to the predictor, filter, and smoother, respec-
tively. The predictor mainly forecasts the future state. The filter mainly processes the state
noise of the current moment to obtain the optimal estimation of the current moment in real
time. The smoother makes an accurate estimate of the present moment state based mainly
on future information.

Under the performance index, the problem can be reduced to finding projective
as follows:

X̂(j/k) = proj(X(j)/Z(1), Z(2), · · · , Z(k)) (14)

Under the premise of Assumptions 1 and 2, the KF algorithm can finally be expressed
in the following form.

One-step prediction of state equation:

X̂(k + 1/k) = ΦX̂(k/k) (15)

Status update:

X̂(k + 1/k + 1) = X̂(k + 1/k) + K(k + 1)Ẑ(k + 1) (16)

Ẑ = Z(k + 1)− HX̂(k + 1/k) (17)

Filter gain matrix:
K(k + 1) = P(k + 1/k)HTs(k)−1 (18)

s(k) = HP(k + 1/k)HT + R (19)

One step prediction of covariance matrix

P(k + 1/k) = ΦP(k/k)ΦT + ΓQΓT (20)
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Covariance matrix update:

P(k + 1/k + 1) = [In − K(k + 1)H]P(k + 1/k) (21)

In a complete filtering cycle, the calculation process of Kalman filtering algorithm can
be obviously divided into two different stages: the time update stage and the measurement
update stage, according to the sequence of the dynamic system information and the external
measurement information.

3. Results and Discussion
3.1. Parameter Setting

Figure 3 shows a detailed schematic diagram of the experimental device [28]. The
transient heat flow is simulated by installing a thin film heater on the front surface of
the specimen, and the rear surface of the specimen is continuously cooled by a constant-
temperature water mist. In addition, thermocouples are installed 5 mm and 10 mm from
the heating surface to obtain the measurement information.

Figure 3. Schematic diagram of experimental system [28].

The thickness, density, specific heat capacity, and true thermal conductivity of the
medium during the reconstruction process are Lx = 0.02 m, ρ = 3120 kg/m−3, cp = 837 J/(kg·K),
and λ = 40 W/(m·K), respectively. The initial temperature distribution of the medium and
the natural convection heat transfer at the left and right boundaries are T0 = 300 K and
h1 = h2 = 8 W/(m2·K), respectively, and the emissivity of the left and right boundaries of
the medium is 1. The number of discrete grids is Nx = 50, the number of discrete time
layers is Nt = 5000, and the time step is dt = 0.1 s. The real time-varying heat flux acting on
the left boundary of the medium is shown in the following formula:

q(t) =

{
140000 W/m2 500 ≤ tline ≤ 1500
80000 W/m2 other

(22)

In the actual process, the existence of equipment errors and human errors is inevitable.
Therefore, Gaussian white noise must be added to the temperature signal obtained by the
simulation calculation so that the temperature measurement signal in actual engineering
can be simulated more realistically and accurately. The temperature measurement signal
with Gaussian white noise can be expressed by the following relationship:

Tm2 = Tm1 + σς (23)

where Tm2 is the measured temperature after adding the measurement noise; Tm1 represents
the precise value of the boundary temperature calculated by forward modeling; ς represents
a random array consistent with a normal distribution with a mean value of 0 and a standard
deviation of 1; and σ is the standard deviation.
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The transient heat flow and internal thermal conductivity of the medium boundary
are reconstructed based on the simulated measurement signals. In order to effectively
evaluate the quality of the reconstruction results, an evaluation factor is introduced between
the reconstruction target coefficient and the real coefficient, that is, the relative error, as
shown below:

ε =

∣∣∣∣ xr − xt

xt

∣∣∣∣ (24)

where xr and xt represent the reconstructed value and exact value of the target coefficient,
respectively.

3.2. Reconstruction Results of Pure Heat Conduction Problem

On the basis of the simulation process of the aforementioned forward problem and the
SPSO solving model above, the time-varying distribution of the internal thermal conduc-
tivity of the translucent medium and the boundary heat flux density were reconstructed
and studied. In the research process, the actual values of the multi-objective parameters
are given in advance. Through a forward simulation, the temperature information at the
specific location of the medium is obtained, which is used as the measurement signal
required for the real-time reconstruction of the boundary heat flow and thermal properties.

In the ideal situation without adding noise and in the presence of 3%, 5%, and 10%
measurement noise, respectively, the SPSO algorithm is used to simultaneously reconstruct
the time-varying heat flow q(t) at the medium boundary and the internal thermal conductiv-
ity λ. The number of populations in the inversion model is set to 15, the self-learning factor
is two, and the group learning factor is two. The reconstructed boundary heat flow and
relative error when the number of layers is 5000 under different circumstances are shown in
Figures 4–7, respectively. Additionally, the reconstructed thermal conductivity and relative
error when the number of iterations is 200 are shown in Figures 8–11, respectively.
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Figure 9. Reconstruction results with 3% noise added. (a) is the comparison between the reconstructed
thermal conductivity and the real thermal conductivity after adding noise; (b) is the relative error of
the results.
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Figure 10. Reconstruction results with 5% noise added. (a) is the comparison between the recon-
structed thermal conductivity and the real thermal conductivity after adding noise; (b) is the relative
error of the results.
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error of the results.

From Figures 4–7, with the increase in random measurement noise, the oscillation effect
of the boundary heat flow near the actual value in the convergence process deteriorates
significantly. At the same time, the relative error margin also increased, and the maximum
error value increased from about 0.05 to about 0.25. But, fortunately, even with the addition
of 10% measurement noise, more reasonable heat flow reconstruction results can still
be obtained based on the current algorithm, indicating that the tracking ability of the
established inversion model can effectively deal with the impact of increased random
measurement noise.

As can be seen from the reconstructed results of thermal conductivity in Figures 8–11,
with the increase in random measurement noise, the deviation degree of the reconstructed
thermal conductivity from the real value increases slightly, and the reconstructed value
of thermal conductivity changes from 39.90 W/(m·K) to 39.79 W/(m·K). On the other
hand, the convergence value of the relative error also increases slightly with the addition of
measurement noise, and the maximum error value increases from about 0.003 to 0.005. Even
when 10% measurement noise is added, the thermal conductivity can still be accurately
reconstructed based on the current algorithm, indicating that the established inversion
model’s ability to track the thermal conductivity is relatively weakly affected by random
measurement noise.
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Table 1 reflects the model reconstruction time after adding different measurement
errors; the objective function value when the inversion calculation reaches convergence; the
relative error value of the thermal conductivity coefficient; and the average relative error
value of the boundary time-varying heat flow at this time. Since the discrete time layer
selected for the model is larger, the overall calculation time is longer. The convergence value
(optimal fitness) of the objective function decreases as the measurement error increases.

Table 1. Related reconstruction data under different measurement errors.

Measurement Error Time (s) Object Function Error (λ) Average Error (q)

0% 6074.2 6.1472 × 10−26 0.0036 0.0392

3% 6138.9 8.7431 × 10−20 0.0043 0.0447

5% 6346.2 6.5001 × 10−16 0.0046 0.0494

10% 6675.5 3.2831 × 10−13 0.0053 0.0516

On the whole, when the established SPSO model is used to simultaneously reconstruct
the internal thermal conductivity of the model and the boundary time-varying heat flow,
the inversion accuracy of the thermal conductivity is significantly better than the inversion
ability of the boundary heat flow. Taken together, when the established PSO model is used to
simultaneously reconstruct the internal thermal conductivity of the model and the boundary
time-varying heat flow, the inversion accuracy of the thermal conductivity is significantly
better than the inversion ability of the boundary heat flow. Even if 10% measurement noise
is introduced into the model, the relative error of the thermal conductivity is 0.53%, and the
average relative error of the boundary time-varying heat flow is 5.16%. The reconstruction
accuracy of different target parameters is still within the ideal range, which proves that
the established model, which simultaneously reconstructs multiple quantities of thermal
radiation, has good levels of robustness and effectiveness.

3.3. Reconstruction Results of Radiation Thermal Coupling Problem

Under a high temperature, the heat transfer of a porous material solid wall is composed
of two parts: radiation and heat conduction. At this time, the separate heat conduction
problem can no longer meet the actual needs of industry. Therefore, this section performs
a simultaneous inversion of the semi-transparent solid wall emissivity and internal heat
source based on the radiation-to-thermal coupling model and the KF model. The recon-
struction time is 500 s. The final reconstruction results and errors of thermal radiation
characteristics are shown in Figures 12 and 13.
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Figure 13. The internal heat source results from the reconstruction of multiple parameters. (a) is the
iterative convergence process of the internal heat source; (b) is the reconstruction error of the internal
heat source.

In the KF model of the multi-volume reconstruction at the same time, compared with
the emissivity, the convergence speed of the reconstruction of the heat source in the medium
is relatively slow, but the convergence process is smoother. When the calculation reaches
convergence, the reconstruction error of the wall emissivity and the internal heat source is
in the order of 10−3, which proves the accuracy of the established multi-volume model of
thermal radiation characteristics.

In engineering practice, measurement noise is often unavoidable. Therefore, in order
to verify the effectiveness of the current KF reconstruction model, it is necessary to analyze
the influence of measurement noise on the reconstructed emissivity and internal heat
source distribution in detail. Figures 14 and 15 show the wall emissivity and internal heat
source distribution and calculation error based on the KF reconstruction under different
measurement noises of 0.1 K, 0.2 K, and 0.3 K, respectively. It can be found from the
figure that even if measurement errors are added, the reconstructed internal heat source
and emissivity values gradually converge to the real value within 150 s after the start of
reconstruction, which proves that the model has a certain near-real-time reconstruction
ability and a good level of robustness.
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Figure 15. Reconstruction results of internal heat source with different measurement noise. (a) is the
iterative convergence process of the internal heat source; (b) is the reconstruction error of the internal
heat source.

As the level of measurement noise rises, the algorithm’s stability is somewhat im-
pacted, leading to fluctuations in the reconstruction results around the actual value. How-
ever, the reconstruction error remains within 1%, indicating it has a satisfactory level of
credibility and maintains an ideal level of accuracy. On the other hand, the time delay of
the reconstruction parameters almost does not change with the measurement error. This is
because in the current study, it is assumed that the measurement noise and its covariance
matrix are independent of each other, and the Kalman filter gain is only related to the
covariance of the measurement noise and has nothing to do with itself, so the measurement
noise change does not affect the tracking ability of the KF technology.

The KF gain has a strong correlation with the measurement noise covariance. It
is necessary to study the influence of the measurement noise covariance change on the
reconstruction quality and speed of the established solid wall radiation characteristic
parameter inversion model. Figures 16 and 17 show the wall emissivity and internal heat
source reconstruction process and calculation error based on Kalman filter technology
when the measurement error covariance values are 0.1, 0.5, 1, 3, and 5, respectively.
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Figure 17. Reconstruction results of internal heat source under different levels of measurement error
covariance. (a) is the iterative convergence process of the internal heat source; (b) is the reconstruction
error of the internal heat source.

The calculation results demonstrate that as the measurement error covariance in-
creases, the convergence speed towards the actual characteristic parameters progressively
decelerates. The process of reconstructing the emissivity can approach the real emissivity
more smoothly within 250 s. When the measurement error covariance R = 5, the error of
the emissivity reconstruction convergence is near 5%, which is within the ideal error range.
Compared with the emissivity, after adding the same measurement error covariance, the
reconstruction quality of the internal heat source is relatively low, and the reconstruction
convergence speed is relatively slow. When R ≤ 1, the process of reconstructing the internal
heat source can smoothly approach the real internal heat source within 500 s, and the
reconstruction error does not exceed 5%. When R > 1, there is still a gap between the
process of reconstructing the internal heat source and the true value within 500 s. Currently,
the reconstruction error is about 10%, which is still within the acceptable range.

4. Conclusions

This work focuses on the multi-parameter reconstruction of time-varying photother-
mal properties in participating media. Initially, a multi-parameter reconstruction model
for the pure thermal conductivity issue is developed utilizing SPSO. Subsequently, multi-
objective inversion optimization is achieved through the application of KF in addressing the
coupling problem of radiation thermal conductivity. The results indicate that the inversion
effect of the thermal conductivity is better than that of the boundary time-varying heat flux.
As the measurement noise increases, the reconstruction accuracy and convergence stability
of the thermal conductivity and the boundary time-varying heat flow with a discrete di-
mension of 5000 are reduced to varying degrees. In particular, the reconstruction effect of
the boundary time-varying heat flow has a stronger oscillation or even divergence. After
introducing 10% measurement noise, the relative error data of different target parameters
are still in the ideal range, which proves the robust effect of the time-varying multi-variable
model reconstructed by SPSO.

In addition, the results of the simultaneous reconstruction of multiple total thermal
radiation characteristics of solid wall objects based on KF technology are close to the real
values. The model has a high level of reliability as the reconstruction error is close to zero.
Even if the internal heat source has a crosstalk effect on the reconstruction of the surface
emissivity, this does not significantly affect the reconstruction accuracy of the internal
heat source. With the increase in measurement noise, the reconstruction process still has a
high level of computational efficiency, which makes near-real-time reconstruction possible.
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Moreover, the change in measurement noise does not affect the tracking ability of the
inversion algorithm. The re-construction convergence stage only generates more obvious
fluctuations with the increase in noise, but the reconstruction error is still within the ideal
range, and the reconstruction result is reliable, which proves the robustness of the model.
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