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Abstract: The corrosion behavior of a hybrid laminate consisting of laser-structured aluminum
EN AW-6082 ∪ carbon fiber-reinforced polymer was investigated. Specimens were corroded in
aqueous NaCl electrolyte (0.1 mol/L) over a period of up to 31 days and characterized continuously
by means of scanning electron and light microscopy, supplemented by energy dispersive X-ray
spectroscopy. Comparative linear sweep voltammetry was employed on the first and seventh day
of the corrosion experiment. The influence of different laser morphologies and production process
parameters on corrosion behavior was compared. The corrosion reaction mainly arises from the
aluminum component and shows distinct differences in long-term corrosion morphology between
pure EN AW-6082 and the hybrid laminate. Compared to short-term investigations, a strong influence
of galvanic corrosion on the interface is assumed. No distinct influences of different laser structuring
and process parameters on the corrosion behavior were detected. Weight measurements suggest a
continuous loss of mass attributed to the detachment of corrosion products.

Keywords: CFRP; corrosion exposure; EN AW-6082; galvanic corrosion; hybrid laminate; intrinsic
bonding; laser structuring; linear sweep voltammetry; materials engineering; surface modification

1. Introduction

The improvement of lightweight structures for the automotive sector is an often-
considered approach for reducing energy demand during operation. Sector-specific mate-
rials, e.g., carbon fiber-reinforced polymers (CFRP) with high specific strength, and light
metals, such as aluminum with high impact strength and excellent formability, are predes-
tined for synergetic hybridization. This combination of the individual advantages can be
achieved by means of multi-material systems, which are also termed hybrid structures [1–4].
The joining technology is of utmost importance as it defines the load transmission within the
hybrid structure. Common techniques are bolting, blind riveting, and welding, which lead
to defects or thermal disruptions [5,6]. An alternative technique is adhesive bonding [7].
When adhesively bonded materials originating from different material groups, surface
properties are important regarding joining technology, while different electrochemical
potentials are challenging with respect to corrosion protection [8,9].

A commonly used aluminum alloy that inherits beneficial corrosion resistance and
mechanical strength is EN AW-6082-T6 [10,11]. The surface functionalization of this alloy,
which includes cleaning and surface structuring, is possible via laser pre-treatment [12,13].
Depending on the pretreatment parameters, this functionalization can increase the joint
strength [14–16]. The combination of laser structuring of the metal component and co-
curing of the metal sheet and CFRP allows a performant hybrid system made of EN
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AW-6082 ∪ CFRP [17]. Nevertheless, galvanic insulation of the carbon fibers and the
aluminum alloy surface cannot be ensured. The enlarged surface roughness due to laser
structuring enhances this effect by producing a larger surface area and material tips, which
lead to a greater probability of direct fiber–metal contact. Therefore, it is necessary to
characterize the corrosion behavior by means of short-term corrosion testing procedures,
i.e., linear sweep voltammetry (lsv) [18,19], and long-term corrosion testing, i.e., corrosion
exposure testing with a focus on laser structure. The corrosion reaction is triggered by the
CFRP component, which itself usually remains undamaged, while the metal component
dissolves [20]. EN AW-6082 is susceptible to pitting corrosion and fragmentation of the
oxide layer in NaCl solutions [21]. The combination of both leads to enhanced corrosion
processes [20]. This study aims to understand the short- and long-term corrosion morphol-
ogy evolution of a hybrid laminate consisting of EN AW-6082 ∪ CFRP when considering
different laser structuring parameters at the surface of the Al component. Excitation linear
sweep voltammetry and corrosion exposure tests were performed. The mass changes
were evaluated. The corrosion morphology evolution was characterized by means of light
microscopy. The corrosion products were classified according to their appearance and
composition via SEM and EDX.

2. Materials and Methods
2.1. Material

The hybrid laminate consists of laser structured EN AW-6082 T6 sheet (Al), t = 2 mm,
intrinsically bonded to five unidirectional layers CFRP Sigrapreg C (U230 0/NF E20/39%;
SGL Carbon SE, Wiesbaden, Germany) in a P200S hot press (VOGT Labormaschinen
GmbH, Berlin, Germany), as shown in Figure 1a. Laser structuring was realized with a
Nd:YAG-Laser CL20 (Clean Lasersysteme GmbH, Herzogenrath, Germany), wavelength
λ = 1064 nm, using three sets of parameters (lp), varying laser frequency f, laser power P,
laser spot overlap o, and number of scans N, as listed in Table 1.
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Figure 1. (a) EN AW-6082 ∪ CFRP embedded in epoxy resin and polished up to grain size of 1 mm,
(b) micrograph of the three different laser parameter lp1–3 and as-rolled condition. CFRP component
on top with fiber orientation horizontal and Al component (lp0) on the bottom, (c) experimental
setup for corrosion exposure tests in aqueous solution of H2O and NaCl consisting of eight single
epoxy-embedded specimens of EN AW-6082 ∪ CFRP and one epoxy-embedded specimen of three
sheets of EN AW-6082.

Table 1. Parameter of laser structuring (lp) on EN AW-6082 T6 sheet consisting of laser frequency f,
laser Power P, laser spot overlap o, and number of scans N [22].

Laser Parameter f (kHz) P (W) o (10−2) N

lp0 N/A N/A N/A N/A

lp1 60 20 10 5

lp2 40 20 50 1

lp3 60 15 50 1
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After laser structuring, CFRP was bonded to Al via co-curing. The hybrid systems,
tested via corrosion exposure tests, were produced with a temperature T = 150 ◦C and
pressure p = 0.5 MPa (for lp2) or p = 0.8 MPa (for lp1) for t = 5 min. Additional specimens
with the following bonding parameters for lsv investigation of the influence of laser pa-
rameters were used: T = 160 ◦C, p = 0.8 MPa, t = 20 min. The resulting morphology of the
laser structure can be seen in Figure 1b. Details of all used specimens are listed in Table 2,
including the total exposure time Σtexp and reference specimen.

Table 2. Prepared specimen configuration and experimental procedure for corrosion exposure tests
of EN AW-6082 ∪ CFRP in aqueous solution of 0.1 molNaCl/LH2O, including an indication of whether
lsv was performed.

Parameter Set Fiber Direction (◦) Number lsv Total Exposure Time (h)

lp1 90 K1lp1 yes 168

lp1 0 K2lp1 yes 168

lp1 0 K3lp1 no 744

lp1 90 K4lp1 no 744

lp2 0 K1lp2 no 168

lp2 90 K2lp2 no 168

lp2 90 K3lp2 no 744

lp2 0 K4lp2 no 744

EN AW-6082 N/A ref no 744

lp0 0 lp0 yes N/A

lp1 0 lp1 yes N/A

lp2 0 lp2 yes N/A

lp3 0 lp3 yes N/A

EN AW-6082 N/A Al yes N/A

CFRP N/A CFRP yes N/A

2.2. Specimen Preparation

Eight specimens, four pretreated with lp1 and four pretreated with lp2, of EN AW-6082
∪ CFRP laminate were prepared with two different fiber orientations, each (90◦ and 0◦ with
regard to longitudinal fiber direction) for corrosion exposure testing (initial letter “K”). Two
different fiber orientations were chosen to take the different distribution of carbon fiber
volume content at the interface into account. For lsv, four specimens with lp0 to lp3 were
prepared. Additionally, two EN AW-6082 specimens and one specimen of pure CFRP were
provided. All specimens were embedded in epoxy resin EpoFix (Struers GmbH, Willich,
Germany), ground, and polished up to particle size s = 1 µm. A prepared specimen is
shown in Figure 1a. For characterization of the epoxy water absorption, a total of thirty
cylindrical specimens of pure epoxy were prepared, using two diameters (d1 = 40 mm;
d2 = 30 mm) and five filling levels (5/5 to 1/5), with a coverage of three specimens for each
diameter. This resulted in six sets of specimens, three per diameter and five filling levels
each, i.e., ten different masses. To ensure conductivity, the back side of specimens, used for
lsv, were exposed by grinding and coated with conductive silver paint.

2.3. Experimental Setup

All weight measurements were performed using an analytical scale AUW220D (Shi-
madzu Corp., Kyoto, Japan), e = 1 mg; d = 0.01 mg. For iterative condition monitoring, a
digital light microscope VHX-7000 (Keyence Corp., Osaka, Japan) was employed. Corrosion
products were characterized via a scanning electron microscope (SEM) Mira 3 XMU (Tescan,
Dortmund, Germany) and energy-dispersive X-ray spectroscopy (EDX) with Octane Elect
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Plus detector (Ametek GmbH, Meerbusch, Germany). Surface proportions of Al and CFRP
were measured by means of ImageJ 1.53r.

For linear-sweep voltammetry, a three-electrode setup in a customized PMMA cell, de-
scribed in [18], and a Gamry Interface 1000 potentiostat (Gamry Instruments Inc., Warmin-
ster, PA, USA) with Ag/AgCl as reference inside of a Luggin capillary (RE-1CP, ALS Co.,
Ltd., Tokyo, Japan), with a constant potential of 45.3 mV against saturated calomel elec-
trode (RE-2BP, ALS Co., Ltd., Tokyo, Japan; +0.242 V vs. standard hydrogen electrode [23])
was employed.

2.4. Testing Method

Specimens for corrosion exposure testing were weighed, characterized via light mi-
croscopy, and placed in a beaker, as shown in Figure 1c, filled with 0.1 mol/L NaCl
(purity > 99.8%, Ca < 0.01%, Mg < 0.002%, abherents < 0.0015%, batch 073196635; Carl
Roth GmbH, Karlsruhe, Germany) in deionized H2O (conductivity κ < 2.5 µS/cm) equal to
11.688 gNaCl/2 LH2O. Conductivity of the mixed solution was measured (InLab 742 Mettler
Toledo, DC, USA). All specimens were investigated via light microscopy after 24 h, 48 h,
72 h, 96 h, and 168 h. Additionally, four selected specimens were investigated after 336 h,
504 h, and 744 h to characterize the long-term corrosion evolution at the surface. Before light
microscopy analysis, specimens were dipped into deionized H2O, air-dried, and weighed.
All exposed specimens were replaced in the beaker after light microscopy measurements.
The medium was replaced every 168 h. To prevent movement, evaporated water was
not replaced. The short-term corrosion behavior of K1lp1 and K2lp2 (see Table 1) was
investigated by means of lsv in accordance with ISO 17475 [24] before corrosion exposure
tests and after texp = 168 h. Further specimens, no. lp0 to lp3, CFRP, and Al (see Table 1)
were investigated by means of lsv. After a 1 h set-up time to reach open circuit potential
(OCP), the measurement was realized with a potential feed ∆Ė = 1 mVs−1 and a potential
range ∆E of ±300 mV vs. OCP. After the first lsv of K1lp1 and K2lp1, before corrosion
exposure, the specimens were polished again. The second measurement was conducted on
the corroded surface. Specimens lp0 to lp3 were tested three times each. After each lsv, the
surface was polished again.

3. Results
3.1. Specimen Dimensions

The diameter and height of embedded specimens, as well as the area of the CFRP and
Al fractions, were measured and are listed in Table 3. Due to the geometries of the initial
EN AW-6082 ∪ CFRP with regard to fiber orientation, the volume of specimens with 90◦

orientation is higher, with areas of approximately 11–12 mm2 CFRP and 18–19 mm2 Al,
while for 0◦ orientation, the areas are approximately 29–32 mm2 CFRP and 19–20 mm2.

Table 3. Specimen dimensions and partial surfaces of CFRP and Al, as well as the total volume.

Number Diameter
(mm)

Height
(mm)

Area CFRP
(mm2)

Area Al
(mm2)

Volume
(mm3)

K1lp1 29.8 17.3 11.26 18.02 12,054

K2lp1 30.0 11.3 19.25 30.18 7988

K3lp1 29.8 12.5 19.70 31.11 8703

K4lp1 29.8 17.4 18.23 11.84 12,091

K1lp2 30.1 12.2 19.17 31.53 8660

K2lp2 29.8 17.1 10.47 18.64 11,935

K3lp2 30.0 17.1 10.94 18.58 12,080

K4lp2 29.9 12.7 17.82 29.63 8927

ref 30.0 11.4 00.00 00.00 8062
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3.2. Weight Measurement

The weights of the specimens continuously increased in a range of 0.04 g during
the testing period. Detailed records and are shown in Table 4 for over a period of 744 h,
i.e., 4 weeks. The percentage increases were calculated with regard to initial weights of
0.25–0.27%, while the mass increase for reference EN AW-6082 reached ∆m/m0 = 0.38%.
This is shown in Figure 2a. The weight increase in reference specimens was distinctly
higher than the weight increases in hybrid specimens. Investigations with pure epoxy
indicate a continuous solution absorption during a time period of 31 days. The percentage
increases were calculated with regard to initial weights for the arithmetic mean and fluc-
tuated between ∆m/m0 = 0.2% for the highest initial weight of approximately m = 42 g
to ∆m/m0 = 0.5% for an initial weight of m = 6 g, as shown in Figure 2b. The percentage
weight increase is generally higher for specimens with lower initial weights. The blue area
in Figure 2b represents the maximum percentage of weight increase, which was measured
for hybrid specimens K4lp2 in corrosion exposure tests.

Table 4. Results of weight measurements during corrosion exposure testing.

Weight
(g)

0 h
(D0)

24 h
(D1)

48 h
(D2)

72 h
(D3)

96 h
(D4)

168 h
(W1)

336 h
(W2)

504 h
(W3)

744 h
(W4)

K1lp1 14.6750 14.6802 14.6844 14.6855 14.6880 14.6934 n.a. n.a. n.a.

K2lp1 10.5495 10.5519 10.5555 10.5567 10.5591 10.5637 n.a. n.a. n.a.

K3lp1 10.8513 10.8587 10.862 10.8629 10.8651 10.8706 10.8759 10.8792 10.8794

K4lp1 14.6666 14.6734 14.6788 14.6791 14.6817 14.6886 14.6959 14.7008 14.7012

K1lp2 10.5432 10.5462 10.5493 10.5505 10.5526 10.5568 n.a. n.a. n.a.

K2lp2 10.6009 10.6085 10.6130 10.6136 10.6166 10.6217 n.a. n.a. n.a.

K3lp2 13.6981 13.7044 13.709 13.7094 13.7129 13.7174 13.7248 13.7296 13.7301

K4lp2 11.1066 11.1121 11.1150 11.1162 11.1190 11.1258 11.1324 11.1376 11.1379

ref 10.1690 10.1740 10.1783 10.1797 10.1828 10.1893 10.1976 10.2035 10.2055
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Figure 2. (a) Percentage increase in corrosion exposure specimen mass with regard to initial weight
over time. The lines between measurements describe linear approximations for enhanced visual-
ization. (b) Percentage increase in pure epoxy specimens with regard to initial weight over time.
The initial weight m0 is listed in grey, inside a circle. The maximum percentage of mass increase in
corrosion exposure specimens is plotted as blue area. Each triangle describes one measurement. The
lines between triangles describe linear approximations for enhanced visualization. Two different
diameters, d40 = 40 mm and d30 = 30 mm, were considered. The conductivity of the solution contin-
uously increased, while the water volume decreased due to evaporation. This led to an increase in
NaCl concentration from c0 = 0.10 molNaCl/LH2O to c0 = 0.11 molNaCl/LH2O within one week, which
is shown in Table 5.
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Table 5. Evaporated water over a time period of one week and the solution (s) conductivities κ at the
start and end of solution usage with s1: t = 0 h. . .168 h; s2 t = 168 h. . .336 h; s3 t = 336 h. . .504 h, and
s4 t = 504 h. . .744 h. Resulting c is calculated by c0 divided by remaining water volume.

Batch Initial κ
(mS/cm)

Final κ
(mS/cm)

Remaining Water
Volume (mL)

Resulting c
(mol/L)

s1 10.50 11.24 1791 0.1117

s2 10.58 10.89 1817 0.1101

s3 10.29 11.76 1803 0.1109

s4 10.35 11.12 1763 0.1134

3.3. Linear Sweep Voltammetry

The OCP for both fiber orientation showed comparable OCP and current density icorr
before exposure testing. This can be seen in Figure 3a. After one week of exposure testing,
both Tafel plots, i.e., icorr and OCP, reached comparable trajectories.
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Figure 3. Tafel plots of lsv with logarithmic ordinate for comparison of short-term corrosion behavior:
(a) before (pre) and after (post) corrosion exposure testing and (b) short-term corrosion behavior with
regard to different lp, as well as pure CFRP and Al.

Comparing lp, lsv detects no differences within a statistical scatter, as shown via Tafel
plots in Figure 3b. Pure Al shows higher OCP, while icorr was within a comparable range
to the hybrid material. Lsv on CFRP shows distinct differences, as shown in [18]. When
comparing the different production parameters between K-series and lp-series (compare
Figure 3a,b), no remarkable differences were detectable. Due to the strong oscillation
of the OCP in the presence of carbon fibers and the passivation effects of Al, a reliable
determination of the corrosion current density, and therefore determination of the mass
loss based on Faraday’s law, was not possible.
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3.4. Microscopic Analyses

The corrosion evolution during exposure testing showed the continuous progress of
corrosion development on the surface morphology over the first seven days until week one
(W1) for all specimens. Between W1 and week two (W2), and between W2 and week three
(W3), there is no distinct change of surface pit morphology, but an increase of corrosion
products at EN AW 6082 ∪ CFRP. The evolution of the surface morphology at the reference
specimens, as shown in Figure 4, starts at random corrosion nuclei and forms randomly
distributed corrosion pits over the whole surface after 24 h (D1). With further corrosion
progress, the corrosion pit diameters increase until W1. White, salt-like corrosion products
develop at the rims of the corrosion pits, until the entire surface is covered at W1; see
Figure 4. In this state, few new corrosion pits emerge (Figure 4 (A)) and the development
of new corrosion products and morphology at the surface stagnates.
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Figure 4. Depiction of corrosion evolution at EN AW-6082 over a time period of three weeks with
recordings before exposure (D0), after one, two, and four days (D1, D2, D4) and after one, two, and
three weeks (W1, W2, W3). Recorded with confocal light source. The evolution of one example area
is marked via in a white box. (A) Traces the appearance of one pitting hole after two weeks via arrow.

SEM investigations revealed that the surface structure of CFRP at the interface remains
intact after a corrosion exposure time of t = 168 h, as shown in Figure 5. Despite no visible
direct contact between carbon fibers and Al, the Al component is peeled off and forms
a trench at the interface (see Figure 5a). The oxide layer shows cracks and aluminum
oxides adhere randomly at the surface. Corrosion products, which appear white under
light microscopy, are shown in Figure 5b and can be identified as aluminum oxides.

In the case of EN AW-6082 ∪ CFRP hybrids, the number of corrosion pits at the Al–
overall surface is distinctly lower, but the diameter is higher. A representative overview for
two different fiber orientations and lp is shown in Figure 6.

From D1, salt-like, white corrosion products develop around the interface, indepen-
dent from fiber orientation or lp. The diameter of the appearing corrosion products is
distinctly higher than the pitting hole itself. From D1 to D2, the quantity of detectable
single corrosion pits next to the interface is higher when testing in the 0◦ fiber orientation.
From D3, the distribution of corrosion products at the surface is similar, regardless of the lp
and fiber orientations. From W1 to W3, the amount of corrosion products increases while
the amount of corrosion pits remains similar. Only a minor growth in diameter, as visible
in Figure 4, is observed. Due to the drying process (air-drying between the extraction
actions), the corrosion products are U-shaped with streamlined distribution around the
corrosion pits.

After lsv, Al exhibited no increased corrosion at the interface, as shown in Figure 7.
Corrosion pits are distributed with a quantity comparable to corrosion exposure tests at
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EN AW-6082 ∪ CFRP, while no corrosion products adhere at the surface. Surfaces of pure
Al show the same morphology as the surfaces of EN AW-6082 ∪ CFRP. EDX on corrosion
products at the interface areas of EN AW-6082 ∪ CFRP revealed Al, C, and O, as well as
small signals for Mo and Cl, but not Na, as shown in Figure 8.
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Figure 5. Representative SEM micrographs of surface morphology and corrosion products after an
exposure time of t = 168 h on EN AW-6082 ∪ CFRP at specimen K2lp2. (a) Overview of the interface
with visible trench at the Al component at the interface and corrosion products at the surface;
(b) detailed overview over salt-like white corrosion products.
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Figure 6. Depiction of corrosion evolution at EN AW-6082 ∪ CFRP over a time period of three weeks
with recordings before exposure (D0), after one, two, three, and four days (D1, D2, D3, D4), and
after one, two, and three weeks (W1, W2, W3) under consideration of fiber orientation and lp, using
confocal microscopy for observation. The fiber orientation in length direction is marked with an
arrow, the fiber orientation in view direction is marked via dot.
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4. Discussion

lsv and corrosion exposure testing did not show differences in the corrosion behavior
for specimens with different laser pretreatments and production parameters. The ratio of
the local surface increase at the interface to the total proportion of the Al component on
the overall surface is small. Therefore, there is no quantifiable acceleration of corrosion
processes during lsv and exposure testing with regard to different laser structuring after
joining. Furthermore, it cannot be ensured that all embedded CFRP fibers are conductively
connected, despite the conductive silver coating. Especially when orientated in a transverse
direction, the inter-fiber contacts are responsible for electric conductivity. The investigations
of Zappalorto et al. [25] and Zhao et al. [26] have proven the distinctly higher electric
resistivity in out-of-plane orientation for CFRP. The reason for this is the local insulation of
fibers against each other and against the Al component. When orientated in the transverse
direction (the fiber’s longitudinal axis is transverse to specimen height), the fibers are
not connected to the counter-side and are insulated against each other via the matrix.
When orientated in the longitudinal direction (the fiber’s longitudinal axis is parallel to
the specimen height), it is assumed that the higher conductivity of aluminum leads to the
conduction of current via Al. As already stated in a previous publication [18], the OCP
for EN AW-6082 ∪ CFRP is decreased compared to pure EN AW-6082, while the corrosion
current density (y-axis shift, Figure 3) reaches a similar range. Comparable results for CFRP
and EN AW-5754-O were observed by Li et al. [6] under the influence of a more aggressive
medium (3.5 wt% NaCl). Additionally, it must be considered that it is not possible to
distinguish between the conductive and non-conductive areas of the CFRP component
after hybridization, i.e., the areas that were actually tested and those that remained non-
conductively enclosed by the epoxy resin or are epoxy resin. It has to be assumed that the
real surface area of EN AW 6082 ∪ CFRP exposed to corrosion processes and the medium
was smaller than the total surface of EN AW-6082 ∪ CFRP, which was used to calculate icor.
Based on those considerations, it is assumed that the real corrosion current density has to
be calculated on basis of the EN AW-6082 component of the EN AW-6082 ∪ CFRP hybrid.
The narrowed surface area leads to a locally higher icor than assumed.

Weight measurements indicate a mass decrease by rinsing before microscopy. The
epoxy resin of the mount absorbs more solution than the material of the embedded hybrid
specimens’ increase in mass, indicating a more stable adhesion of corrosion products on
EN AW 6082 compared to the surface of hybrid specimens. Therefore, continuous mass
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loss from EN AW-6082 ∪ CFRP is evident. This implies continuous corrosion processes at
the aluminums surface at the interface.

The light microscopic analyses show a strong influence of the CFRP component on
the corrosion evolution: large amounts of corrosion products continuously agglomerate at
the interface, while the corrosion products at the reference material, pure Al, are evenly
distributed. Additionally, only randomly distributed, individual points of the Al compo-
nent with no direct contact to the interface develop corrosion pits. This is observed through
lsv and corrosion exposure testing. SEM investigations confirm that the Al component
dissolves while the CFRP component remains intact. The greatest loss of material occurs
directly at the interface, which indicates a strong influence of galvanic corrosion. The lsv
measurement of EN AW-6082 ∪ CFRP causes no agglomeration of corrosion products at the
interface and generates a similar corrosion pit pattern to exposure testing. Therefore, it can
again be assumed that the conductivity of the carbon fibers is restricted. Overall, there is a
strong influence of galvanic corrosion. Due to the roughness peaks, the surface texture of
EN AW-6082 provides randomly distributed contact points to carbon fibers (compare [5]).
The corrosion morphology of the reference material during corrosion exposure testing,
when compared to the morphology of EN AW-6082 ∪ CFRP, indicates that the interface
acts like a sacrificial anode for the aluminum component without direct contact to CFRP at
EN AW-6082 ∪ CFRP. Although the surface areas at the EN AW-6082 ∪ CFRP interface will
have a different degree of direct connection to CFRP fibers, there is no global difference, as
the PDP measurements have shown. Therefore, it can be assumed that the laser structuring
has no effect on the global corrosion properties of the EN AW-6082 ∪ CFRP hybrid.

The EDX measurements suggest that the formed corrosion products consist of alu-
minum hydroxide. Traces of Cl further indicate the conversion of aluminum chlorohy-
drate [27]. Unlike in [6], without contact to galvanize steel, dawsonite could not be detected.
The results also indicate that there are no remaining traces of NaCl after rinsing.

5. Conclusions

The results of this investigation of the corrosion evolution of a hybrid laminate con-
sisting of laser-structured EN AW-6082 ∪ CFRP under the influence of NaCl electrolyte
(0.1 mol/L) can be summarized as follows:

1. Galvanic coupling and passivation of the Al component, limited conductivity of
the carbon fibers, and the random distribution of exposed fibers at specimen cut
leads to high statistical scatter of the lsv measurement as well as uncertainties in the
determination of the true surface and therefore limits the applicability of lsv for the
hybrid material to qualitative comparisons.

2. A continuous mass loss was detected during corrosion exposure tests and could
be allocated to the direct contact region of the interface, proving the dominance of
galvanic corrosion on the long-term corrosion evolution of EN AW-6082 ∪ CFRP, while
the corrosion mechanism of pure EN AW-6082 under same condition was identified
as pitting corrosion. The interface acts comparably to a sacrificial anode for the Al
base material.

3. Corrosion products were identified as aluminum oxides.
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