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Abstract: This mini-review presents the fabrication methods for polysaccharide composite materials
that employ self-assembled chitin nanofibers (ChNFs) as functional components. Chitin is one of
the most abundant polysaccharides in nature. However, it is mostly not utilized because of its
poor feasibility and processability. Self-assembled ChNFs are efficiently obtained by a regenerative
bottom-up process from chitin ion gels using an ionic liquid, 1-allyl-3-methylimodazolium bromide.
This is accomplished by immersing the gels in methanol. The resulting dispersion is subjected to
filtration to isolate the regenerated materials, producing ChNF films with a morphology defined by
highly entangled nanofibers. The bundles are disintegrated by electrostatic repulsion among the
amino groups on the ChNFs in aqueous acetic acid to produce thinner fibers known as scaled-down
ChNFs. The self-assembled and scaled-down ChNFs are combined with other chitin components to
fabricate chitin-based composite materials. ChNF-based composite materials are fabricated through
combination with other polysaccharides.
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1. Introduction

The production of value-added bio-based materials through biomass conversion has
attracted considerable attention as an alternative to fossil-resource-based materials [1].
After cellulose, chitin is the second most abundant biomass and is mainly biosynthesized
in the exoskeletons of crustaceans such as shrimps and crabs [2–5]. Due to its extended
chain structure consisting of β(1→4)-linked N-acetyl-D-glucosamine repeating units, chitin
has a highly fibrous crystallinity and stiff molecular chain packing, which is primarily
constructed through the strong intermolecular hydrogen bonding between the acetamido
groups at the C-2 position (Figure 1). Therefore, chitin exhibits poor solubility in common
solvents, which leads to difficult processability and utility as a material. Accordingly,
the conversion of chitin into value-added materials has attracted increasing attention in
research on chitin in recent years [6–9].
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Figure 1. Chemical structure of chitin.
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Due to their remarkable properties, including light weight, high tensile strength, and
low thermal expansion coefficients, nanofibrillated materials (e.g., nanofibers, nanocrystals,
and nanowhiskers) have been widely identified as efficient functionalized polysaccha-
rides [10]. Chitin nanomaterials exhibit additional properties for practical applications [11]
such as biomedical applications [12], nanosheet formability for sensing and electronic
devices [13], oral absorbents and administration [14,15], barrier applications [16], high-
performance strong and tough films [17], and optical-sensing applications [18]. To produce
these nanofibrillated chitins from native sources, two practical processes, that is, top-
down and bottom-up approaches, are typically employed, which involve chitin microfibril
disentanglement and self-assembly through regeneration from chitin solutions/gels, re-
spectively [19].

Because native chitin sources in crustacean shells are formed as microfibrils with
an embedded protein matrix, which are constructed by the assembly of nanofibers with
diameters of 2–5 nm [20,21], some top-down approaches, such as mechanical treatment
by grinding, have been employed to fabricate chitin nanofibers (ChNFs) [22–27]. This
author developed a facile top-down technique through the disentanglement of native chitin
powder to obtain an aqueous dispersion of ChNFs, which was achieved by N2 gas bubbling
and ultrasonic treatment in water [28]. Amino groups were generated on the resulting
ChNFs by the partial N-deacetylation of chitin molecules (known as partially deacetylated
(PDA)-ChNFs), which were efficiently converted to cationic (amidinium) groups through
successive amidination and cationization with CO2 to construct cationic ChNFs. By con-
trast, suitably adjusted conditions for regeneration from chitin solutions/gels has resulted
in self-assembled ChNFs according to the bottom-up procedure (Figure 2a) [29,30]. Electro-
spinning has also been used for the self-assembly of ChNFs from chitin solutions [31,32].

Materials 2024, 17, x FOR PEER REVIEW 2 of 11 
 

 

Due to their remarkable properties, including light weight, high tensile strength, and 

low thermal expansion coefficients, nanofibrillated materials (e.g., nanofibers, nanocrys-

tals, and nanowhiskers) have been widely identified as efficient functionalized polysac-

charides [10]. Chitin nanomaterials exhibit additional properties for practical applications 

[11] such as biomedical applications [12], nanosheet formability for sensing and electronic 

devices [13], oral absorbents and administration [14,15], barrier applications [16], high-

performance strong and tough films [17], and optical-sensing applications [18]. To pro-

duce these nanofibrillated chitins from native sources, two practical processes, that is, top-

down and bottom-up approaches, are typically employed, which involve chitin microfi-

bril disentanglement and self-assembly through regeneration from chitin solutions/gels, 

respectively [19]. 

Because native chitin sources in crustacean shells are formed as microfibrils with an 

embedded protein matrix, which are constructed by the assembly of nanofibers with di-

ameters of 2–5 nm [20,21], some top-down approaches, such as mechanical treatment by 

grinding, have been employed to fabricate chitin nanofibers (ChNFs) [22–27]. This author 

developed a facile top-down technique through the disentanglement of native chitin pow-

der to obtain an aqueous dispersion of ChNFs, which was achieved by N2 gas bubbling 

and ultrasonic treatment in water [28]. Amino groups were generated on the resulting 

ChNFs by the partial N-deacetylation of chitin molecules (known as partially deacetylated 

(PDA)-ChNFs), which were efficiently converted to cationic (amidinium) groups through 

successive amidination and cationization with CO2 to construct cationic ChNFs. By con-

trast, suitably adjusted conditions for regeneration from chitin solutions/gels has resulted 

in self-assembled ChNFs according to the bottom-up procedure (Figure 2a) [29,30]. Elec-

trospinning has also been used for the self-assembly of ChNFs from chitin solutions 

[31,32]. 

 

Figure 2. (a) Preparation of self-assembled chitin nanofibers (ChNFs) by regenerative bottom-up 

procedure and (b) fabrication of polysaccharide composite materials based on self-assembled 

ChNFs. 

Furthermore, nanocomposite materials derived from polymeric components have 

endless applications, ranging from low-cost household products to high-value industrial 

production entities. For example, cellulose-based nanocomposites have recently attracted 

considerable interest [33] as they have suitable properties for use in various polymer nano-

composite preparations. These properties include low density, non-abrasiveness, combus-

tibility, nontoxicity, and biodegradability. They are also less expensive than other syn-

thetic polymers. 

The composition of self-assembled ChNFs on other polysaccharide substrates has 

also been attempted for the production of ChNF-based composite materials (Figure 2b) 

[34]. This mini-review provides an overview of the fabrication of polysaccharide compo-

site materials based on the aforementioned self-assembled ChNFs. The preparation pro-

cedures for self-assembled ChNFs and their further treatment into scaled-down fibrils 

(SD-ChNFs) are introduced. The compositions of the obtained ChNFs with other types of 

chitin substrates are then described in fabricating composite materials consisting solely of 
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procedure and (b) fabrication of polysaccharide composite materials based on self-assembled ChNFs.

Furthermore, nanocomposite materials derived from polymeric components have
endless applications, ranging from low-cost household products to high-value industrial
production entities. For example, cellulose-based nanocomposites have recently attracted
considerable interest [33] as they have suitable properties for use in various polymer
nanocomposite preparations. These properties include low density, non-abrasiveness,
combustibility, nontoxicity, and biodegradability. They are also less expensive than other
synthetic polymers.

The composition of self-assembled ChNFs on other polysaccharide substrates has also
been attempted for the production of ChNF-based composite materials (Figure 2b) [34].
This mini-review provides an overview of the fabrication of polysaccharide composite
materials based on the aforementioned self-assembled ChNFs. The preparation procedures
for self-assembled ChNFs and their further treatment into scaled-down fibrils (SD-ChNFs)
are introduced. The compositions of the obtained ChNFs with other types of chitin sub-
strates are then described in fabricating composite materials consisting solely of chitin
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components. The fabrication of composite materials from ChNFs and other polysaccharides
is also described.

2. Preparation of Self-Assembled ChNFs from Ion Gels and Their Further Scaling Down
into Thinner Fibrils

Ionic liquids (ILs) have been employed as media for the preparation of ChNFs through
a regenerative self-assembly process [30,35]. ILs are molten salts with melting points below
the boiling temperature of water. ILs are known to be powerful solvents for natural polysac-
charides (e.g., cellulose [36–41]). In 2002, an ionic liquid, 1-butyl-3-methylimidazolium
chloride (BMIMCl), was found to dissolve cellulose [42]. Due to the poorer feasibility of
chitin as compared with other polysaccharides, ILs that can dissolve chitin were hardly
known until approximately 15 years ago [43–47]. Indeed, 1-Butyl-3-methylimidazolium
acetate was first used for chitin dissolution in 2008 [48]. In 2009, this author found that the
chitin dissolution ability of 1-allyl-3-methylimidazolium bromide (AMIMBr) was as high
as 4.8 wt% [49]. In addition, ion gels were observed as forming from larger mixtures of
chitin with AMIMBr (6.5–10.7 wt%) through successive holdings at room temperature and
heating at 100 ◦C (Figure 3a).
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When the chitin/AMIMBr ion gels were immersed in methanol with ultrasonica-
tion for regeneration, ChNFs of 20–60 nm in width and several hundred nm in length
were fabricated through self-assembly at the nanoscale to form methanol dispersions
(Figure 3b) [50,51]. The resulting self-assembled ChNFs were isolated via the filtra-
tion of the dispersions, leading to the formation of ChNF films with a highly entangled
nanofiber morphology. The transmission electron microscopy measurements of the result-
ing ChNF/methanol dispersion revealed that the self-assembled ChNFs were constructed
as bundle assemblies of thinner fibrils with average widths and lengths of 12 and 163 nm,
respectively [52].

For the disintegration of the bundles by electrostatic repulsion, amino groups were
partly generated on the self-assembled ChNFs by the partial deacetylation of the acetamido
groups via treatment with aqueous NaOH (Figure 4a). The obtained PDA-ChNFs were
then mixed with aqueous acetic acid (1.0 mol/L) under ultrasonication to yield individual
thin fibrils by electrostatic repulsion among the ammonium groups on the ChNFs and
identified as SD-ChNFs (Figure 4b) [53]. The SD-ChNFs produced were isolated via the
suction filtration of the dispersion, leading to the formation of a highly flexible film with a
heavily entangled morphology from the thin fibrils. The author confirmed that this film
formation occurred through gelation due to the concentration of the dispersions during the
suction filtration.
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Figure 4. Procedures for (a) preparation of partially deacetylated chitin nanofiber (PDA-ChNF)
film, (b) fabrication of scaled-down ChNF (SD-ChNF) film, and (c) composition of SD-ChNF with
ι-carrageenan (adapted with permission from Ref. [53]. Copyright 2021, Elsevier).

3. Composition of Self-Assembled ChNFs and SD-ChNFs with Other
Chitin Components

To fabricate composite materials from the aforementioned cationic ChNFs with ami-
dinium groups by electrostatic interaction, anionic groups were introduced on the self-
assembled ChNFs. Accordingly, the reaction of the hydroxy groups on the self-assembled
ChNF film with maleic anhydride was performed using perchloric acid as an acid catalyst
to introduce carboxylate groups [54]. The scanning electron microscopy (SEM) image of
the product shows that it retained its nanofiber morphology. Because the obtained anionic
ChNF film was well-dispersed in aqueous ammonia (1.0 mol/L), this dispersion was mixed
with the aqueous cationic CNF dispersion to improve the composition via electrostatic in-
teraction (Figure 5). The obtained dispersion that included the two chitin components was
filtered to produce composite films [54]. The tensile testing of the products suggested that
the mechanical properties were enhanced based on the degree of substitution of the cationic
and anionic groups on the ChNFs and when the molar ratio of these groups approached 1:1.
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Composite materials based solely on polymers are referred to as all-polymer com-
posites [55,56]. An all-cellulose composite, which is one of the most extensively studied
all-polymer composites, is fabricated solely from cellulose, which acts as both an incorpo-
rated fiber reinforcement with high crystallinity and a matrix with low crystallinity [57–59].
By contrast, the fabrication of all-chitin composites has not been reported thus far because
of the difficulty in obtaining low-crystalline components. This author exploited the gela-
tion process during the filtration from the aforementioned SD-ChNF/aqueous acetic acid
dispersion to obtain chitin matrices with low crystallinity. The crystallinity was reduced by
treatment with aqueous trifluoroacetic acid (1.0 mol/L) at room temperature for 10 min
via ultrasonication and at 50 ◦C for 24 h under stirring to produce a low-crystalline matrix
dispersion (Figure 6a) [60]. The resulting dispersion was mixed with a highly crystalline SD-
ChNF/aqueous acetic acid dispersion, followed by filtration through gelation to fabricate
an all-chitin composite film (Figure 6b). Appropriate weight ratios of the two components
in the all-chitin composite films resulted in superior mechanical properties in the tensile
mode as compared with those of the sole SD-ChNF film. For example, the tensile strength
values of the former composite (low-crystalline matrix: high-crystalline fiber = 0.026:1
(w/w)) and the latter sole films were 78.0 and 44.5 MPa, respectively. This study presents
the first example of the fabrication of an all-chitin composite.
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Figure 6. Procedures for preparation of (a) low-crystalline chitin matrix dispersion with 1.0 mol/L
aqueous trifluoroacetic acid and (b) all-chitin composite film.

4. Composition of Self-Assembled ChNFs and SD-ChNFs with Other Polysaccharide
Components

Self-assembled ChNFs were employed as reinforcing agents in the fabrication of com-
posites with cellulosic materials. For example, an anionic derivative, namely carboxymethyl
cellulose (CMC), was identified by the self-assembled ChNFs through electrostatic inter-
action. Chitin is regarded as a cationic polysaccharide because of the presence of a high
percentage of amino groups in the total repeating units by the deacetylation of the ac-
etamido groups [61]. The CMC films formed using the casting method were immersed in
different concentrations of self-assembled ChNF/methanol dispersions (Figure 7a). The
centrifugation and drying of the mixtures yielded the ChNF-reinforced films. The presence
of nanofibers on the surface was supported by the SEM image of the resulting film.

Self-assembled ChNF-reinforced cellulosic films were also prepared. The aforemen-
tioned ionic liquid, BMIMCl, has been reported to form a cellulosic ion gel [62]. Self-
assembled ChNFs and cellulose were composited by immersing the cellulosic ion gels
in self-assembled ChNF/methanol dispersions containing different amounts of chitin
(Figure 7b) [63]. The mixtures were centrifuged to promote cellulose regeneration, resulting
in self-assembled ChNF-reinforced cellulosic films. The ChNF/cellulose unit ratios in the
films increased with increasing amounts of chitin in the methanol dispersion. The SEM
images of the films indicated that the ChNFs were present not only on the surfaces but also
inside the films as the ChNF tip morphology extending from the solid was observed in
the cross-sectional area. The enhancement of the mechanical properties of the CMC and
cellulose composite films under tensile mode was confirmed by increasing the amount of
ChNFs in the film, supporting the reinforcing effect of the ChNFs.
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The self-assembled ChNFs were cationized and then employed as a reinforcing agent
for a xanthan gum hydrogel, which is an anionic polysaccharide with carboxylate groups
(Figure 8) [64]. The self-assembled ChNFs were first treated with aqueous NaOH for partial
N-deacetylation. The amino groups of the generated ChNFs were then protonated using
aqueous formic acid. Xanthan gum hydrogels were prepared from xanthan gum and
BMIMCl based on a previously reported procedure [65]. The ion gel was first produced by
heating–cooling a mixture of xanthan gum and BMIMCl. The ion gel was then immersed in
water to exchange the dispersed media and obtain a xanthan gum hydrogel. The hydrogel
was immersed in a cationic ChNF aqueous dispersion for composition via the ion exchange
between ammonium formates and carboxylate salts. The degree of deacetylation strongly
affected the amount of ChNFs in the resulting composite hydrogels. The compression
testing of the hydrogels was conducted to evaluate the reinforcing effect of the ChNFs,
which were strengthened with increasing degrees of deacetylation. This effect was likely
induced by the electrostatic interaction between the two polysaccharides.

The composition of the aforementioned SD-ChNFs with anionic ι-carrageenan and sul-
fate groups was attempted through multipoint ionic cross-linking. The SD-ChNFs/aqueous
acetic acid dispersion was dripped on a viscous 0.5 wt% aqueous ι-carrageenan, which was
then filtered to obtain a composite film (Figure 4c) [53].

When the SD-ChNFs/aqueous acetic acid dispersion was gently placed on a 1.0 wt%
ι-carrageenan hydrogel, the two-layer system was obtained. After the media were heated
at 60 ◦C for the fluidity of the hydrogel, the solidified product at the interfacial area
was continuously extracted to produce a fibrous material and then dried to obtain the
flexible and knottable fiber (Figure 9). The SEM images of the resulting fiber revealed an
entangled nanofiber morphology, which was probably formed under the multi-point ionic
cross-linking of the SD-ChNFs with ι-carrageenan.
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5. Conclusions

This mini-review provided an overview of the fabrication of polysaccharide com-
posite materials based on self-assembled ChNFs. Studies on the fabrication methods of
ChNF-based composite materials have been conducted over the last 15 years and will
continue to attract significant attention in application fields related to the environmental
and biomedical industries in the future. Composite materials from SD-ChNFs were also
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reviewed in this mini-review. These ChNFs were composited with other chitin and polysac-
charide components, such as cellulose, xanthan gum, and ι-carrageenan. Further studies on
developing new preparation methods for ChNFs with different sizes and morphologies will
be conducted using a bottom-up approach to provide additional polysaccharide composite
materials with suitable properties and applications.
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