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Abstract: Aseptic implant loosening after a total joint replacement is partially influenced by material-
specific factors when cobalt–chromium alloys are used, including osteolysis induced by wear and
corrosion products and stress shielding. Here, we aim to characterize a hybrid material consisting of
alumina-toughened zirconia (ATZ) ceramics and additively manufactured Ti-35Nb-6Ta (TiNbTa) al-
loys, which are joined by a glass solder. The structure of the joint, the static and fatigue shear strength,
the influence of accelerated aging, and the cytotoxicity with human osteoblasts are characterized.
Furthermore, the biomechanical properties of the functional demonstrators of a femoral component
for total knee replacements are evaluated. The TiNbTa-ATZ specimens showed a homogenous joint
with statistically distributed micro-pores and a slight accumulation of Al-rich compounds at the glass
solder–TiNbTa interface. Shear strengths of 26.4 ± 4.2 MPa and 38.2 ± 14.4 MPa were achieved for
the TiNbTa-ATZ and Ti-ATZ specimens, respectively, and they were not significantly affected by
the titanium material used, nor by accelerated aging (p = 0.07). All of the specimens survived 107

cycles of shear loading to 10 MPa. Furthermore, the TiNbTa-ATZ did not impair the proliferation
and metabolic activity of the human osteoblasts. Functional demonstrators made of TiNbTa-ATZ
provided a maximum bearable extension–flexion moment of 40.7 ± 2.2 Nm. The biomechanical and
biological properties of TiNbTa-ATZ demonstrate potential applications for endoprosthetic implants.

Keywords: joint arthroplasty; total knee replacement; implant; aseptic loosening; material joining;
alumina-toughened zirconia; beta titanium; glass soldering; additive manufacturing

1. Introduction

Aseptic implant loosening is the main reason for the revision of total joint replace-
ments [1]. Implant-material-related complications are associated with wear particles,
corrosion products, and the mechanical mismatch of the materials to the human bone [2,3].
Metal wear particles can stimulate osteoclastic bone resorption [2] and released metal ions,
e.g., from cobalt–chromium and titanium alloys (Co2+, Cr3+, Al3+, and V2+), may cause
adverse local [4–6] and systematic biological responses [7–11]. Commonly used implant
materials lead to the mechanical loading alteration of the periprosthetic bone (i.e., stress
shielding). The mechanical stimulus on the bone tissue and cells is reduced; thus, the bone
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remodeling is shifted toward resorption [2,3]. These effects lead to periprosthetic bone
loss, thereby potentially causing osteolysis, implant loosening, and increased periprosthetic
fracture risk [12].

Multifunctional hybrid implant materials have been investigated to address these
issues [13–21]. These materials are supposed to combine the advantageous properties of
oxide ceramics at the articulating surfaces of the artificial joint and titanium (Ti) alloys
at the bone–implant interface. Thus, high wear and corrosion resistance with a lower
risk of stress shielding and improved osseointegration can be achieved [13,15,17,22]. In
previous studies, functionally graded materials manufactured by spark plasma sintering
have been investigated [13–17,22]. They are composed of a pure ceramic phase (e.g., Al2O3
or Y2O3-stabilized ZrO2), graded ceramic–titanium phases with continuously decreasing
ceramic content, and a titanium or Ti-6Al-4V phase. Other approaches have used laser-
engineered net shaping to manufacture Ti6Al4V-Al2O3 [18] hybrids or glass solders to join
solid ceramic- and titanium-based components [20,21].

The glass soldering of bioceramics such as Al2O3 or ZrO2 and commercially pure
titanium (cp-Ti) was originally intended for dental applications [23], but it has since demon-
strated applicability to endoprosthetic implant materials like alumina-toughened zirconia
(ATZ) ceramics and Ti-6Al-4V [21]. Processing such hybrid materials involves the ap-
plication of a biocompatible silica-based glass [21,24] to the joining surfaces, as well as
a subsequent firing to melt the glass solder. The main reasons for a stable and durable
connection are the formation of reaction layers during a firing that is comparable to other
metal–ceramic composites [20,25], and the mechanical interlocking between glass solder
and the ceramic or the metal part [20]. For example, Mick et al. [21] used a glass solder
(main components: SiO2, Al2O3, Na2O, and KO2) to fabricate Ti6Al4V-ATZ hybrid ma-
terials, and they reported a bending strength of 118 ± 33 MPa. In addition, Markhoff
et al. [26] showed a good interaction of human osteoblasts with a similar glass solder that
was applied as a coating on ATZ bulk material. Nevertheless, the transformation of this
technology to endoprosthetic implants, such as the femoral component of a total knee
replacement, presents challenges in joining larger- and complex-shaped surfaces.

While the number of ceramic systems for endoprosthetic implant applications is
limited so far, a variety of metallic implant materials is available. In this regard, Ti and its
alloys are state-of-the-art materials that feature good biocompatibility, i.e., cell tolerance
and osseointegration [27–30]. Standard titanium materials are commercially pure Ti (cp-Ti)
and Ti-6Al-4V [27,30], where the latter provides high survival rates for endoprosthetic
implants [31]. However, both suffer from their stiffness, which is expressed by a high elastic
modulus of ~110 GPa [27], which thus poses a major stress shielding risk [32,33]. It has
also been discussed that released aluminum and vanadium ions potentially cause adverse
biological effects in the organism [9,11,34].

Consequently, extensive studies have been performed to explore advanced biocom-
patible Ti-based alloys, featuring a favorable combination of high elasticity (a low Young’s
modulus), high strength, good fatigue properties, and biocompatibility. Hence, binary,
ternary, quaternary, and even multi-component high-entropy Ti base alloys have been
developed for use as metallic implant materials [35–51].

The most thoroughly investigated binary Ti alloy systems are Ti/Nb [35–38] and
Ti/Ta [39–41,52]. Their phase composition and mechanical properties depend on the
Ti:(Nb/Ta) ratio. Ti-rich alloys predominantly crystallize hexagonally with an α or α’
crystal structure. Both Nb and Ta are so-called β stabilizers and, accordingly, Nb or Ta-rich
alloys crystallize in the cubic-body-centered β structure [53,54]. Moreover, an orthorhombic
α” crystal structure and α + β compositions were reported. The mechanical properties of α
and β can be quite different: alloys possessing the α phase are usually stronger, whereas
those with β structure are more elastic, thereby providing better mechanical compatibility
with the cortical and trabecular bone [27,28,55].

Combining Ti with both Nb and Ta leads to ternary Ti/Nb/Ta alloys. They have
also attracted scientific attention, and the diversity of materials and compositions is much
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higher than in binary subsystems. Some alloy compositions have even been proven to
exhibit a shape memory effect or superelasticity [43,46]. Typical Ti/Nb/Ta alloys that have
been investigated for biomedical applications are, e.g., β-phase Ti-25Nb-25Ta, which has
been processed by cold crucible levitation melting [42]. This alloy revealed a low Young’s
modulus of about 55 GPa, as well as good ductility and strength, i.e., 20% elongation
at fracture and about 530 MPa ultimate tensile strength. The Ti-30Nb-18Ta, which was
arc-melted, solution-treated, and then 50% cold-rolled, predominantly consisted of the
orthorhombic α′′ martensitic phase embedded in a β-phase matrix [44]. An important
finding was the efficient passivation of Ti-30Nb-18Ta due to the presence of Nb and Ta,
which form chemically inert native oxide surfaces that protect the alloys from the further
oxidation of, e.g., body fluids.

Recently, Ti/Nb/Ta alloys in the Ti-rich domain were described. Materials with
a Ti-xNb-6Ta (x = 20, 27, and 35) chemical composition were especially developed for
application in additive manufacturing processes [45]. The goal was to produce patient-
specific dental and orthopedic implants with the highest level of biocompatibility using
laser beam powder bed fusion (PBF-LB/M). It turned out that the compressive modulus
could be lowered to ~43 GPa in the case of Ti-20Nb-6Ta [47]. This is in the range of the
most elastic Ti/Nb/Ta/Zr (TNTZ) [46,48,49,51,56] alloys, which are also referred to as gum
metal [50] due to their high elasticity, or to Ti/Nb/Zr/Sn (TNZS), which possess similar
characteristics [57,58]. However, the chemistry and controllability across the entire process
chain is significantly simpler for ternary Ti/Nb/Ta alloys compared to TNTZ, which is an
important factor with regard to commercial applications.

The present study aims to characterize hybrid TiNbTa-ATZ specimens using addi-
tively manufactured Ti-35Nb-6Ta components that are joined to ATZ using a biocompatible
silica-based glass solder. The manufactured TiNbTa-ATZ joints were structurally and
chemically analyzed by backscatter electron (BSE) microscopy and energy-dispersive X-ray
spectroscopy (EDX). Furthermore, the hybrid material was characterized by mechanical
testing (i.e., of static and fatigue shear stress), and the influence of artificially aging on static
shear strength was analyzed. Hybrid Ti-ATZ specimens were used as a reference. In addi-
tion, the cytotoxicity of TiNbTa-ATZ specimens was evaluated and compared with Ti-ATZ
and Co-28Cr-6Mo specimens using an elution assay and human osteoblasts. Furthermore, a
simplified functional implant demonstrator of a hybrid material-based femoral component
was fabricated, structurally characterized, and analyzed for its mechanical strength under
biomechanical loading using gait cycles, as well as loading to failure.

2. Materials and Methods
2.1. Manufacturing of the Hybrid Material

The hybrid material specimens made of slip-casted ATZ (Koebel Engineering, Dachsen,
Switzerland), and the TiNbTa were manufactured and joined by applying glass soldering.
Hybrid Ti-ATZ materials were used as a reference since glass soldering was initially
developed to join cp-Ti and zirconia-based oxide ceramics in the field of dentistry [23]. The
TiNbTa components were additively manufactured using PBF-LB/M. The spherical TiNbTa
powder was produced by electrode induction melting gas atomization (EIGA), which
was conducted under a purified argon (4.6, Linde GmbH, Pullach, Germany) atmosphere
from pre-alloyed electrodes (TANIOBIS GmbH, Goslar, Germany) [45]. In a previous
study with similar powder, the measured chemical composition, which was determined
by inductively coupled plasma optical emission spectroscopy (ICP-OES) was 58.87 wt. %
Ti, 34.45 wt. % Nb, and 5.98 wt. % Ta [45]. PBF-LB/M was performed using a DMP350
Flex (3D Systems Corp., Rock Hill, SC, USA) equipped with a 1 kW single-mode laser
(YLR-1000-WC-Y14, IPG Laser GmbH, Burbach, Germany) under an argon gas atmosphere
to prevent oxidation. The scanning speed was 1500 mm × s−1, the laser power was 170 W,
the layer thickness was 0.3 mm, and the hatch distance was 69 µm. Similar powder, devices,
and process parameters led to dense parts with a homogenous element distribution and a
monocrystalline β-phase [45]. After additive manufacturing, all TiNbTa components were
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heat-treated for 4 h at 1200 ◦C in a vacuum. Within the preliminary tests, we observed
that this was necessary to reduce the residual stresses during glass soldering. Furthermore,
the end faces of the cylindrical TiNbTa specimens used for shear testing were machined to
meet the parallelism requirements of the joining surfaces.

The main components of the silica-based glass solder (DCMhotbond fusio-12, DCM
Dental Creative Management GmbH, Rostock, Germany) were SiO2 (63–67 wt. %), Al2O3
(6–9 wt. %), K2O (6–9 wt. %), and Na2O (6–9 wt. %). The glass solder had a coefficient
of thermal expansion (CTE) of 10.0 × 10−6 K−1, a melting temperature of 450 ◦C, and a
bending strength at room temperature of ≥50 MP (provided by ZM Praezisionsdental-
technik GmbH, Rostock, Germany). The ATZ ceramics (provided by Koebel Engineering,
Dachsen, Switzerland) had a CTE of 7.8–8.1 × 10−6 K−1. Further, the CTE of Ti-35Nb-6Ta
(provided by TANIOBIS GmbH, Goslar, Germany) was temperature-dependent and ranged,
in the relevant temperature regime of 20 ◦C to 450 ◦C (i.e., the melting point of the glass
solder), from 8.2 × 10−6 K−1 to 9.3 × 10−6 K−1. Similar to previous studies [21,24], the
soldering was performed in a furnace and according to the guidelines provided by DCM
Dental Creative Management GmbH, Rostock, Germany. Before glass soldering, the joining
surfaces were sandblasted (110 µm Al2O3 at 4 bar), cleaned in an ultrasonic bath in ethanol,
and then primed with a thin layer of the glass solder. After sandblasting, the TiNbTa and
cp-Ti components had an average roughness (measured using a VK-X250 laser scanning
microscope, Keyence Corporation, Osaka, Japan) of 1.5 ± 0.1 µm and 1.7 ± 0.1 µm, respec-
tively. Finally, a glass solder paste was applied to the joining surfaces and fired at 820 ◦C
for 5 min in a vacuum using a heating and cooling rate of 20 K·min−1. The joined interface
of the TiNbTa-ATZ specimens was analyzed by BSE and EDX using an SEM JSM6490 (Jeol,
Akishima, Tokyo, Japan) equipped with an X-Flash SEM 4010 (Bruker Nano GmbH, Berlin,
Germany) for structural and chemical analysis.

2.2. Shear Testing, Artificial Aging, and Fracture Analysis

The static and dynamic shear testing of the hybrid materials was performed according
to the relevant standards [59–61]. The dimensions of the shear test specimens are shown in
Figure 1.
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Figure 1. The shear specimens were based on hybrid materials consisting of an alumina-toughened
zirconia (ATZ) ceramic and an additively manufactured Ti-35Nb-6Ta (TiNbTa) or a cp-Ti joined with
a silica-based glass solder.

Furthermore, the influence of artificial aging (0.5 MPa, 70 ◦C, 14 days [62]) on the static
shear strength was evaluated. Accordingly, six different groups (Table 1) were characterized,
and each group contained n = 5 specimens.



Materials 2024, 17, 1838 5 of 19

Table 1. Overview of the mechanically tested groups, the used hybrid material, the test specifications,
and the measured cross-section at the soldered joint.

Group Material Specifications Cross-Section
[mm2]

1 TiNbTa-ATZ Static shear test 279.4 ± 0.1
2 Ti-ATZ Static shear test 280.0 ± 0.3
3 TiNbTa-ATZ Accelerated aging followed by static shear test 281.0 ± 1.1
4 Ti-ATZ Accelerated aging followed by static shear test 280.4 ± 0.4
5 TiNbTa-ATZ Fatigue shear test 280.3 ± 0.8
6 Ti-ATZ Fatigue shear test 281.9 ± 1.2

The static shear tests were conducted using a universal testing machine (Zwick 50kN
RetroLine, Zwick Roell, Ulm, Germany). The specimens were loaded until fracture at a rate
of 2.5 mm × min−1. The fatigue tests were performed using an electro-dynamic testing
machine (ElectroForce 3510, TA Instruments—Waters LLC, Eden Prairie, MN, USA) with a
sinusoidal load between 1 MPa and 10 MPa and a frequency of 10 Hz [63]. Furthermore,
107 cycles were defined as a successful test [59].

After mechanical testing, the fractured surfaces of all specimens were analyzed with a
digital microscope (VHX-6000) and laser scanning microscope (VK-X250) (both obtained
from Keyence Corporation, Osaka, Japan) to determine the causes of fracture.

2.3. Biological Characterization

For the biological characterization of the hybrid material specimens (TiNbTa-ATZ and
Ti-ATZ), cytotoxicity measurements were performed by an elution assay, and commercially
used Co-28Cr-6Mo specimens served as the negative control. The specimens had a diameter
of 12 mm and were 5 mm in height. The heat-sterilized specimens were first covered with
838 µL of calcium-free Dulbecco’s Modified Eagle’s Medium (DMEM) per sample, and
they were incubated at 37 ◦C and 5% CO2 for 14 and 21 days. A medium control without
samples was included. The medium eluates were stored at −20 ◦C until use.

For the cytotoxicity assays, human osteoblasts were isolated from the femoral heads
of the patients undergoing total hip arthroplasty according to an established protocol by
Lochner et al. [64]. Femoral heads were provided after informed consent was obtained from
the patients. The study was approved by the ethics committee of the University Medical
Center Rostock (A 2010-0010). Experiments were performed with human osteoblasts from
a total of six donors (n = 8, female: n = 6, mean age: 61 ± 7.3 years; male: n = 2, mean
age: 53.5 ± 3.5 years). Cells were cultured under standard culture conditions at 37 ◦C
and 5% CO2 in a calcium-free DMEM supplemented with 10% fetal calf serum (FCS; both:
PAN-Biotech, Aidenbach, Germany), 1% amphotericin B, 1% penicillin-streptomycin, and
1% HEPES buffer (all: Sigma-Aldrich, Munich, Germany). To maintain the osteogenic
phenotype, 10 mM of β-glycerophosphate, 50 µg × mL−1 of ascorbic acid, and 100 nM
of dexamethasone were added to the cell culture medium (all: Sigma-Aldrich, Munich,
Germany). Moreover, 10,000 osteoblasts per well were seeded in a 96-well plate (Thermo
Fisher Scientific Inc., Waltham, MA, USA).

The eluates of the hybrid materials, the Co-28Cr-6Mo specimens, and controls were
thawed and diluted 1:1 with a fresh medium containing osteogenic additives to use them
for the exposure of the osteoblastic cells. Osteoblasts were incubated with 150 µL of
the diluted eluate for 24 h. Afterward, the viability of osteoblasts after incubation was
evaluated via the metabolic activity assay water-soluble tetrazolium salt (WST-1; Takara
Bio, Saint-Germain-en-Laye, France) and the CyQUANT™ NF Cell Proliferation Assay
(ThermoFisher Scientific, Waltham, MA, USA). First, the metabolic activity was determined.
Then, the diluted eluates were removed and the cells were washed with PBS. The cells were
then incubated with a defined volume of WST-1/medium reagent (1:10 ratio) at 37 ◦C and
5% CO2. After an incubation period of 30 min, 100 µL of the supernatants were transferred
to a 96-well cell culture plate, and the absorbance at 450 nm (reference wavelength: 630 nm)
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was measured in a microplate reader (Tecan Reader Infinite® 200 Pro, Tecan Trading AG,
Maennedorf, Switzerland). To determine the absolute cell number, the CyQUANT™ Cell
Proliferation Assay was performed according to the manufacturer’s guidelines. The same
cells for which the metabolic activity was previously determined were used. Cells were
covered with 100 µL of 1× Dye Binding Solution (consisting of 1:500 Dye Reagent and 1×
HBSS), incubated at 37 ◦C, and protected from light. After 60 min, the fluorescence intensity
was measured at 530 nm (excitation wavelength: 485 nm) using the Tecan Infinite® 200 Pro
reader. A cell number calibration curve was generated using pre-defined cell numbers in
duplicate to relate the fluorescence signal to the actual cell number.

2.4. Biomechanical Characterization of Functional Demonstrators
2.4.1. Demonstrator Manufacturing

Based on the geometries of commercially available total knee endoprostheses [65],
a simplified functional demonstrator was designed in Creo Parametrics 10.0.0.0 (PTC,
Boston, MA, USA) to gain experience with more complex-shaped soldering components.
The simplification was necessary to achieve the next development step. The functional
demonstrator represented one condyle of the tibiofemoral joint (Figure 2) with an outer
radius of 30 mm and a depth of 22.5 mm. Since a homogeneous joint gap is crucial for the
glass soldering process, a frame and spacers were designed on the titanium component
with a height of 0.1 mm. The titanium-based component was further designed to enable
clamping of the functional demonstrator during the biomechanical testing, and geometric
cutouts were designed to reduce the amount of heat absorption during the firing process.
A detailed depiction of the dimensions is shown in Appendix A.
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Figure 2. Design of the simplified functional demonstrator of a hybrid-material-based femoral
component for a total knee replacement resembling a part of the tibiofemoral joint. The hybrid
material is formed by a glass soldering of the additively manufactured TiNbTa to ATZ ceramics, and
the joining surface of TiNbTa is functionalized with spacers that are 0.1 mm in height to ensure a
homogeneous joint gap (created with Biorender.com).

For glass soldering, the joint surfaces were sandblasted (110 µm Al2O3 at 4 bar) and
cleaned with ethanol in an ultrasonic bath for 3 min. The average roughness values
(measured by laser scanning microscopy) of the sandblasted TiNbTa (PBF-LB/M) and cp-Ti
(CNC machined) components were 5.8 ± 2.0 µm and 1.9 ± 0.3 µm, respectively. In general,
the soldering followed the same procedure as described in Section 2.1, but a more extensive
priming of the surfaces was conducted to omit the pore formation in the soldered joint. The
first priming was performed by spray coating with the glass solder paste. A firing process
of the individual parts was subsequently conducted to, respectively, establish the joint
between the glass solder, the ATZ, and the titanium-based material. After the first priming
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of the titanium-based component, the soldering surface was polished (600 µm and 1000 µm
grit), covered with glass solder paste, and then fired again. This process was repeated two
times to fill the room between the spacers with the glass solder. In Figure 3, the initial
additively manufactured TiNbTa component along with the spray-coated specimen and
the final stage of priming are illustrated.
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Figure 3. The consecutive steps taken to prime the Ti-based component (TiNbTa or cp-Ti) of the
hybrid-material-based functional demonstrator with (a) an untreated specimen, (b) a specimen coated
with the glass solder, and (c) a completely primed specimen by stepwise firing and polishing the
glass solder to fill the gap between the designed spacers with the glass solder. The glass solder was
dyed blue for better visualization.

The soldering of the ATZ and the TiNbTa or cp-Ti component was conducted at 820 ◦C
for 5 min in a vacuum. The structure quality of the joint interface was analyzed by conducting
an electron microscopy of a polished cross-section of the hybrid TiNbTa-ATZ specimen.

2.4.2. Biomechanical Characterization

The biomechanical characterization of the functional demonstrators comprised two
consecutive tests. First, the specimens were loaded for 10,000 walking cycles; second, the
same specimens were used to evaluate the maximum extension–flexion moment. Each
group of either TiNbTa-ATZ or Ti-ATZ hybrids contained n = 3 specimens.

The 10,000 walking cycles were applied using a 6-degree-of-freedom joint simulator
(VIVOTM, Advanced Mechanical Technology, Watertown, MA, USA), which was used
in accordance with ISO standard 14243-3:2014 [61]. Therefore, the extension–flexion,
internal–external rotation, and anterior–posterior translation were position-controlled, and
the superior–inferior direction was force-controlled (axial force). The abduction–adduction
rotation and medial–lateral translation remained unloaded. The functional demonstrators
were articulated with cylindrical ultra-high-molecular-weight polyethylene specimens with
a flat surface. Silicone oil (Typ 350, Caesar & Loretz GmbH, Hilden, Germany) served
as a lubricant. The test setup and applied rheonomic constraints are shown in Figure 4a.
Moreover, the specimens that survived the dynamic loading were rotationally loaded until
failure with 0.1 ◦ × s−1 (Figure 4b) to simulate an extension–flexion moment. The ATZ
component was constrained in the yz-plane (sagittal plane), and the moment was applied
through the titanium component and the rotational center of the functional demonstrator.

2.5. Statistical Analysis

Statistical analysis of the results was performed in GraphPad Prism 9.2 (GraphPad
Software, San Diego, CA, USA), and p < 0.05 was used as the level of significance. The
results of the shear testing were checked for significant differences using the Mann–Whitney
U Test. For the cytotoxicity tests, comparisons between the experimental groups were
performed using 2-way ANOVA and the Bonferroni multiple comparison test. All data are
presented as individual values with median and interquartile ranges.
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Figure 4. Biomechanical characterization of the hybrid-material-based (glass soldered TiNbTa-
ATZ or Ti-ATZ) functional demonstrators of the femoral component of a total knee replacement:
(a) biomechanical loading of the walking cycle in the VIVOTM joint simulator and (b) schematic
illustration of the flexion movement of the tibiofemoral joint and the derived test setup to characterize
the maximum bearable extension–flexion moment (created with Biorender.com).

3. Results
3.1. Structural, Chemical, and Mechanical Characterization

The structural and chemical analysis by electron microscopy of a polished cross-section
of a TiNbTa-ATZ specimen is shown in Figure 5. The BSE image in Figure 5a points to
the fact that the soldering occurred very homogeneously. The thickness of the solder
was slightly below 100 µm. Occasionally, spherical pores were visible in the solder with
diameters in the single-digit micro region, as evident from the magnified spot displayed
in Figure 5d. The elemental mapping of the TiNbTa component (Figure 5b) displayed
a homogenous element distribution of the constituting elements. In contrast to the as-
atomized TiNbTa powder, no segregation in the Ti- or Nb/Ta-enriched dendrite-type
structures was observed. The ATZ (Figure 5c) represents a two-phase material in which
sub-micron Al2O3 particles were evenly embedded in a ZrO2 matrix. The element mapping
of the solder displayed in Figure 5e reveals a local accumulation of aluminum at the glass
solder–TiNbTa interface. Besides these features, the glass solder was constituted by a
homogenous SiO2, K2O, and Na2O matrix containing Al2O3 segregations (Figure 5f).

The static shear strength between the tested groups was not statistically different
(p = 0.07) (see Figure 6a), and all specimens showed a brittle fracture behavior. The repre-
sentative stress–displacement curves are shown in Appendix B. The static shear strength
of the TiNbTa-ATZ and Ti-ATZ specimens (Group 1 vs. Group 2) was 26.4 ± 4.2 MPa and
38.2 ± 14.4 Mpa, respectively. The static shear strength of the artificially aged TiNbTa-ATZ
and Ti-ATZ specimens (Group 3 vs. Group 4) was 32.1 ± 1.4 Mpa and 44.1 ± 9.7 Mpa,
respectively. Both hybrid materials (Groups 5 and 6) survived 107 cycles at a 10 Mpa
dynamic shear loading without fracture.

A mixed mode of failure in the Ti-based bulk material (cohesive failure) and failure
in the glass solder (adhesive failure) was observed in different proportions (Figure 6b).
Cohesive failure was visible as a deposition of the material on the ATZ component, as can
be seen by the depth profile in Figure 6e. Furthermore, it was observed that specimens with
a predominantly cohesive failure had higher shear strengths compared to the specimens
that mainly fractured in the glass solder (Figure 6b). The pore formation locally hindered
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the bonding of the materials, thereby causing imperfections in the soldered joint. These
imperfections were randomly distributed across the surfaces and were either spherical
(Figure 6f–h) or formed a networked or branched structure (Figure 6i–k).Materials 2024, 17, x FOR PEER REVIEW 9 of 20 

 

 

 
Figure 5. Electron microscopic images of a hybrid material of an alumina-toughened zirconia (ATZ) 
ceramic and additively manufactured Ti-35Nb-6Ta (TiNbTa) that were joined using a silica-based 
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Figure 5. Electron microscopic images of a hybrid material of an alumina-toughened zirconia (ATZ)
ceramic and additively manufactured Ti-35Nb-6Ta (TiNbTa) that were joined using a silica-based
glass solder. (a,d) Backscatter electron microscopy of the investigated cross-section at different
magnifications. (b,c,e,f) Element distribution in the TiNbTa alloy, (b) the ATZ ceramic, and (c) the
glass solder (e,f). Pores are indicated by white arrows.

3.2. Biological Characterization

An eluate test was performed to indirectly determine the cytotoxicity of the hybrid
materials. For this purpose, specimens of the hybrids and Co-28Cr-6Mo (the negative
control) were incubated in osteoblastic cell culture medium over a period of 14 and 21 days.
Afterward, the eluates were used for the cell experiments.

The eluates from the hybrid material specimens did not affect the proliferation of
human osteoblasts (Figure 7a). No difference could be detected between the medium
controls (dashed line) or between the incubation times of the eluates. However, a slight
reduction in cell number was detected for the cells exposed to the 14-day eluates of the
Co-28Cr-6Mo alloy.
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Figure 6. Results of the static shear testing and microscopy of the fracture surfaces of the glass-
soldered TiNbTa-ATZ or Ti-ATZ hybrids. (a) The static shear strength (the data are presented as
single values (indicated by bullets) with median and interquartile ranges). (b) The representative
fracture surfaces of the specimens in the upper and lower quartile of the static strength (1: cohesive
failure of the Ti-based component, 2: adhesive failure of the glass solder, and 3: imperfections in
the glass solder due to spherical pores). (c–e) The microscopic images and depth profile of an ATZ
fracture surface of a Ti-ATZ specimen indicating the cohesive failure of the cp-Ti, which led to the
deposition of the bulk material on the ATZ surface. (d–h) The microscopic images and depth profile
of a TiNbTa fracture surface of a Group 1 specimen indicating spherical pores in the glass solder.
(i–k) The microscopic images and depth profile of an cp-Ti fracture surface of a Group 4 specimen
indicating networked or branched structures in the glass solder.

The metabolic activity of osteoblasts was not influenced after exposure to the 14-day
eluates (Figure 7b). In contrast, the incubation of cells with the 21-day eluates of the TiNbTa-
ATZ specimens resulted in a significantly higher metabolic activity compared to those of
Co-28Cr-6Mo (p = 0.031). Compared to the cells exposed to the 21-day negative control
eluates, the eluates of the hybrid test specimens did not influence the metabolic activity.
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were incubated in a cell culture medium over 14 and 21 days. Afterward, the human osteoblasts 
were exposed to the eluates over a period of 24 h. Quantification of (a) the cell number by 
CyQUANT™ assay and (b) the metabolic activity by WST-1 assay. The osteoblasts in a cell culture 
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Figure 7. Cytotoxicity analysis of the glass-soldered, hybrid material specimens (TiNbTa-ATZ or
Ti-ATZ) and Co-28Cr-6Mo (negative control) using elution testing. For this purpose, the specimens
were incubated in a cell culture medium over 14 and 21 days. Afterward, the human osteoblasts were
exposed to the eluates over a period of 24 h. Quantification of (a) the cell number by CyQUANT™
assay and (b) the metabolic activity by WST-1 assay. The osteoblasts in a cell culture medium served
as the control. The data of six individual donors are presented as single values with median and
interquartile ranges. Statistical significance was determined by two-way ANOVA followed by a
Bonferroni multiple comparison test. * p < 0.05.

3.3. Biomechanical Characterization of the Demonstrator

Structural analysis of the soldered joint of a TiNbTa-ATZ functional demonstrator
revealed a homogenous joint gap and pores within the glass solder (Figure 8), as already
observed for the soldered cylindrical specimens (Figures 5 and 6). Due to the high quality
of the bond, all specimens survived a fatigue test with 10,000-simulated gait cycles. The
functional demonstrators showed a brittle fracture behavior, which is illustrated by the
moment–rotation curves shown in Appendix B. The maximum extension–flexion moments
of the functional demonstrators consisting of TiNbTa-ATZ and Ti-ATZ were 40.7 ± 2.2 Nm
(individual values: 42.2 Nm, 42.3 Nm, 37.7 Nm) and 18.4 ± 3.8 Nm (individual values:
17.2 Nm, 14.5 Nm, 23.5 Nm), respectively. In accordance with the shear-induced fracture,
all specimens showed a mixed cohesive and adhesive failure.
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Figure 8. Structural analysis of the functional demonstrator of the femoral component of a total
knee replacement made of alumina-toughened zirconia (ATZ) ceramic and additively manufactured
Ti-35Nb-6Ta (TiNbTa) that were joined by a silica-based glass solder (GS): (a) illustration of the
analyzed cross-section of the functional demonstrator and (b) the backscatter electron microscopy
of the polished cross-section of the soldered joint. The examples of the pores in the glass solder are
highlighted by white arrows.
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4. Discussion

Multifunctional hybrid materials have been described as reducing the rate of material-
related aseptic implant loosening in total joint replacements [13–21]. These hybrid materials
are composed of an oxide ceramic at the articulating interfaces and a Ti-based material
at the bone–implant interface. One feasible technology to combine oxide ceramics with
Ti alloys is glass soldering [20,21,66,67]. Here, we investigated the static and fatigue
shear strength, the influence of aging, and the cytotoxicity of hybrid material specimens
consisting of a slip-casted ATZ and additively manufactured β-type Ti-35Nb-6Ta that were
joined by a silica-based glass solder. In addition, the biomechanical performance of the
functional demonstrators of a total knee replacement was analyzed under walking cycles,
and load-to-failure testing was conducted under an extension–flexion loading.

The static shear strength of the TiNbTa-ATZ hybrid material (26.4 ± 4.2 MPa) did
not differ significantly from that of Ti-ATZ (38.2 ± 14.4 MPa), and accelerated aging
did not significantly affect the shear strength (see Figure 6a). In addition, all specimens
demonstrated sufficient fatigue strength to withstand 107 dynamic shear loading cycles.
A comparable study investigating Ti-ZrO2 hybrid materials reported a shear strength of
16.8 ± 4.9 MPa [25], which is slightly below the values observed in this present study.

In order to be used as an implant material in cementless total joint replacements, the
soldered joint of the hybrid material should not represent a predetermined fracture point. In
the case of cementless titanium-based implants, the fixation strength between the bone and
the implant surface determines the maximum load-bearing capacity. It has been reported
that the bone–implant interface strength ranges from 0.5 MPa to 19.7 MPa [68–72]. In
addition, in the standard to evaluate the shear strength of titanium-based plasma-sprayed
coatings, 20 MPa has been defined as a minimum requirement [63]. Therefore, according to
the measured properties, the investigated hybrid materials had sufficient strength to ensure
that they do not form a flaw when used in endoprosthetic implants. However, during
functional loading in vivo, the hybrid material is subjected to mixed tensile, shear, and
compressive stresses [73]. Investigating the influence of the different stresses occurring
simultaneously is complex and requires further studies that go beyond the content of the
present study.

The microscopic investigations of the fracture surfaces (Figure 6) revealed that the
strength of the hybrid material is determined by the adhesive failure along the interface
between the glass solder and Ti-based material, as well as by the cohesive fracture of the
glass solder, which is in line with previous observations [21,25,67]. Within the TiNbTa
alloys, oxide films (e.g., TiO2, Nb2O5, and Ta2O), are formed [74,75], and the reaction of the
chemical compounds in the surface layers with the glass solder is crucial in the formation
of the material bond [20,21]. Hey et al. [76] described the formation of Ti5Si3 due to the
reaction of SiO2 with Ti using a comparable silica-based glass solder. Furthermore, in a
study on the diffusion bonding of Al2O3 and cp-Ti, Travessa et al. [77] described that, at
800 ◦C, Al2O3 dissolves in the presence of titanium and further reacts with titanium to form
an intermetallic Ti3Al compound. In the process, oxygen diffuses into titanium, and Al-rich
compounds accumulate at the interface, which was also observed in our study. In contrast,
no chemical reaction in the Ti-30Ta and Ti-40Nb with Al2O3 has been reported [78,79],
and also no measurable formation of an interfacial reaction phase of pure Nb with Al2O3
has been conducted [80]. Therefore, it seems reasonable that the material bond between
the glass solder and TiNbTa was formed by the reaction of titanium with SiO2 and Al2O3.
Moreover, it has been previously described that the formed oxide layer in the titanium
material or the interface between the oxide layer and the bulk material was responsible for
the failure of the interfaces between the titanium and glass ceramics [21,67]. This was also
shown in our present study by the visible deposition of the TiNbTa or cp-Ti on the ATZ
fracture surface. The described chemical reactions should be verified in future research by
focusing on the formation of the intermetallic reaction zone.

Transferring the knowledge gained from glass soldering to more complex and larger
joining surfaces is crucial for the development of a hybrid material-based endoprosthetic
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implant. To gain a first experience of the feasibility, we manufactured a simplified functional
demonstrator resembling one condyle of the tibiofemoral joint (see Figure 2). As we
already observed the pores in the soldered joints of the shear test specimens, we tried
to reduce them by modifying the priming of the joining surfaces. To achieve a constant
joint thickness, the titanium components were provided with spacers that were 0.1 mm
in height. The dimensions of the functional demonstrator are shown in Figure 2 and
Appendix A. Despite these efforts, pores were still visible in the joint gaps. Nevertheless, all
specimens survived 10,000 walking cycles, and the TiNbTa-ATZ hybrids showed maximum
extension–flexion moments of 40.7 ± 2.2 Nm. The rather small standard deviation indicates
that the modification of the priming processes had a positive influence on the variations in
the mechanical properties.

Given the absence of prior experiences with the investigated hybrid material regard-
ing biomechanical loading scenarios, the walking cycles gave a first impression of the
biomechanical performance of the implant demonstrator. We admit that 10,000 cycles are
not enough to prove the fatigue strength under physiological loading. For example, the
ISO standard 14,243 specifies 5 × 106 load cycles, which correspond to approximately five
years of clinical use. In addition to the walking cycles, a subsequent loading to failure
was used to determine the maximum extension–flexion moment. Bergmann et al. [81]
reported data of an instrumented TKR and defined the EXTREME100 case as the maximum
value suitable for studying mechanical safety under severe in vivo conditions. The flexion
moments during walking and jogging were 25.9 Nm and 39.8 Nm, respectively; in addition,
significantly higher values of 46.1 Nm and 59.1 Nm have been observed during squatting
and stair descent, respectively [81]. Another study by Dreyer et al. [82] determined the
peak values during various physiological motions in a comparable range (26 to 35 Nm).
Considering that the maximum extension–flexion moment of the functional demonstrator
was observed for a single condyle and that in vivo loads were measured for a bicondylar
TKR, it seems that the bonding strength of the TiNbTa-ATZ hybrid meets the minimum
requirement for an endoprosthetic implant. However, as mentioned above, the total knee
endoprostheses were subjected to complex loadings by superimposed forces and moments.
In addition, the material joint strength should provide a high safety factor that ensures
mechanical functionality over a long period. The bonding strength of the complex-shaped
hybrid material specimens should therefore be improved, e.g., by realizing a form fit of the
ATZ and titanium components.

We observed a difference in the maximum extension–flexion moments of the TiNbTa-
ATZ and Ti-ATZ functional demonstrators, although no significant differences were ob-
served during the shear loading tests. For shear loading, the additive manufactured TiNbTa
was machined to obtain parallel joining surfaces, which was afterward sandblasted (see
Section 2.2). This procedure led to a similar roughness of the different specimens. However,
the joining surfaces of the TiNbTa components of the functional demonstrator were not
machined, and only sandblasting of the as-printed surface with similar process parameters
to the cp-Ti components was used. For this reason, the TiNbTa components possessed
a higher roughness than those of cp-Ti. In addition to the chemical bond, mechanical
interlocking can also majorly contribute to bonding strength [20], which may have led to
the increased joint strength in the rougher TiNbTa demonstrators. However, no study has
investigated the influence of the surface roughness of additively manufactured TiNbTa
components on bonding strength with a silica-based glass solder so far. Therefore, this
might be one factor to improve, i.e., further increasing the bonding strength.

In addition to the mechanical properties, the cytotoxicity of the hybrid materials
specimens is relevant for their later application as bone implants. In our present study,
the TiNbTa-ATZ specimens did not impair the vitality of the human osteoblasts, whereas
Co-28Cr-6Mo decreased the cell proliferation and metabolic activity (see Figure 7). The
cytotoxic effect of the released Co- and Cr-ions on human cells has been previously demon-
strated in various studies [4–8]. In contrast to Co-28Cr-6Mo, the glass solder and ATZ
ceramics are highly biocompatible [26]. In addition, it has been shown that osteoblasts
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cultured on TiNbTa exhibit a gene differentiation indicating bone formation [47], and
Ti/Nb/Ta alloys are highly corrosion-resistant [74,75]. Furthermore, contrary to Ti-6Al-4V,
where potentially harmful aluminum and vanadium ions are released [9–11,34], niobium
and tantalum are highly biocompatible with no cytotoxic effects have been described so
far [83]. In line with these previous findings, we demonstrated that the hybrid TiNbTa-
ATZ material showed no cytotoxic effects in vitro; however, future studies may need to
investigate the ion release in the long term.

Having said the above, this study has some limitations. We observed the pores in
the soldered interface that reduce the mechanically loaded cross-section area. Such faults
may cause local stress concentrations resulting in unexpected failure. The pores are based
on entrapped gas, which might come from the evaporation of the polymer-based carrier
suspension of the glass solder paste during firing. Minimizing the pore formation is a
critical issue for the manufacturing of reliable bonding with glass solders [24,84]. The
development of technological approaches to prevent these pores was beyond the scope
of this present study. All the TiNbTa components were heat-treated before soldering to
reduce the residual stresses during soldering; however, comprehensive investigation of
the influence on the microstructure and mechanical properties was not performed in this
study. Furthermore, despite measures (such as PBF-LB/M in an argon atmosphere and
soldering in a vacuum) to prevent the oxidation of the TiNbTa component, the influence on
the aforementioned properties cannot be completely ruled out. Moreover, oxygen might
diffuse from the glass solder into the TiNbTa alloy. The influence of the manufacturing
chain on the mechanical properties of the TiNbTa alloy is a part of ongoing studies, and
it will be addressed in the future. In addition, the functional demonstrator represents a
simplified implant design. Hence, the observations during biomechanical testing need to
be verified with a more complex design that is closer to the currently used implants.

Further research should focus on parameter characterization for the bonding strength
of TiNbTa-ATZ hybrid materials, e.g., by characterizing the influence of the surface rough-
ness or the chemical composition of the glass solder and joining parameters.

5. Conclusions

Aseptic implant loosening of joint endoprostheses is partially affected by the currently
used implant materials. This study described the manufacturing of the advanced TiNbTa-ATZ
hybrid materials that potentially combine the high wear and corrosion resistance of the ATZ
ceramics and enhanced osseoconductivity of TiNbTa alloys. The mechanical characterizations
within shear tests and biomechanical loading scenarios that were applied to the functional
demonstrators of the femoral component of total knee replacements revealed a sufficient
enough mechanical strength to withstand acting loads during physiological motion. Further-
more, in line with the intrinsic properties of the specific materials, the TiNbTa-ATZ hybrid
material showed no cytotoxic effect on human osteoblasts. Therefore, our data indicate the
potential of hybrid TiNbTa-ATZ implant materials for use in joint endoprostheses.
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Figure A2. Representative results of the hybrid materials made of an alumina-toughened zirconia
(ATZ) ceramic and an additive manufactured Ti-35Nb-6Ta (TiNbTa) or cp-Ti joined with a silica-based
glass solder. (a) Stress–displacement curves of the static shear tests with the TiNbTa-ATZ (Group 1)
and Ti-ATZ (Group 2) specimens, and (b) the representative moment–rotation curves of functional
demonstrators of a total knee replacement made of TiNbTa-ATZ or Ti-ATZ hybrid material.
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