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Abstract: Pb plays an important role in determining the morphologies and mechanical proper-
ties of the Mg2Si phase in Mg-2.5Si-xPb alloys. As the amount of Pb increases from 0.4 wt.% to
1 wt.%, the primary Mg2Si phase is refined during solidification. Its morphologies transform from
equiaxed-dendrite to polygonal and finally to roughly circular. The key reason for morphology evo-
lution is the preferential adsorption of Pb atoms on Mg2Si {100} surfaces to suppress the growth rate
along the 〈100〉 directions, which is demonstrated by the adsorption model based on first principles.
In addition, the hardness of the Mg2Si phase decreases with the increasing solution content of Pb ac-
cording to the results of the nanoindentation. With the addition of Pb at 1 wt.%, Pb content in the
primary Mg2Si phase reaches a maximum of 0.4 wt.%, and the hardness of the primary Mg2Si phase
reaches a minimum of 3.64 GPa. This reduction in hardness is attributed to the augmented ionic
bond ratio resulting from the solution of Pb, which concurrently enhances the toughness of the
Mg2Si phase.

Keywords: Mg2Si; Mg2(SixPb1−x) phases; modification; morphology; first-principles calculation

1. Introduction

Magnesium alloys are commonly utilized as cast components in aerospace and auto-
motive applications [1,2] owing to their advantageous properties, including lightweight,
high stiffness, specific strength, and exceptional damping capacity [3,4]. However, a signifi-
cant limitation of traditional magnesium alloys is their reduced strength at temperatures
exceeding 400 K, which restricts their broader applicability [5]. Consequently, there exists
an urgent need to develop cost-effective high-temperature magnesium alloys suitable for
use in structural components [6].

To enhance the mechanical properties of magnesium alloys at elevated temperatures,
several strategies can be employed. These include incorporating strengthening particles
with high thermal stability, reducing the element diffusion rate within the magnesium
matrix, and optimizing both the grain-boundary structure and the overall microstruc-
ture [7]. Mg-Si alloys stand out as an ideal choice for large-scale commercial heat-resistant
applications due to their simple production process and low cost. The core heat-resistant
strengthening phase of Mg-Si alloys is Mg2Si, which exhibits lots of exceptional mechanical
properties and thermal stability [8]. It can improve mechanical properties and reduce the
creep rate of Mg alloy at high temperatures by inhibiting grain-boundary sliding. How-
ever, the Mg2Si phase in Mg-Si alloys tends to form coarse dendrites in the traditional
metallurgical process [9]. The presence of coarse and brittle Mg2Si particles affects the
mechanical properties of Mg-Si alloys, specifically the strength and ductility [10,11]. Re-
cently, extensive research has been conducted to control the morphologies and size of the
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Mg2Si phase by adding elements [12–15] and compounds [16] or employing external high-
intensity physical energy fields [17]. While these approaches have led to improvements
in mechanical properties, there remains a significant gap in research aimed at enhancing
the brittleness of Mg2Si while maintaining its inherent thermal stability. As a result, cracks
often initiate within primary Mg2Si particles, compromising the structure of Mg alloys [18].
Consequently, it is crucial to tackle this issue by enhancing the toughness while controlling
the morphology and size of the Mg2Si phase in order to fully realize the potential benefits
of Mg2Si reinforcement.

One promising approach is through the substitution solid solution. For instance,
Wang et al. [19] found that the plasticity of Sn-doped Mg2Si is superior to that of a pure
Mg2Si phase. Pb, as a member of the IVA family in the periodic table alongside Si, exhibits
the lowest electronegativity among elements within this group [20]. The increase in the
electronegativity difference between bonded elements enhances the ionic nature of the
bond, leading to improved toughness and plasticity of the material [21]. Additionally, the
intermetallic compound Mg2Pb has a lattice structure similar to that of Mg2Si, facilitating
the good solubility of Pb/Si in Mg2Si/Mg2Pb [22]. The solid solution of Pb atoms could
change the bonding characteristics of the Mg2Si crystal. The change in the binding proper-
ties of these crystals could significantly affect the morphology and mechanical properties of
the crystal [23]. Consequently, Pb is a potential ideal additive; it is anticipated to enhance
the toughness of the Mg2Si phase while refining the morphology of Mg2Si particles. Fur-
thermore, compared to rare earth elements, Pb is a more economical material. Although
Pb vapor has health risks, the addition of a small amount with proper care will not be
serious one [24]. In order to reveal the effects of Pb on the Mg2Si phase and the strength-
ening potentials of the Mg2(SixPb1−x) phase, first-principles calculations were employed
to analyze the modification mechanism of the Mg2Si phase. Based on these calculations,
further investigations were conducted on the morphologies and mechanical properties of
the Mg2Si phase.

2. Theoretical Model, Calculation Method, and Experimental Procedures
2.1. Theoretical Model and Calculation Method

Mg2Si and Mg2Pb have an anti-fluorite crystal structure, characterized by a space
group of Fm3m and a space number of 255. The lattice constants for Mg2Si and Mg2Pb are
0.6338 nm and 0.6933 nm [25], respectively. The unit cell atom coordinates are precisely
as follows: the Mg (8c) position is at (1/4, 1/4, 1/4), while Si/Pb (4a) occupies (0, 0, 0).
Based on previous studies [22], the doping of Pb atoms in the Mg2Si phase is performed
by substituting Si atoms with Pb atoms to form a substantial solid solution Mg2(SixPb1−x).
The Mg2(SixPb1−x) phase retains the anti-fluorite crystal structure across varying x values,
as shown in Figure 1.
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Computational analyses were conducted using the plane-wave pseudopotential density
functional theory (DFT) method embedded in the CASTEP package (Materials Studio 7.0).
The calculations employed an ultra-soft pseudopotential alongside the generalized gradient
approximation PBE scheme. The plane-wave cutoff energy was fixed at 400 eV, and the
k-point meshes were set to 11 × 11 × 11. First, the cell model of Mg2(SixPb1−x) was
geometrically optimized using the BFGS algorithm. Subsequently, self-consistent iterative
SCF calculations were performed based on the most stable Mg2(SixPb1−x) crystal structure,
with electron relaxation handled via the Pulay density mixing method. Convergence criteria
included a self-consistent field tolerance of 1 × 10−6 eV/atom and a maximum stress limit
of 0.05 GPa. The total energy finally converged to less than 5 × 10−6 eV/atom. The valence
states involved comprised Mg 3s22p6, Si 3s23p2, and Pb 5d106s26p2.

2.2. Experimental Method

To prepare Mg-2.5%Si-x%Pb (x = 0, 0.4, 0.8, 1; wt.%) alloys, commercial pure Mg
(99.7 wt.%) and Mg-10 wt.%Si master alloys were melted at 780 ◦C in an electric-resistance
furnace. A Pb piece was added, with different amounts to the melt. After stirring 3 times
with a mean time interval of 15 min, the melt was held for 30 min at 780 ◦C and then cast
into a graphite mold, which was preheated to 400 ◦C.

For metallographic analysis, specimens underwent mechanical grinding and polishing,
followed by a 3 s etch in a Nital solution (4 vol.% HNO3, 96 vol.% C2H5OH). An OLYMPUS
optical microscope (OM) (Olympus Corporation, Tokyo, Japan) and a Merlin Compact
filed emission scanning electron microscope (SEM) (Carl Zeiss, Oberkochen, Germany)
equipped with an Oxford Instruments (Abingdon, UK) energy-dispersive X-ray spectrom-
eter (EDS) were used to examine the microstructures. Transmission electron microscope
(TEM) specimens, 3 mm in diameter, were ground to about 60 µm and then, twin-jet
electro-polished in a −30 ◦C solution of 15% nitric acid and 85% methanol. Before TEM
observation, the surface oxide film was removed by ion-milling with a Fischoine model
1010 (Fischione Instruments, Cleveland, OH, USA) at 5 kV. TEM and HRTEM observations
were conducted on a JEM-2100 microscope (JEOL Ltd., Tokyo, Japan) at 200 kV. TEM
and HRTEM observations were carried out in a JEM-2100 microscope operating at 200 kV.
Nanomechanical testing was performed on a Hysitron TI-Premier nanoindenter (Bruker,
Billerica, MA, USA) equipped with a Berkovich diamond tip of a three-sided pyramid
Berkovich probe (Bruker in USA). A trapezoidal loading profile was used to determine the
nanomechanical properties of the Mg2(SixPb1−x) phase, which consisted of 5 s of loading,
2 s hold at 1000 µN, and 5 s of unloading.

3. Results
3.1. Structural Stability of the Mg2(SixPb1−x) Phase

The optimized lattice parameters of the Mg2(SixPb1−x) phase are listed in Table 1.
The calculated lattice parameters of the optimized Mg2Si and Mg2Pb are consistent with
the experimental data, with an error of about 0.43% and 0.07%, respectively. The lattice
constant a of Mg2(SixPb1−x) (x ̸= 0, 1) falls within the range of the constants of the Mg2Si
and Mg2Pb phases.

Table 1. Lattice constants of Mg2(SixPb1−x).

x 1.00 0.75 0.50 0.25 0.00

a (nm)
Theoretical 0.6365 0.6623 0.6704 0.6775 0.6938

Experimental 0.6338 [26] - - - 0.6933 [27]

The structural stability of a crystal is associated with its formation enthalpy per
atom (∆Hf) of per atom and cohesive energy (Ecoh). The formation enthalpy quantifies
the level of difficulty in forming an intermetallic compound by measuring the amount of
energy released or absorbed during substance reactions [28]. On the other hand, cohesive
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energy measures the work performed by external forces when a crystal disintegrates into
individual atoms [29]. The formation enthalpies of per atom (∆Hf) and cohesive (Ecoh)
were calculated by the following formulae.

∆Hf =
1

n + m + k
(Etot − nEMg

solid − mESi
solid − kEPb

solid), (1)

Ecoh =
1

n + m + k
(Etot − nEMg

atom − mESi
atom − kEPb

atom), (2)

where Etot is the total energy of Mg2(SixPb1−x), EMg
solid, ESi

solid, and EPb
solid are the energies per

atom of Mg, Si, and Pb, respectively. EMg
atom, ESi

atom and EPb
atom are the energies of isolated

atoms for each element. n, m, and k are the numbers of Mg, Si, and Pb atoms in a unit cell,
respectively. The formation enthalpies (∆Hf) and cohesive (Ecoh) of the predicted phase for
different compositions (1 − x) are shown in Figure 2.
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A negative formation enthalpy indicates an exothermic reaction, while a low formation
enthalpy signifies robust structural stability [25]. The negative formation enthalpy of each
Mg2(SixPb1−x) phase suggests that the stability of these phases remains before and after
solid solution in the system, thereby indicating their potential for stable formation. Mg2Si
exhibits the lowest formation enthalpy, while Mg2Pb possesses a slightly higher formation
enthalpy compared to Mg2Si but lower than other Mg2(SixPb1−x) phases (x ̸= 0, 1). It can
be inferred that, compared to Mg2Si and Mg2Pb, the formation ability of the Mg2 (SixPb1−x)
phase is relatively limited. Furthermore, a low cohesive energy is indicative of elevated
structural stability [20]. As can be seen in Figure 2, the negative value of the cohesive energy
decreases with the increasing Pb content. It indicates that the most stable composition
is the Mg2Si phase, and the least is the Mg2Pb phase, in Mg2(SixPb1−x) phases with
different compositions.

3.2. Elastic Constants and Mechanical Properties of the Mg2(SixPb1−x) Phase

The elastic constant Cij serves as an indicator of a material’s resistance to external
forces and deformations. It is determined by analyzing the relationship between stress and
strain [20]. For its cubic symmetry, Mg2(SixPb1−x) have three independent elastic constants:
C11, C12, and C44. Combined with the Voigt–Reuss–Hill approximation, the bulk moduli B,
shear moduli G, Young’s moduli E, and Poisson ratio ν can be deduced by the following
formulae, respectively [30]:

B =
C11 + 2C12

3
, (3)

G =
C11 − C12 + 3C44

5
, (4)
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E =
(C11 − C12 + 3C44)(C11 + 2C12)

3C11 + 2C12
, (5)

ν =
3B − E

6B
, (6)

The elastic constants computed for the Mg2(SixPb1−x) phases are presented in Table 2.
It was evident that Mg2(SixPb1−x) phases satisfied the mechanical stability requirements
specific to cubic crystal systems, including C44 > 0, C11 + 2C12 > 0, and C11 − C12 > 0 [31].
Among Mg2(SixPb1−x) phases with different Pb contents, the Mg2Si phase exhibits the
highest Young’s modulus of 102.00 GPa, the highest shear modulus of 43.35 GPa, and
the lowest Poisson’s ratio of 0.1763. As the solid solubility of Pb increases, the Young’s
and shear moduli for Mg2(SixPb1−x) phases decrease significantly, while the Poisson’s
ratio increases.

Table 2. Calculated elastic constants and moduli of the Mg2(SixPb1−) phase.

x C11, GPa C44, GPa C12, GPa B, GPa G, GPa E, GPa ν G/B

1 114.04 41.50 21.76 52.52 43.35 102.00 0.1763 0.83
0.75 92.29 35.21 19.32 43.64 35.72 84.19 0.1785 0.82
0.5 75.78 28.45 16.65 37.93 28.46 68.29 0.1999 0.75
0.25 70.93 26.99 23.09 39.04 25.76 63.35 0.2295 0.66

0 59.00 24.85 20.33 33.22 22.64 55.36 0.2223 0.68

Furthermore, the hardness can be predicted through the first-principles calculations
utilizing the following formulae [32]:

HV = [
x−y

∏ (Hx−y
V )n(x−y)]

1/∑ nx−y

, (7)

Hx−y
v =

350
(

Nx−y
e

) 2
3 e−1.191 f x−y

i

(dx−y)2.5 , (8)

f x−y
i = 1 − e−

|pc−p|
p , (9)

Nx−y
e =

(
zx
Nx

+
zy
Ny

)[
∑ nx−y(dx−y)

3
]

(dx−y)3V
, (10)

where Hx−y
V , nx−y, dx−y, f x−y

i are the hardness, bond number, bond length, and Phillips
ionicity of the x-y bonds, respectively. P is the overlap population of a bond, and Pc is the
overlap population of a bond in a hypothetical pure covalent crystal with the same special
structure (Pc = 0.75). Zx or Zy is the valence electron number. Nx or Ny is the coordination
number of the x or y atom constructing the x-y bond. V is the volume of the calculating unit
cell. The calculated bond parameters and Vickers hardness values are shown in Table 3.

Generally, covalent bonds contribute to high strength and hardness, while ionic
bonds are associated with high toughness. The ratio of covalent and ionic bonds in the
Mg2(SixPb1−x) phase can be determined by Muliken’s overlap population P. A value
of P = 0 indicates purely ionic bonding, whereas P > 0 suggests an increase in cova-
lent action [33]. According to the calculation results, the binding between atoms in the
Mg2(SixPb1−x) phase occurred mainly through covalent bonds with a minor presence of
ionic bonds. With increasing Pb content, the proportion of covalent bonds decreased while
the percentage of ionic bonds increased. Consequently, the trend of hardness aligns with
that of the Young’s and shear moduli (Table 2), whereby an increase in the solid solubility
of Pb in the Mg2Si phase led to a decrease in the hardness of the Mg2(SixPb1−x) phase. This
change enhances the ductility and toughness and reduces the brittleness of the Mg2Si phase.
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Table 3. Calculated bond parameters and hardness of Mg2(SixPb1−x) phase.

Crystals Bone Types Number D (Å) P V (Å3) Hv (GPa)

Mg2Si Mg-Si 32 2.7562 0.36 257.8875 4.17

Mg2(Si0.75Pb0.25) Mg-Si 24 2.8163 0.38
279.6076 3.03Mg-Pb 8 2.8780 0.03

Mg2(Si0.5Pb 0.5) Mg-Si 16 2.8178 0.40
291.9998 2.84Mg-Pb 16 2.9284 0.10

Mg2(Si0.25Pb0.75) Mg-Si 8 2.8501 0.42
311.0440 2.69Mg-Pb 24 2.9629 0.18

Mg2Pb Mg-Pb 32 3.0022 0.24 333.2925 2.61

3.3. Growth Morphology of Mg2(SixPb1−x) Crystal

The formation process and final morphology of the primary Mg2Si phase are influ-
enced by its inherent crystalline structure as well as external factors, including tempera-
ture, pressure, and solvent concentration [34]. From a crystallographic perspective, the
{111} facets of Mg2Si, which exhibit the highest degree of surface packing, manifest the
minimum surface energy, while the {100} facets have the lowest degree of packing and the
highest surface energy. During crystal growth, the {111} faces expose, and the {100} faces
undergo shrinkage [35]. The substitution of Si with Pb in Mg2Si crystal resulted in a modi-
fication of the surface energy, ultimately leading to a morphological transformation. The
surface-slab models for the {111} and {100} faces were constructed to study the surface en-
ergy and adsorption capacity, respectively, as shown in Figure 3. The surface energy (Esurf)
of {111} and {100} faces, as well as the effect of substituting Si atoms with Pb atoms in all
slab models, were determined. The corresponding calculation results are shown in Table 4.
In pure Mg2Si, the surface energy of {111}Mg-I termination was the lowest, with a value of
0.48 eV. Upon substitution of Pb for Si, the surface energy of each termination increased.
The {111}Mg-I and {111}Mg-II terminations exhibited a significant rise in surface energy,
by 1.27 times and 1.21 times, respectively. The surface energy of {111}Mg-II termination
became the highest of all terminations.
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Table 4. The surface energies of different slab models of the Mg2Si phase.

Mg2Si {111}Mg-I {111}Mg-II {111}Si {100}Mg {100}Si

Esurf (eV) 0.48 1.60 1.62 1.07 1.27
Esurf/Pb (eV) 1.09 3.53 1.65 1.32 2.79

From the perspective of external growth conditions, the adsorption or bonding of
Pb atoms in the liquid phase also exerts an influence on the growth rate of Mg2Si crystal
faces. To illustrate this phenomenon, an adsorption model was established based on the
replacement of Si sites by Pb atoms (as depicted in Figure 3). The adsorption energy Eads
of {111} and {100} faces for Pb atoms of all terminations are shown in Figure 4. Generally,
a more negative adsorption energy indicates a stronger adsorption [36]. Consequently,
Pb atoms exhibit a preference for adsorbing onto {100} faces.
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3.4. Microstructure of Mg2(SixPb1−x) in Mg-Si-Pb Alloy

The microstructures of as-cast Mg-2.5Si-xPb alloys are shown in Figure 5. Mg-2.5Si-xPb
alloys consisted of the Mg2Si phase and α-Mg matrix. In Mg-2.5Si-0.4Pb alloy (Figure 5b),
the primary Mg2Si phase had a dendritic morphology, similar to that of Mg-2.5Si alloy
(Figure 5a). However, there was an increase in the number of primary Mg2Si particles and a
decrease in their size. The average particle size decreased from 50.1 µm in Mg-2.5Si alloy to
34.8 µm in Mg-2.5Si-0.4Pb alloy. With the increase of Pb content in the alloy, the morphology
and size of the primary Mg2Si phase in the Mg-2.5Si-0.8Pb alloy changed significantly.
As observed in Figure 5c, the morphology of the primary Mg2Si phase changed from
equiaxed-dendrite to polygonal outlines, and the average particle size further decreased
to 18.7 µm.

In Mg-2.5Si-1Pb alloy, the morphology of the primary Mg2Si phase exhibited a very
special change. There was a significant difference in the size of primary Mg2Si particles
(Figure 5d). Apart from particles with an average size of 16.9 µm, numerous finer particles
with a size ranging from 3 to 6 µm were also present. The distinct characteristic was
that while the larger Mg2Si particles had been spheroidized, the finer particles retained a
polygonal shape. Nonetheless, a rounding effect was evident at the sharp corners of these
fine particles, suggesting partial or incomplete spheroidization, as indicated by the arrows
in Figure 5d.

Figure 5 shows high-magnification images of the microstructure. There was local
energy fluctuation and compositional fluctuation during solidification, so the images seem
to show an effect on eutectic Mg2Si and α-Mg. Multiple different areas of the alloys were
measured to determine the proportion of each phase area, and the results are shown
in Table 5. From the proportion of area in each alloy, it can be seen that the change of
Pb content has little effect on the eutectic phase and α-Mg. This is due to the low Pb content
in the alloy and the high solid solubility of Pb in Mg [22].
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Table 5. The area ratio of each phase of as-cast Mg-2.5Si-xPb alloys.

Alloy Primary Mg2Si (%) Eutectic Mg2Si (%) α-Mg (%)

Mg-2.5Si 17.5 3.5 78.2
Mg-2.5Si-0.4Pb 17.6 3.8 77.7
Mg-2.5Si-0.8Pb 18.6 4.8 76.3
Mg-2.5Si-1.0Pb 19.9 4.6 75.1

The distribution of alloying elements and the composition analysis of Mg-2.5Si-xPb
alloy were further examined using EDS, as shown in Figure 6. In Mg-2.5Si alloy (Figure 6a),
the Si element was mainly distributed within the Mg2Si phase, and the Si content in both pri-
mary and eutectic Mg2Si phases was similar, with values of 36.5 wt.% and 31.8 wt.%, respec-
tively. In Mg-2.5Si-0.4Pb alloy (Figure 6b), Mg2Si particles show a prominent Mg Kα1,2 peak,
a strong Si Kα1,2, and a weak Pb Lα1,2 peak. It is evident that the Si element is concentrated
in the Mg2Si phase. The composition of the primary and eutectic Mg2Si phase was about
Mg-35.2% Si-0.1% Pb and Mg-30.6% Si-0.2% Pb (wt.%), respectively. The Pb content within
the Mg matrix was found to be 0.5 wt.%, which exhibited a significant increase compared
to that present in the Mg2Si phase. This observation can be attributed to the high solid
solubility of Pb in the Mg matrix.

The same analysis was performed on Mg-2.5Si-0.8Pb alloy (Figure 6c) and Mg-2.5Si-1Pb
alloy (Figure 6d). In the EDS of primary and eutectic Mg2Si particles, a minor increase
in peak intensity was noted for the Si and Pb elements. In Mg-2.5Si-0.8Pb alloy, the
Pb content of primary and eutectic Mg2Si particles increased to 0.3 wt.%, and 0.5 wt.%,
respectively. In Mg-2.5Si-1Pb alloy, the compositions of primary and eutectic Mg2Si were
about Mg-35.9%Si-0.4%Pb and Mg-32.0%Si-0.7%Pb (wt.%), respectively. The variation in
Pb content within the primary Mg2Si phase, eutectic Mg2Si phase, and α-Mg matrix for
Mg-2.5Si-xPb is shown in Figure 7. There was a consistent increase in the proportion of
Pb mass within each phase with the increase of Pb content in the alloy. It is noteworthy that
the Pb content detected in all phases was slightly smaller than that of the composition of the
Mg-2.5Si-xPb alloys. The possible reason was that the high density and atomic number of
the Pb element make its absorption efficiency of X-ray and gamma-ray higher [37], resulting
in a slight decrease in the measured Pb content. In addition, among all components of the
alloy, the primary Mg2Si phase exhibited the lowest Pb content, and the Pb content in the
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Mg matrix was close to that in the nominal composition of the alloys. It is reasonable to
conclude that the Pb content in the liquid phase had an important effect on the morphology
of the primary Mg2Si phase. During the analysis of EDS, the influence range of the focused
electron beam on the specimen was about 3 µm at 15 kV. Therefore, the content of Pb of the
eutectic Mg2Si phase is between that in the primary phase and the Mg matrix.
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Figure 7. Pb content in each phase of as-cast Mg-2.5Si-xPb.

Mg-2.5Si-1Pb alloy, which has the highest Pb content, was selected for detailed in-
vestigation using TEM and HRTEM. Figure 8 shows TEM micrographs of a primary
Mg2Si particle in Mg-2.5Si-1Pb alloy. The interior of the Mg2Si crystal was uniform. How-
ever, a distinct banded region with gray–black contrast was observed at the periphery of
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the Mg2Si particle, as indicated by white arrows. The electron diffraction pattern (DP)
obtained from the [001]Mg2Si zone axis of the circular region is shown in Figure 8b. HRTEM
was further conducted on the edge region, as shown in Figure 8c. In this image, the gray
and white columns correspond to the Si and Mg atomic columns, respectively. The inset
highlighted the primary Mg2Si unit cell structure, which is outlined by squares. The mea-
sured value of crystal constant a was 0.658 nm and slightly larger than that of pure Mg2Si.
The enlarged lattice constant can be ascribed to the substitution of Pb for Si. The edge
region was thoroughly examined, and no atomic segregation was detected. Therefore, the
presence of a gray–black banded area at the edge can be attributed to the thickness fringe
due to the spherical morphology of this Mg2Si particle.
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Figure 8. TEM micrographs of Mg-2.5Si-1Pb alloys. (a) TEM micrograph showing a primary
Mg2(SixPb1−x) particle in Mg-2.5Si-1Pb alloy; (b) DP recorded from primary Mg2Si in (a); (c) HRTEM
image showing the two-dimensional lattice structure of central region of the Mg2(SixPb1−x) phase in
Mg-2.5Si-1Pb alloy and the inset showing the crystal structure of Mg2(SixPb1−x). The circle in panel
(a) is the acquisition area of electron diffraction. Green balls represent Mg atoms, while yellow balls
represent Si atoms in panel (c).

3.5. Nanomechanical Properties of the Mg2(SixPb1−x) Phase

Figure 9 presents the load-displacement curves obtained from in situ nanoindenta-
tion tests conducted on the primary Mg2Si phase in Mg-2.5Si-xPb alloys. The maximum
indentation depth hmax was 73.9 nm in the Mg-2.5Si-0.4Pb alloy and increased to 77.5 nm
in Mg-2.5Si-1Pb. The value of plastic depth hf increased from 42.9 nm to 45.8 nm.
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The nanomechanical properties were calculated using the Oliver–Pharr method [38]
based on the unloading segment data, as shown in Table 6. It is evident that the solid
solution of Pb in the Mg2Si phase results in the decrease both of elastic modulus E and
hardness Hv. Among all compositions, the Mg2Si phase in Mg-2.5Si-1Pb alloy with the
highest Pb content exhibits the lowest elastic modulus of 83.4 GPa and hardness of 3.6 GPa.
Compared to the pure Mg2Si phase, there is an observed reduction of 11.8% in elastic
modulus E and a decrease of 2.0% in hardness Hv.

Table 6. The elastic modulus E, hardness Hv, maximum indentation depth hmax, plastic depth hf, and
plastic deformation ratio hf/hmax, of two different Mg2(SixPb1−x) phases.

Alloy Elastic Modulus E
(GPa)

Hardness Hv
(Gpa)

hmax
(nm)

hf
(nm)

hf/hmax
(%)

Mg-2.5Si 94.6 4.6 66.8 38.7 57.9
Mg-2.5Si-0.4Pb 86.2 4.0 73.9 42.9 58.1
Mg-2.5Si-0.8Pb 83.7 3.9 73.7 41.8 56.7
Mg-2.5Si-1.0Pb 83.4 3.6 77.5 45.8 59.1

4. Discussion
4.1. Morphology

In FCC crystals, the preferential growth directions are 〈100〉, and {100} faces have the
fastest growth rate [14]. Under ideal growth conditions, the {100} faces of Mg2Si crystal
will gradually shrink during the growth process, ultimately degrading to corners and
edges. This leaves the {111} facets exposed, resulting in an octahedral crystal shape [39].
The addition of Pb effectively modified the morphology of primary Mg2Si crystals in
Mg-2.5Si-xPb, primarily due to the changes in thermodynamics and kinetics conditions in
front of the solid–liquid interface.

The incorporation of a few Pb atoms into primary Mg2Si crystals through substitution
at the Si atoms resulted in a change of the surface energy of the {111} and {100} planes
(Table 4). According to previous studies, the equilibrium form of an FCC crystal is deter-
mined by the proportional surface energies of the {100} and {111} planes [40]. With Si sites
replaced by Pb atoms, the surface-energy ratio between the {100} Mg termination and
{111} Mg-I termination changed from 2.23 to 1.21. Therefore, the morphology of primary
Mg2Si crystals tended to be a truncated octahedron. Additionally, the calculation results of
the adsorption energy of Pb atoms on the Mg2Si {111} and {100} planes (Figure 4) show the
preferential adsorption of Pb atoms on {100} planes. The growth rates of 〈100〉 directions
were inhibited, and the final morphology of the Mg2Si crystal was also affected.

Meanwhile, the growth rate was also apparently encouraged by large constitutional
undercooling and supersaturation. Once the interface front of the primary Mg2Si was
unstable, the main stem was formed along the preferential growth direction 〈100〉. Sub-
sequently, secondary branches are aroused in directions perpendicular to the primary
dendrite trunk. The rapid generation and growth of these secondary dendrites result in
their interconnection or overlapping, as shown in Figure 5a. Due to the low Pb content in
Mg-2.5Si-0.4Pb alloy, the primary Mg2Si phase also tends to form coarse dendrites, similar
to those observed in Mg-2.5Si alloy. However, the addition of Pb induced a supercooling
effect that significantly enhanced the nucleation capability of Mg2Si crystals, consequently
leading to an augmentation in the quantity of primary Mg2Si particles and a reduction
in size.

In Mg-2.5Si-0.8Pb alloy, the surface energy of Mg2Si crystal change caused by Pb sub-
stitution for Si, and the preferential adsorption of Pb atoms on the {100} plane became more
obvious. The growth rates of 〈111〉 directions were hindered, resulting in the appearance of
truncated octahedral morphologies. The reserved percentage of {100} facets was found to
be correlated with the reduction in growth rates along the 〈100〉 directions [9].

The formation of roughly spherical primary Mg2Si particles in the Mg-2.5Si-1Pb alloy
(Figure 5d) was a complex process that requires further analysis. According to Mg-Si and
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Mg-Pb equilibrium phase diagrams [22], the primary Mg2Si crystals first nucleate and grow.
However, due to solute trapping under non-equilibrium solidification, some Pb atoms were
dissolved into Mg2Si, forming a substitution solid solution Mg2(SixPb1−x). According to
TEM observations, Pb atoms only replaced Si atoms in Mg2Si crystal. In contrast, Sn not
only has the capability to replace Si but also exhibits the potential for replacing Mg in
Mg2Si crystal [41]. Therefore, the substitution solution probability of the Pb atom in the
Mg2Si crystal is less than that of the Sn atom. Furthermore, the calculation results indicated
that the Mg2Si structure exhibited the highest stability. Under ideal equilibrium conditions,
the Mg2(SixPb1−x) phase had a greater tendency to decompose into Mg2Si and Pb in order
to reduce the energy of the system. The above two reasons significantly restricted the solid
solubility of Pb in the Mg2Si phase under conventional casting conditions. During the
solidification process, the excess Pb atoms were expelled from the primary Mg2Si particle
and gathered at the solid–liquid interface. At the sharp edge of two meeting growth
planes, there was a notable increase in Pb concentration, as shown in Figure 10. Given that
Pb has a higher atomic mass compared to Mg and Si [20], the diffusion rate of Pb atoms
was considerably slower. The accumulation of Pb atoms at sharp corners hindered the
transfer of atoms from the liquid to the solid phase, causing a decrease in growth rate at
those locations. This promoted the morphological transformation of truncated octahedral
Mg2Si particles into roughly spheroidal particles.
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Mg2Si crystal (a) Mg-2.5Si-0.8Pb alloy; (b) Mg-2.5Si-1Pb alloy.

4.2. Mechanical Properties

According to the principles of general crystal-strengthening theoretical logic, the
solubility of Pb in Mg2Si crystal is expected to result in the enhancement of solution
strengthening, leading to an increase in the hardness of primary Mg2Si [42]. However,
the nanomechanical properties data (Table 5) revealed contrary findings. The hardness of
the Mg2(SixPb1−x) phase reduced with an increasing Pb solubility. The main reason was
that the substitutional solid solution Mg2(SixPb1−x) belongs to a covalent compound. The
hardness of the Mg2(SixPb1−x) phase is primarily determined by the energy of covalent
bonds localized within electron spin pairs [43]. This factor remains unaffected by external
influences such as impurities, precipitates, grain boundaries, and other related factors [44].

Examining the bond parameters listed in Table 3, it became evident that the covalent
interaction of the Mg-Pb bonds (P = 0.24) was weaker than that of Mg-Si (P = 0.36) in
the Mg2(SixPb1−x) crystal. Consequently, as the number of Pb atoms increased in the
Mg2(SixPb1−x) crystal, the number of ionic bonds also increased. This led to a decrease in
hardness and an increase in the toughness of the Mg2(SixPb1−x) phase. The mechanical
properties of Mg2(SixPb1−x) predicted by the first-principles calculation (Tables 2 and 3)
aligned well with the experimental values. This agreement can be attributed to the fact
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that Pb atoms only replace Si atoms in Mg2Si (Figure 8). The formation of the substitution
solid solution Mg2(SixPb1−x) was consistent with the crystal model established through
first-principles calculations.

5. Conclusions

The morphology and mechanical properties of the Mg2(SixPb1−x) phase in the
Mg-2.5Si-xPb alloy were investigated through theoretical calculations and experimental
analysis. The main conclusions are summarized as follows:

(i) Based on the first principles of structural prediction and electronic structure calcula-
tion, the Mg2(SixPb1−x) solid solution was structurally stable. The stability of Mg2(SixPb1−x)
increased with the decrease in Pb content. Compared with the Mg2Si phase, Mg2(SixPb1−x)
had sufficient hardness and inherent toughness as a reinforcement phase;

(ii) The preferential adsorption on {100} crystal planes of Pb atoms changes the growth
rate along the ⟨100⟩ directions of the Mg2Si phase. As the Pb content in the Mg2(SixPb1−x)
phase increased, the morphology of primary Mg2(SixPb1−x) transformed from equiaxed-
dendrite to truncated octahedron, and then to, roughly, sphericity in the Mg-2.5Si-1Pb alloy;

(iii) As a substitutional solid solution, the Mg2(SixPb1−x) phase is formed due to the
solute trapping during solidification. The stiffness and hardness of the Mg2(SixPb1−x) phase
decreased with the increase of Pb content. The experimental findings regarding mechanical
properties were found to be in accordance with the theoretical predictions obtained through
first-principles calculations. Combined with the values of elastic modulus obtained from
theoretical calculations, it can be seen that the solid solutions of Pb can reduce the brittleness
and improve the toughness of the Mg2Si phase.
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