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Abstract: Sensitivity analysis of influencing factors on frost resistance is carried out in this paper, and
a two-stage neural network model based on grey theory and Back Propagation Neural Networks
(BPNNs) is established for the sake of predicting the frost resistance of active-admixture recycled
concrete quickly and accurately. Firstly, the influence degree of cement, water, sand, natural aggregate,
recycled aggregate, mineral powder, fly ash, fiber and air-entraining agent on the frost resistance of
active-admixture recycled-aggregate concrete was analyzed based on the grey system theory, and the
primary and secondary relationships of various factors were effectively distinguished. Then, the input
layer of the model was determined as cement, water, sand, recycled aggregate and air-entraining
agent, and the output layer was the relative dynamic elastic modulus. A total of 120 datasets were
collected from the experimental data of another author, and the relative dynamic elastic modulus
was predicted using the two-stage BPNN prediction model proposed in this paper and compared
with the BPNN prediction results. The results show that the proposed two-stage BPNN model, after
removing less-sensitive parameters from the input layer, has better prediction accuracy and shorter
run time than the BPNN model.

Keywords: sensitivity analysis; recycled concrete; grey theory; BPNN

1. Introduction

Nowadays, the global urbanization and industrialization process has increased the
demand for natural concrete, which has led to the destruction of the natural environment,
energy consumption and environmental pollution and other problems that cannot be
ignored [1–3]. Making matters worse, the waste concrete generated by the renovation and
reconstruction of urban buildings is even worse for environmental protection, and even
causes a huge waste of resources. Recycled-aggregate concrete came into being at the right
moment. Recycled aggregate is obtained by crushing and screening waste concrete, and it
is made of recycled-aggregate concrete instead of natural aggregate, which can effectively
realize the reuse of waste concrete, which can effectively alleviate the dilemma of short
supply of sand and stone, and also meet the requirements of today’s society for green
concrete, and play a positive role in promoting the sustainable development of building
resources and the environment [4,5]. It is without doubt that the recycling of waste concrete
is a win–win solution, and has extensive application prospects [6–8].

Generally, the amount of bonding mortar and the quality of the original concrete have a
significant effect on the performance of recycled concrete; the increase in recycled-aggregate
content and water–cement ratio will reduce the durability of concrete [9]. Adding various
industrial wastes such as fly ash and mineral powder into concrete as active admixtures
can not only reduce the amount of cement, but also improve the frost resistance of concrete,
which has become an important direction of the development of building science [10–13].
Cui et al. [14] studied the effect of waste polypropylene fiber on the frost resistance of
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recycled-aggregate concrete, and the results showed that waste fiber could improve the
frost resistance of recycled concrete. Abed et al. [15] studied the chloride ion migration,
concrete impermeability and freeze–thaw resistance of self-compacting high-performance
concrete mixed with unprocessed waste fly ash, waste perlite powder and waste honeycomb
concrete, respectively. The results showed that pozolanic activity and amorphous waste-
powder materials can improve the durability of concrete under aggressive environments.
Li et al. [16] conducted an experimental study on the frost resistance of recycled-aggregate
concrete made of iron tailings, and the results showed that the combination of 30% iron
tailings and 30% recycled-aggregate concrete had good frost resistance. The micro-analysis
showed that when an appropriate amount of iron tailings was used, the pore structure of
and frost resistance of recycled concrete were improved. Jain et al. [17] studied the effects of
different alternative levels of waste glass powder and granite powder on the durability of
concrete, and the results showed that the durability of concrete was significantly improved
when 15% of waste glass powder and 30% of granite powder were contained.

The reason for the poor frost resistance of recycled-aggregate concrete is clear. The
micro-cracks caused by the damage accumulation and crushing process of the original
concrete not only increase the water absorption rate of the recycled concrete, but also pro-
vide a new channel for water to penetrate the concrete, which makes the recycled concrete
more prone to freeze–thaw damage. So, it is necessary to evaluate the frost resistance
of recycled-aggregate concrete before promoting it in cold areas [18,19]. At present, the
commonly used evaluation indexes for frost resistance of concrete mainly include mass
loss rate, compressive strength loss rate and relative dynamic elastic modulus, etc. Due
to the fact that measurement results of relative dynamic elastic modulus are accurate and
do not need to destroy the specimen, and can sensitively reflect the damage inside the
concrete, it is widely used by scholars [20,21]. It is concluded from the above analysis that
most of the current studies are mainly based on test and theoretical analysis, and a set of
practical, reasonable and complete evaluation methods have not been established for the
frost resistance of recycled concrete based on relative dynamic elastic modulus. How to
carry out effective data mining on the collected information, so as to carry out scientific
risk identification, early warning, prevention and control of concrete durability has become
an urgent problem to be solved.

In recent years, machine learning methods have attracted more and more attention [22,23].
Machine learning has the advantages of self-organization, self-learning, and the ability
to quickly and accurately reflect the relationships between a variety of influential factors.
Many scholars have tried to use neural network models to predict some properties of
concrete, and have obtained satisfactory results. Hosseinzadeh et al. [24] focused their
research on the prediction of mechanical properties of fly ash recycled-aggregate concrete
based on a machine learning algorithm, and the results showed that the accuracy of XGBoost
algorithm in the prediction of compressive and tensile strength was higher than that of
random forest algorithm, about 0.95. Concha [25] used a neural network to predict the
carbonization depth of recycled-aggregate concrete, and the prediction results showed that
the prediction model could provide better prediction results even if there was ambiguity in
the data, and the results could be used to evaluate the health status of recycled-aggregate
concrete structures. Huang et al. [26] used a convolutional neural network (CNN) to
predict the compressive strength of mixed-fiber-reinforced recycled-aggregate concrete.
The results showed that the CNN prediction model had good prediction accuracy, and the
average relative error and maximum relative error of the prediction results were 1.98%
and 4.12%, respectively. Boudali et al. [27] used an artificial neural network (ANN) to
predict the compressive strength of recycled self-compressive concrete by taking binder
content, water–binder ratio, recycled concrete aggregate content, fly ash content, recycled
concrete powder content and curing time as input vectors. Dong et al. [28] used the Grey
Wolf optimizer (GWO) to enhance the BPNN and established an optimization model for
finding the best mix-ratio of ecological concrete. B K A et al. [29] used an ANN to predict
the compressive strength of recycled concrete and obtained satisfactory accuracy.
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In general, increasing the number of input variables of a neural network can result in
better prediction results, and the condition of input variables has a good correlation with
the output variables. However, some inputs may be irrelevant or contribute no information
to the output, and may introduce system noise, fool the training algorithm and degrade
the performance of the model [30,31]. Therefore, there is an urgent problem to be solved
about the sensitivity analysis of input variables. Based on the above analysis, this paper
attempted to apply grey correlation degree and a BPNN to predict the frost resistance of
recycled-aggregate concrete with active admixture, in order to provide a new idea for the
frost resistance prediction of recycled concrete.

2. Mix Proportion of Active-Admixture Recycled Concrete

According to [32], with the increase in freeze–thaw times, the relative dynamic elastic
modulus of recycled aggregate concrete decreases gradually; it means that the inside freeze–
thaw damage of concrete increases gradually and, thus, the conclusion is inevitable that
the number of freeze–thaw cycles has the greatest and most continuous influence on the
frost resistance of concrete. Therefore, the frost resistance of active-admixture recycled
concrete is related to 10 factors, including the quality of cement (Ordinary Portland cement
42.5 grade), water, sand, natural coarse aggregate, recycled aggregate, mineral powder,
fly ash, air-entraining agent and fiber in 1 m3 concrete, and the number of freeze–thaw
cycles. It should be noted that in view of the importance of the number of freeze–thaw
cycles on the influence of frost resistance, only the sensitivity analysis of the remaining
nine concrete mix components is required. For the input and output vectors of an artificial
neural network (ANN), all data must be normalized. Table 1 shows the range of variation
for each variable.

Table 1. The change range of original input and output data in [32].

Mix Proportion

Freeze-
Thaw
Cycles

Relative
Dynamic Elastic
Modulus (200th

Freeze-Thaw)
Cement

(X1)
Water
(X2)

Sand
(X3)

Natural
Coarse

Aggregate
(X4)

Recycled
Coarse

Aggregate
(X5)

Mineral
Powder

(X6)

Fly
Ash (X7)

Air Entraining
Agent

(X8)

Fiber
(X9)

Minimum 128 153 655 0 0 0 0 0 0 25 67.8
Maximum 321 183 683 1146 1146 96.3 125.2 0.032 1.5 200 99.8

3. Two-Stage Prediction Model
3.1. Model Description

A two-stage prediction model is proposed in this paper, aiming at predicting the
frost resistance of active-admixture recycled concrete based on grey influencing factors
sensitivity analysis and a BPNN. The method can be divided into two stages and three steps:
initial indicator determination, indicator screening, BPNN prediction model establishment
and evaluation, as shown in Figure 1.

3.2. Establishment of the Initial Sample Set

The database used in this paper is 120 groups of data collected from the literature [32],
the factors that affect the frost resistance of recycled concrete mentioned in Table 1 are
selected as input indexes, and the relative dynamic elastic modulus is taken as the output
index to establish the sample dataset, which is divided into training set and test set. The
training set contains 87.5% of data: that is, the training set contains 105 groups of data
samples, while the test set contains 15 groups of test samples. The samples contained in the
test set are marked in Appendix A. In order to obtain more accurate prediction results, it is
necessary to optimize the initial input index of the network.
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Figure 1. Two−stage frost resistance prediction model based on grey theory and BPNN.

3.3. Sensitivity Analysis of Influencing Factors

As we all know, the accuracy of the prediction model is closely related to the dimen-
sions of the input variables. If there are irrelevant or weakly correlated variables in the set
of input variables, it is bound to increase the modeling time, reduce the accuracy of the
model, and even result in over-fitting. Therefore, it is necessary to determine the impor-
tance of each input variable and eliminate irrelevant or weakly correlated input variables
to improve the accuracy of model prediction. In this paper, grey correlation degree [33,34]
is selected to evaluate the importance of each factor. The specific steps are as follows:

(1) Build the raw data matrix. In this paper, i group (i = 15) measured data of recycled
concrete are used to analyze the parent factor (relative dynamic elastic modulus) and j
(j = 9) sub-factor (mentioned in Table 1), then the original data matrix is obtained.

[X] =


x10
x20
...
xi0

x11
x21
...
xi1

· · ·
· · ·
...
· · ·

x1j
x2j
...
xij


15×(9+1)

(1)

(2) Unified dimension. In order to eliminate the impact of dimension, the homog-
enization method is used to carry out unified dimensional processing on the original
data.

xij = xij/
i
n

n

∑
i=1

xij (2)

where, xij is the value of a factor in the input layer, xij is the average value of the factor in
the input layer, xi0 is the relative dynamic elastic modulus value of the factor in the input
layer after 200 times of freezing and thawing. i = 1, 2, . . ., n; j = 0, 1, 2, . . ., m.

(3) Calculate the absolute difference matrix and the maximum value.

[∆] =
∣∣δij

∣∣
n×(m+1) (3)

δij =
∣∣xij − xi0

∣∣ (4)
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Then, the maximum value in the absolute difference matrix is:

∆min = min
{

δij
}

(5)

∆max = max
{

δij
}

(6)

(4) Solve the correlation coefficient matrix. The correlation coefficient matrix is calcu-
lated as follows:

[L] =
∣∣lij∣∣n×(m+1) (7)

lij =
∆min + ρ∆max

δij + ρ∆max
(8)

where, ρ is the resolution coefficient. The value of ρ is between 0 and 1. Generally, ρ = 0.5.
(5) Calculated correlation degree. In order to analyze the correlation between the

parent factor and each sub-factor, it is necessary to calculate the correlation degree. The
calculation formula is as follows:

γ0i =
1
n

n

∑
i=1

lij (9)

where, γ0i is the correlation degree of the sub-factor xi to the parent factor x0. A larger
value of γ0i indicates a greater correlation.

3.4. BPNN Prediction and Accuracy Evaluation

A BPNN [27] is a typical multi-layer forward network, consisting of an input layer,
an output layer and a hidden layer. The hidden layer can have one or more layers, and
each layer is composed of multiple neurons. Its structure is shown in Figure 2. As can be
seen from Figure 2, all connections are adopted between layers, and there is no mutual
connection between the units of the same layer. Although neurons in the same layer cannot
connect to each other, they can transmit data with neurons in another layer. The learning
process of the BPNN algorithm consists of forward propagation and back propagation. In
the forward propagation process, the input information from the input layer is processed
through the hidden layer and then output in the output layer. Each layer of neurons only
affects the neurons of next layer. If the expected output result is not obtained in the output
layer, the error signal is returned along the original path, and the error is minimized by
modifying the weights of neurons in each layer.
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The following expressions can be used to express all processes that occur within the
ANN framework [27]:

Y = fsig{b0 + ∑n
j=1[ωj × fsig(bnj + ∑m

i=1 ωijδi)]
}

(10)

where, Y is the output parameter, b0 is the offset term of the output layer, n is the number
of neurons in the hidden layer, j represents a specific neuron in the hidden layer, ωj is the
connection weight between the jth hidden layer and a single output neuron, δi is the ith
input variable and fsig is a nonlinear transfer function.

To effectively evaluate the accuracy of the two-stage prediction model proposed in
this paper, determination coefficient (R2), mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used.
Their expressions are shown as (11)–(15).

R2 = 1 − ∑n
i=1 (yi − y′i)

2

∑n
i=1 (yi − y′i)

2 (11)

MSE =
∑n

i=1 (y
′
i − yi)

2

n
(12)

RMSE =

√
∑n

i=1 (y
′
i − yi)

2

n
(13)

MAE =
1
n∑n

i=1

∣∣y′i − yi
∣∣ (14)

MAPE =
1
n∑n

i=1

∣∣∣∣y′i − yi

yi

∣∣∣∣× 100 (15)

where, yi is the ith test value, yi is the average value of the ith test value, y′i is the ith
predicted value and y′i is the average of the ith predicted value.

4. Case Study
4.1. Sensitivity Analysis of Influencing Factors

It can be seen from Table 1 in Section 2 that for the relative dynamic elastic modulus, the
influencing factors are the quality of cement, water, sand, natural coarse aggregate, recycled
aggregate, mineral powder, fly ash, air-entraining agent, fiber and the number of freeze–
thaw cycles, so the initial frost-resistance-influencing indexes are 10. Since the number
of freeze–thaw cycles is the influence factor of frost resistance that must be considered,
which was mentioned in Section 2, sensitivity analysis is performed on the remaining nine
factors. Taking the relative dynamic elastic modulus after 200 freeze–thawing sessions as
an example, the grey correlation degree of each factor affecting the relative dynamic elastic
modulus is calculated according to the steps described in Section 3.3, as shown in Table 2
and Figure 3.

Table 2. Correlation degree of influencing factors.

Cement
(X1)

Water
(X2)

Sand
(X3)

Natural Coarse
Aggregate (X4)

Recycled
Coarse

Aggregate (X5)

Mineral
Powder (X6)

Fly
Ash (X7)

Air Entraining
Agent

(X8)

Fiber
(X9)

Grey correlation degree 0.7804 0.8766 0.8928 0.5254 0.5717 0.5507 0.5469 0.6340 0.5558
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It can be seen from Figure 3 that the correlation degree of cement, water, sand, recycled
aggregate and air-entraining agent are all bigger than 0.57, and, meanwhile, natural coarse
aggregate, mineral powder, fly ash and fiber are less than 0.57; it means these four ingre-
dients have relatively little impact on the frost resistance of recycled concrete. Therefore,
the original nine influencing factors of concrete ingredients are optimized into five, and
considering the number of freeze–thaw cycles is the decisive factor for the freeze-resistance
of concrete, six factors are used as input variables of the BPNN.

4.2. BP Network Structure Design

On the basis of grey correlation analysis, six input factors and one output factor
(relative dynamic elastic modulus) including cement, water, sand, recycled aggregate,
air-entraining agent and number of freeze–thaw cycles are determined. To eliminate the
influence of different influencing factors on the learning accuracy and effect of a neural
network, it is necessary to normalize the sample data before model training. The original
data are normalized: that is, Formula (16) is used to convert the original value of the input
layer to the value of the interval [0, 1], and finally the value is replaced by Formula (17) in
the output layer.

xi =
xi − xmin

xmax − xmin
(16)

xi = xi(xmax − xmin) + xmin (17)

where, xi is the data after normalization processing, xi is the non-normalization data, xmin
is the minimum value of the original data sample and xmax is the maximum value of the
original data sample.

In this paper, a three-layer neural network with a single hidden layer is selected to
predict the relative dynamic elastic modulus. There are six variables in the input layer,
so the number of nodes in the input layer is six, and the output layer of the network has
one variable, so the number of nodes is one. At present, there is no unified method to
determine the number of nodes in the hidden layer of the network. In this paper, empirical
formulas and sum of squares of error are used to confirm the number of nodes in the
hidden layer. The common calculation formula for nodes in the hidden layer is shown in
Equation (18) [35]

S =
√

n + m + a (18)
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where S is the number of nodes in hidden layer, n is the number of input layer nodes, m is
the number of output layer nodes, and a is an integer of [1,10], then the range of nodes in
the hidden layer is:

H =
√

6 + 1 + [1, 10] = [4, 14] (19)

Therefore, the number of nodes in the hidden layer is finally determined to be 11
according to the minimum sum of squares error. So far, the structure of the BPNN used
in this paper is 6-11-1, as shown in Figure 4. The transfer function of the hidden layer is
tansig, and the transfer function of the output layer is purelin. The maximum of training
steps is set to 1000, the training accuracy is set to 0.000001 and the learning rate is 0.01.
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Figure 4. BP network diagram.

4.3. Results and Discussion

After the structure and parameters of the neural network are determined, the two-
stage BPNN model proposed in this paper is used to predict the relative dynamic elastic
modulus in the literature [32], the prediction results are compared with the experimental
values are listed in Table 3. The input and output fitting curves of the two-stage BPNN
model proposed in this paper in the stages of network training, verification and testing are
shown in Figure 5.

It can be seen from Figure 5 that the correlation coefficient between the output values
and the actual values of the BPNN is 0.99689 in the training process, 0.99663 in the ver-
ification process and 0.99427 in the testing process. For the establishment of the overall
model, the correlation coefficient is 0.99405. It can also be seen from Figure 5 that the two-
stage BPNN model proposed in this paper has high prediction accuracy, and the overall
correlation coefficient is above 0.99.
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Table 3. The predicted and experimental values of relative dynamic elastic modulus.

Input Output

X1 X2 X3 X4 X5 X6 X7 X8 X9

Freeze-
Thaw
Cycles

Relative Dynamic Elastic Modulus (%)

Experimental
Values [32]

Prediction
by Two

Stage BPNN

Prediction
by BPNN

289 165 675 688 458 0 41.7 0.016 0.5 50 98.6 99.42 99.57
257 174 664 344 802 0 83.5 0.024 1.0 25 99.7 99.99 99.62
225 183 655 0 1146 0 125.2 0.032 1.5 75 99.1 99.14 99.22
289 183 683 0 1146 32.1 0 0.016 1.0 100 96.8 96.80 96.17
257 174 675 344 802 32.1 41.7 0 1.5 125 93.1 93.19 93.50
225 165 664 688 458 32.1 83.5 0.032 0 175 94.6 95.24 95.40
193 153 655 1146 0 32.1 125.2 0.024 0.5 200 88.2 87.31 85.17
257 165 683 688 458 64.2 0 0.024 1.5 200 92.4 92.54 91.16
225 153 675 1146 0 64.2 41.7 0.032 1.0 175 94.8 94.80 94.91
193 183 664 0 1146 64.2 83.5 0 0.5 150 86.2 87.41 85.73
161 174 655 344 802 64.2 125.2 0.016 0 125 94.9 94.06 93.92
321 174 683 344 802 96.3 0 0.032 0.5 100 98.2 98.36 98.22
193 183 675 0 1146 96.3 41.7 0.024 0 75 97.7 98.06 97.55
161 153 664 1146 0 96.3 83.5 0.016 1.5 50 98.7 98.30 99.31
128 165 655 688 458 96.3 125.2 0 1 25 99.1 97.51 98.78

Note: X1, X2, X3, X5 and X8 are the input vectors of proposed two stage BPNN.
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Figure 5. Establishment of two−stage BPNN model: (a) Training (b) Validation (c) Testing (d) all.
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In order to illustrate the superiority of the two-stage BPNN prediction model proposed
in this paper, the comparison between two-stage BPNN and BPNN is also conducted in this
paper. The input and output fitting curves of the training, verification and testing stages of
the BPNN network are shown in Figure 6 and the prediction error comparison between
these two models is shown in Figure 7. The establishment process of the BPNN model is
exactly the same as that of the two-stage BPNN model, but its input vectors are 10 input
vectors (9—mix proportion contents of concrete and 1—the number of freeze–thaw cycles)
that are not optimized, the network structure is 10-12-1, and it also has a hidden layer. The
number of hidden layer neurons is determined by the same method of two-stage BPNN.

Materials 2024, 17, x FOR PEER REVIEW 11 of 17 
 

 

has a hidden layer. The number of hidden layer neurons is determined by the same 
method of two-stage BPNN. 

 
Figure 6. Establishment of BP neural network model: (a) Training (b) Validation (c) Testing (d) all. 

It can be seen from Figure 6 that the correlation coefficient between the output values 
and the actual values of the BPNN is 0.99674 in the training process, 0.96884 in the verifi-
cation process, and 0.96490 in the test process. For the establishment of the overall model, 
the correlation coefficient is 0.98646. By comparing Figures 5 and 6, it can be seen that the 
two-stage BPNN model proposed in this paper has higher prediction accuracy and higher 
correlation than the BPNN in training, verification and testing stages. 

As can be seen from Figure 7, the average relative error of the two-stage BPNN pre-
diction model proposed in this paper is 0.5293%, while the average relative error of the 
BPNN prediction model is 0.7137%. Obviously, the prediction accuracy of the two-stage 
BPNN prediction model proposed in this paper is higher than that of the BPNN prediction 
model. Moreover, the error fluctuation of the two-stage BPNN prediction model is very 
stable, and it fluctuates in a small range, and the prediction accuracy is high. 

-1 -0.5 0 0.5 1

Target

-1

-0.5

0

0.5

1

O
ut

pu
t ~

= 
0.

99
*T

ar
ge

t+
 0

.0
05

4

R=0.99674

Data

Fitting

Y = T

-0.5 0 0.5 1

Target

-0.5

0

0.5

1

O
ut

pu
t ~

= 
0.

9*
Ta

rg
et

 +
 0

.1
1 R=0.96884

Data

Fitting

Y = T

-0.5 0 0.5 1

Target

-0.5

0

0.5

1

O
ut

pu
t ~

= 
0.

92
*T

ar
ge

t +
 0

.0
48 R=0.9649

Data

Fitting

Y = T

-1 -0.5 0 0.5 1

Target

-1

-0.5

0

0.5

1

O
ut

pu
t ~

= 
0.

97
*T

ar
ge

t +
 0

.0
25 R=0.98646

Data

Fitting

Y = T

(a) (b)

(c) (d)

Figure 6. Establishment of BP neural network model: (a) Training (b) Validation (c) Testing (d) all.

It can be seen from Figure 6 that the correlation coefficient between the output values
and the actual values of the BPNN is 0.99674 in the training process, 0.96884 in the verifica-
tion process, and 0.96490 in the test process. For the establishment of the overall model,
the correlation coefficient is 0.98646. By comparing Figures 5 and 6, it can be seen that the
two-stage BPNN model proposed in this paper has higher prediction accuracy and higher
correlation than the BPNN in training, verification and testing stages.

As can be seen from Figure 7, the average relative error of the two-stage BPNN
prediction model proposed in this paper is 0.5293%, while the average relative error of the
BPNN prediction model is 0.7137%. Obviously, the prediction accuracy of the two-stage
BPNN prediction model proposed in this paper is higher than that of the BPNN prediction
model. Moreover, the error fluctuation of the two-stage BPNN prediction model is very
stable, and it fluctuates in a small range, and the prediction accuracy is high.
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To further verify the performance of the two-stage BPNN model proposed in this
paper, MAE, MSE, RMSE, MAPE, R2 and run time are used respectively to evaluate these
two network models. The results are shown in Table 4.

Table 4. Performance comparison between the two models.

Model MAE MSE RMSE MAPE (%) R2 Run Time (s)

Two-stage BPNN 0.49891 0.46836 0.68437 0.52938 0.96998 41.803
BPNN 0.66249 0.97266 0.98624 0.71365 0.93792 72.372

It can be seen from Table 4 that all evaluation indexes of the two-stage BPNN prediction
model proposed in this paper, including MAE, MSE, RMSE, MAPE, R2 and network run
time, are better than the BPNN: it is mainly because after the grey sensitivity analysis of
influencing factors, the input variables of the network are simplified, thus shortening the
run time of the neural network. The fitting degree of two-stage BPNN model to the data is
improved, so the prediction accuracy is higher.

5. Conclusions

(1) This paper proposes a two-stage BPNN model. Benefitting from the database collected
from the literature [32], two prediction models based on a two-stage BPNN model
and a BPNN for relative dynamic elastic modulus prediction of recycled-aggregate
concrete with active mixture were established. Compared with BPNN, the proposed
two-stage BPNN model has better performance, better prediction accuracy and shorter
run time.

(2) The frost resistance of recycled concrete with active admixture is affected by many
factors under freeze–thaw cycles. Using the two-stage frost resistance prediction
model proposed in this paper, with cement, water, sand, recycled aggregate, air-
entraining agent and the number of free–thaw cycles as input variables and relative
dynamic elastic modulus as output variables, the dilemma of establishing an accurate
mathematical theoretical model is avoided, benefiting from the powerful nonlinear
mapping ability of the neural network. Through sensitivity analysis, the input vector
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of the neural network is reduced, thus improving the prediction accuracy and run
time of the neural network.

(3) In the further research, we will collect more test data to expand our database, and
plan to combine it with other network models such as deep learning networks to
predict the frost resistance of concrete, so as to improve the generalization ability of
the prediction model.
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Appendix A

Table A1. The Data for Training and Testing the BPNN. Marked with * at the Serial Numbers Are
Those for Testing.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9

Freeze-
Thaw
Cycles

Relative
Dynamic Elastic

Modulus

1 289 165 675 688 458 0 41.7 0.016 0.5 25 99.5
2 * 289 165 675 688 458 0 41.7 0.016 0.5 50 98.6 *
3 289 165 675 688 458 0 41.7 0.016 0.5 75 97.9
4 289 165 675 688 458 0 41.7 0.016 0.5 100 97.3
5 289 165 675 688 458 0 41.7 0.016 0.5 125 96.5
6 289 165 675 688 458 0 41.7 0.016 0.5 150 94.1
7 289 165 675 688 458 0 41.7 0.016 0.5 175 93.6
8 289 165 675 688 458 0 41.7 0.016 0.5 200 90.2

9 * 257 174 664 344 802 0 83.5 0.024 1.0 25 99.7 *
10 257 174 664 344 802 0 83.5 0.024 1.0 50 98.9
11 257 174 664 344 802 0 83.5 0.024 1.0 75 98.3
12 257 174 664 344 802 0 83.5 0.024 1.0 100 97.9
13 257 174 664 344 802 0 83.5 0.024 1.0 125 97.3
14 257 174 664 344 802 0 83.5 0.024 1.0 150 96.1
15 257 174 664 344 802 0 83.5 0.024 1.0 175 94.6
16 257 174 664 344 802 0 83.5 0.024 1.0 200 92.6
17 225 183 655 0 1146 0 125.2 0.032 1.5 25 99.8
18 225 183 655 0 1146 0 125.2 0.032 1.5 50 99.4

19 * 225 183 655 0 1146 0 125.2 0.032 1.5 75 99.1 *
20 225 183 655 0 1146 0 125.2 0.032 1.5 100 98.7
21 225 183 655 0 1146 0 125.2 0.032 1.5 125 98.4
22 225 183 655 0 1146 0 125.2 0.032 1.5 150 96.9
23 225 183 655 0 1146 0 125.2 0.032 1.5 175 95.7
24 225 183 655 0 1146 0 125.2 0.032 1.5 200 94.5
25 289 183 683 0 1146 32.1 0 0.016 1.0 25 99.5
26 289 183 683 0 1146 32.1 0 0.016 1.0 50 98.4
27 289 183 683 0 1146 32.1 0 0.016 1.0 75 97.5

28 * 289 183 683 0 1146 32.1 0 0.016 1.0 100 96.8 *
29 289 183 683 0 1146 32.1 0 0.016 1.0 125 96.1
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Table A1. Cont.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9

Freeze-
Thaw
Cycles

Relative
Dynamic Elastic

Modulus

30 289 183 683 0 1146 32.1 0 0.016 1.0 150 93.6
31 289 183 683 0 1146 32.1 0 0.016 1.0 175 93.1
32 289 183 683 0 1146 32.1 0 0.016 1.0 200 88.3
33 257 174 675 344 802 32.1 41.7 0 1.5 25 99.3
34 257 174 675 344 802 32.1 41.7 0 1.5 50 98.5
35 257 174 675 344 802 32.1 41.7 0 1.5 75 96.8
36 257 174 675 344 802 32.1 41.7 0 1.5 100 95.7

37 * 257 174 675 344 802 32.1 41.7 0 1.5 125 93.1 *
38 257 174 675 344 802 32.1 41.7 0 1.5 150 88.4
39 257 174 675 344 802 32.1 41.7 0 1.5 175 85.6
40 257 174 675 344 802 32.1 41.7 0 1.5 200 71.8
41 225 165 664 688 458 32.1 83.5 0.032 0 25 99.8
42 225 165 664 688 458 32.1 83.5 0.032 0 50 99.3
43 225 165 664 688 458 32.1 83.5 0.032 0 75 99.1
44 225 165 664 688 458 32.1 83.5 0.032 0 100 98.6
45 225 165 664 688 458 32.1 83.5 0.032 0 125 98.2
46 225 165 664 688 458 32.1 83.5 0.032 0 150 96.8

47 * 225 165 664 688 458 32.1 83.5 0.032 0 175 94.6 *
48 225 165 664 688 458 32.1 83.5 0.032 0 200 93.2
49 193 153 655 1146 0 32.1 125.2 0.024 0.5 25 99.6
50 193 153 655 1146 0 32.1 125.2 0.024 0.5 50 98.2
51 193 153 655 1146 0 32.1 125.2 0.024 0.5 75 98.1
52 193 153 655 1146 0 32.1 125.2 0.024 0.5 100 95.6
53 193 153 655 1146 0 32.1 125.2 0.024 0.5 125 94.4
54 193 153 655 1146 0 32.1 125.2 0.024 0.5 150 92.1
55 193 153 655 1146 0 32.1 125.2 0.024 0.5 175 89.3

56 * 193 153 655 1146 0 32.1 125.2 0.024 0.5 200 88.2 *
57 257 165 683 688 458 64.2 0 0.024 1.5 25 99.7
58 257 165 683 688 458 64.2 0 0.024 1.5 50 99.1
59 257 165 683 688 458 64.2 0 0.024 1.5 75 98.6
60 257 165 683 688 458 64.2 0 0.024 1.5 100 97.3
61 257 165 683 688 458 64.2 0 0.024 1.5 125 96.5
62 257 165 683 688 458 64.2 0 0.024 1.5 150 95.1
63 257 165 683 688 458 64.2 0 0.024 1.5 175 94.7

64 * 257 165 683 688 458 64.2 0 0.024 1.5 200 92.4 *
65 225 153 675 1146 0 64.2 41.7 0.032 1.0 25 99.8
66 225 153 675 1146 0 64.2 41.7 0.032 1.0 50 99.2
67 225 153 675 1146 0 64.2 41.7 0.032 1.0 75 98.6
68 225 153 675 1146 0 64.2 41.7 0.032 1.0 100 97.5
69 225 153 675 1146 0 64.2 41.7 0.032 1.0 125 96.3
70 225 153 675 1146 0 64.2 41.7 0.032 1.0 150 95.4

71 * 225 153 675 1146 0 64.2 41.7 0.032 1.0 175 94.8 *
72 225 153 675 1146 0 64.2 41.7 0.032 1.0 200 94.2
73 193 183 664 0 1146 64.2 83.5 0 0.5 25 99.1
74 193 183 664 0 1146 64.2 83.5 0 0.5 50 97.8
75 193 183 664 0 1146 64.2 83.5 0 0.5 75 95.7
76 193 183 664 0 1146 64.2 83.5 0 0.5 100 92.6
77 193 183 664 0 1146 64.2 83.5 0 0.5 125 90.4

78 * 193 183 664 0 1146 64.2 83.5 0 0.5 150 86.2 *
79 193 183 664 0 1146 64.2 83.5 0 0.5 175 78.3
80 193 183 664 0 1146 64.2 83.5 0 0.5 200 67.8
81 161 174 655 344 802 64.2 125.2 0.016 0 25 99.2
82 161 174 655 344 802 64.2 125.2 0.016 0 50 97.9
83 161 174 655 344 802 64.2 125.2 0.016 0 75 96.3
84 161 174 655 344 802 64.2 125.2 0.016 0 100 95.5

85 * 161 174 655 344 802 64.2 125.2 0.016 0 125 94.9 *
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Table A1. Cont.

No. X1 X2 X3 X4 X5 X6 X7 X8 X9

Freeze-
Thaw
Cycles

Relative
Dynamic Elastic

Modulus

86 161 174 655 344 802 64.2 125.2 0.016 0 150 92.4
87 161 174 655 344 802 64.2 125.2 0.016 0 175 90.8
88 161 174 655 344 802 64.2 125.2 0.016 0 200 88.6
89 321 174 683 344 802 96.3 0 0.032 0.5 25 99.7
90 321 174 683 344 802 96.3 0 0.032 0.5 50 99.6
91 321 174 683 344 802 96.3 0 0.032 0.5 75 99.3

92 * 321 174 683 344 802 96.3 0 0.032 0.5 100 98.2 *
93 321 174 683 344 802 96.3 0 0.032 0.5 125 97.6
94 321 174 683 344 802 96.3 0 0.032 0.5 150 96.3
95 321 174 683 344 802 96.3 0 0.032 0.5 175 94.9
96 321 174 683 344 802 96.3 0 0.032 0.5 200 94.1
97 193 183 675 0 1146 96.3 41.7 0.024 0 25 99.6
98 193 183 675 0 1146 96.3 41.7 0.024 0 50 98.3

99 * 193 183 675 0 1146 96.3 41.7 0.024 0 75 97.7 *
100 193 183 675 0 1146 96.3 41.7 0.024 0 100 96.6
101 193 183 675 0 1146 96.3 41.7 0.024 0 125 95.1
102 193 183 675 0 1146 96.3 41.7 0.024 0 150 94.5
103 193 183 675 0 1146 96.3 41.7 0.024 0 175 93.2
104 193 183 675 0 1146 96.3 41.7 0.024 0 200 91.2
105 161 153 664 1146 0 96.3 83.5 0.016 1.5 25 99.2

106 * 161 153 664 1146 0 96.3 83.5 0.016 1.5 50 98.7 *
107 161 153 664 1146 0 96.3 83.5 0.016 1.5 75 97.4
108 161 153 664 1146 0 96.3 83.5 0.016 1.5 100 96.3
109 161 153 664 1146 0 96.3 83.5 0.016 1.5 125 94.6
110 161 153 664 1146 0 96.3 83.5 0.016 1.5 150 93.3
111 161 153 664 1146 0 96.3 83.5 0.016 1.5 175 92.1
112 161 153 664 1146 0 96.3 83.5 0.016 1.5 200 88.2

113 * 128 165 655 688 458 96.3 125.2 0 1 25 99.1 *
114 128 165 655 688 458 96.3 125.2 0 1 50 97.8
115 128 165 655 688 458 96.3 125.2 0 1 75 96.1
116 128 165 655 688 458 96.3 125.2 0 1 100 95.6
117 128 165 655 688 458 96.3 125.2 0 1 125 93.2
118 128 165 655 688 458 96.3 125.2 0 1 150 91.7
119 128 165 655 688 458 96.3 125.2 0 1 175 84.6
120 128 165 655 688 458 96.3 125.2 0 1 200 74.3
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4. Denisiewicz, A.; Śliwa, M.; Kula, K.; Socha, T. Experimental Investigation of Concrete with Recycled Aggregates for Suitability in

Concrete Structures. Appl. Sci. 2019, 9, 5010. [CrossRef]
5. Miyazaki, Y.; Watanabe, T.; Yamada, Y.; Hashimoto, C. Properties of Concrete Using Treated Low-Class Recycled Coarse Aggregate

and Blast Furnace Slag Sand. Materials 2020, 13, 843. [CrossRef] [PubMed]
6. Pani, L.; Francesconi, L.; Rombi, J.; Mistretta, F.; Sassu, M.; Stochino, F. Effect of Parent Concrete on the Performance of Recycled

Aggregate Concrete. Sustainability 2020, 12, 9399. [CrossRef]
7. Revilla-Cuesta, V.; Skaf, M.; Faleschini, F.; Manso, J.M.; Ortega-López, V. Self-compacting concrete manufactured with recycled

concrete aggregate: An overview. J. Clean. Prod. 2020, 262, 121362. [CrossRef]
8. Alqarni, A.S.; Abbas, H.; Al-Shwikh, K.M.; Al-Salloum, Y.A. Treatment of recycled concrete aggregate to enhance concrete

performance. Constr. Build. Mater. 2021, 307, 124960. [CrossRef]
9. Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete—A review.

Cem. Concr. Comp. 2018, 89, 251–259. [CrossRef]

https://doi.org/10.1016/j.conbuildmat.2020.121041
https://doi.org/10.1016/j.jobe.2023.107779
https://doi.org/10.3390/ma14164612
https://www.ncbi.nlm.nih.gov/pubmed/34443133
https://doi.org/10.3390/app9235010
https://doi.org/10.3390/ma13040843
https://www.ncbi.nlm.nih.gov/pubmed/32069795
https://doi.org/10.3390/su12229399
https://doi.org/10.1016/j.jclepro.2020.121362
https://doi.org/10.1016/j.conbuildmat.2021.124960
https://doi.org/10.1016/j.cemconcomp.2018.03.008


Materials 2024, 17, 1805 15 of 15

10. Arora, S.; Singh, B.; Bhardwaj, B. Strength performance of recycled aggregate concretes containing mineral admixtures and their
performance prediction through various modeling techniques. J. Build. Eng. 2019, 24, 100741. [CrossRef]

11. Kumar, P.; Singh, N. Influence of recycled concrete aggregates and Coal Bottom Ash on various properties of high volume fly
ash-self compacting concrete. J. Build. Eng. 2020, 32, 101491. [CrossRef]

12. Sasanipour, H.; Aslani, F.; Taherinezhad, J. Chloride ion permeability improvement of recycled aggregate concrete using pretreated
recycled aggregates by silica fume slurry. Constr. Build. Mater. 2021, 270, 121498. [CrossRef]

13. Sirico, A.; Bernardi, P.; Sciancalepore, C.; Milanese, D.; Ferraris, M.; Belletti, B. Fracture behavior of concrete containing MSWI
vitrified bottom ash. Procedia Struct. Integr. 2022, 39, 494–502. [CrossRef]

14. Cui, S.N.; Wang, T.; Zhang, Z.C.; Sun, X.; Li, J.H.; Li, B.X.; Zhang, W.S.; Su, T.; Cao, F.B. Frost resistance and life prediction of
recycled brick aggregate concrete with waste polypropylene fiber. Rev. Adv. Mater. Sci. 2023, 62, 20230154. [CrossRef]

15. Abed, M.; Nemes, R. Long-term durability of self-compacting high-performance concrete produced with waste materials. Constr.
Build. Mater. 2019, 212, 350–361. [CrossRef]

16. Li, G.; Gong, X.L.; Liang, Y.; Jia, Z.Y.; Li, Y.Q. Experimental Study and Microscopic Analysis on Frost Resistance of Iron Ore
Tailings Recycled Aggregate Concrete. Adv. Mater. Sci. Eng. 2022, 2022, 8932229.

17. Jain, K.L.; Sancheti, G.; Gupta, K.L. Durability performance of waste granite and glass powder added concrete. Constr. Build.
Mater. 2020, 252, 119075. [CrossRef]

18. Koga, H.; Katahira, H.; Shimata, A. The introduction of recycled-aggregate concrete specifications in Japan and the research into
the freezing–thawing resistance of recycled-aggregate concrete. J. Mater. Cycles Waste Manag. 2022, 24, 1207–1215. [CrossRef]

19. Mostofinejad, D.; Hosseini, S.M.; Nader Tehrani, B.; Mahdi Hosseinian, S. Empirical Models for Prediction of Frost Resistance of
Normal- and High-Strength Concretes. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 2107–2131. [CrossRef]

20. Krstic, M.; Davalos, J.F.; Rossi, E.; Figueiredo, S.C.; Copuroglu, O. Freeze–Thaw Resistance and Air-Void Analysis of Concrete
with Recycled Glass–Pozzolan Using X-ray Micro-Tomography. Materials 2021, 14, 154. [CrossRef]

21. Atasham ul haq, M.; Xia, P.; Khan, S.; Tahir, M.; Hassam, M.; Gong, F.Y.; Zhao, Y.X. Characterizations and quantification of
freeze-thaw behaviors of recycled brick aggregate concrete. J. Build. Eng. 2024, 86, 108821. [CrossRef]

22. Pallapothu, S.N.R.G.; Pancharathi, R.K.; Janib, R. Predicting concrete strength through packing density using machine learning
models. Eng. Appl. Artif. Intel. 2023, 126 Pt D, 107177. [CrossRef]

23. Abed, M.; Mehryaar, E. A Machine Learning Approach to Predict Relative Residual Strengths of Recycled Aggregate Concrete
after Exposure to High Temperatures. Sustainability 2024, 16, 1891. [CrossRef]

24. Hosseinzadeh, M.; Dehestani, M.; Hosseinzadeh, A. Prediction of mechanical properties of recycled aggregate fly ash concrete
employing machine learning algorithms. J. Build. Eng. 2023, 76, 107006. [CrossRef]

25. Concha, N.C. A robust carbonation depth model in recycled aggregate concrete (RAC) using neural network. Expert Syst. Appl.
2024, 237, 121650. [CrossRef]

26. Huang, W.; Quan, W.L.; Ge, P. Orthogonal tests investigation into hybrid fiber-reinforce recycled aggregate concrete and
convolutional neural network prediction. J. Asian Archit. Build. Eng. 2022, 21, 986–1001. [CrossRef]

27. Boudali, S.; Abdulsalam, B.; Rafiean, A.H.; Poncet, S.; Soliman, A.; El Safty, A. Influence of Fine Recycled Concrete Powder on
the Compressive Strength of Self-Compacting Concrete (SCC) Using Artificial Neural Network. Sustainability 2021, 13, 3111.
[CrossRef]

28. Dong, G.Y.; Li, S.M.; Wang, X.L.; Zheng, Y.Z.; Wang, Q.H. Optimal Design of Ecological Concrete Mix Proportion Based on
AHP-GWO-BP Neural Network. Int. J. Environ. Res. 2024, 18, 24.

29. B K A, M.A.R.; Ngamkhanong, C.; Wu, Y.; Kaewunruen, S. Recycled Aggregates Concrete Compressive Strength Prediction Using
Artificial Neural Networks (ANNs). Infrastructures 2021, 6, 17. [CrossRef]

30. Felix, E.F.; Possan, E.; Carrazedo, R. A New Formulation to Estimate the Elastic Modulus of Recycled Concrete Based on
Regression and ANN. Sustainability 2021, 13, 8561. [CrossRef]

31. Yildizel, S.A.; Uzun, M.; Arslan, M.A.; Ozbakkaloglu, T. The prediction and evaluation of recycled polypropylene fiber and
aggregate incorporated foam concrete using Artificial Neural Networks, Constr. Build. Mater. 2024, 411, 134646. [CrossRef]

32. Chen, A.J.; Sun, X.P.; Zhang, M.; Wang, J. Experiment on frost resistance of active admixture recycled concrete. Concrete 2014, 6,
20–23. (In Chinese) [CrossRef]
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