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Abstract: Currently, the sol-gel technique is employed in the synthesis of high-performance vit-
rified bonds; however, its application in the fabrication of stacked abrasives has been minimally
explored. Furthermore, the methods utilized in the production of abrasive particles for stacked
abrasives are technically challenging and incur high costs, which hinders their actual industrial
application. Consequently, this study utilizes the sol-gel approach to synthesize a Na2O-B2O3-SiO2

ternary system vitrified bond powder and employs a molding and crushing method, which offers a
lower technological barrier and reduced preparation costs, for the production of abrasive particles
subsequently fabricating corundum stacked abrasives. Upon setting the binder composition to a
molar ratio of n(SiO2):n(B2O3):n(Na2O) = 65:23:12, it was observed that the crystallization within
the glass matrix was minimized and the optimal sintering temperature for the synthesized laminate
abrasive to be sustained at 820 ◦C. At the aforementioned temperature, the binder melt is capable
of flowing uniformly amongst the abrasive granules, thereby ensuring a robust encapsulation of
the particles. The average single particle compressive strength of the prepared corundum stacked
abrasive with a grain size of forty mesh can reach the highest of all composition points at 28.56 N and
the average single particle compressive strength of the prepared diamond stacked abrasive is 28.14 N.

Keywords: sol-gel; stacked abrasives; compressive strength; low-temperature vitrified bonds

1. Introduction

Against the backdrop of rapid advancements in cutting-edge technologies, such as
aerospace, high-efficiency and high-precision machining and grinding technology has be-
come the current research focus [1–3]. Traditional single-grain abrasives perform poorly in
terms of grinding efficiency and workpiece surface consistency, and they are no longer able
to meet the development requirements of high-precision, high-speed, and high-efficiency
grinding technology [4,5].

As a new type of abrasive material in the grinding industry, stacked abrasives are
a type of composite material formed by combining fine abrasive powders with high-
performance bond powder and through specific processes, such as mechanical mixing or
spray drying granulation, and then sintering at a certain temperature, to form specific
shapes. Compared to traditional abrasives, stacked abrasives have higher inter-particle
bonding strength, controllable shapes, and can achieve micro-cutting and multipoint
surface contact grinding during the machining process [6,7]. Therefore, while significantly
improving the service life of grinding tools, they also greatly enhance the precision and
surface quality of grinding processes [8], thus finding wide applications in precision
machining and becoming a research hotspot in the abrasive field [9].
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Grinding tools consist of abrasives, bonds, and pores, among which the vitrified
bond, which acts to bond abrasive grains, has an extremely important influence on the
performance of the grinding tool [10–12]. Vitrified bonds can be divided into two types:
traditional mineral bonds and vitreous bonds. Traditional mineral bonds use complex
mineral raw materials, have high firing temperatures, and the use of mechanical mixing
methods can lead to uneven melting of the glass phase due to different softening tempera-
tures and firing temperatures of each component during the calcination process, affecting
the performance of the bond. The main difference between stacked abrasives as a type
of micro-tool and conventional grinding tools lies in the much smaller particle size of the
abrasive micro-powders used in stacked abrasives, ranging from 0 to 10 µm in diameter.
To bond these fine micro-powders, coupled with the tendency of diamond to graphitize
at high temperatures, vitrified bonds must not only have good low-temperature sintering
performance and a small particle size, but also excellent phase uniformity [13,14] to ensure
the performance of stacked abrasives. This is far from sufficient for traditional mineral
bonds, which must be at high temperatures to exhibit good sintering properties and have
uneven phase compositions [15].

Therefore, people later used the melt quenching method to directly prepare vitrified
bond powders with the glass phase. Since the raw materials initially melted at high temper-
atures to form a liquid phase for thorough mixing and reaction, the phase homogeneity of
the vitrified bond powder increased to some extent. Additionally, since the vitrified bond
prepared in this way is amorphous glassy phase, its softening temperature is low, thus
effectively reducing the sintering temperature. However, glassy vitrified bonds prepared
by melt quenching generally require thorough melting of the raw materials at tempera-
tures above 1200 ◦C to ensure uniform mixing, which consumes a considerable amount of
energy [16,17]. Therefore, it is extremely important to develop new vitrified bonds that can
be sintered at low temperatures, have superior performance, and are more energy-efficient
and environmentally friendly.

The sol-gel method controls material properties by adjusting parameters, such as sol
composition, concentration, temperature, and pH value. Inorganic materials prepared by
this method have advantages such as high purity, uniformity, controllable morphology, and
diverse structures, and have been widely used in catalysts, electrochemical materials, sen-
sors, separation membranes, microcrystalline corundum abrasives and other fields [18–22].
Additionally, the sol-gel method plays an important role in the preparation of inorganic
glasses, providing an effective preparation method for the research and application of
inorganic glasses [23,24]. According to previous studies, in addition to energy-saving
and environmentally friendly processes, glassy powders prepared by the sol-gel method
have advantages such as small particle size, chemical uniformity, and high purity [25,26].
Some studies have used this method to prepare glassy vitrified bonds for the production
of stacked abrasives. The results show that the sol-gel bonds have higher sintering ac-
tivity, allowing for the production of high-quality stacked abrasives with low sintering
temperatures, high compressive strength, and uniform internal structure. However, most of
these studies currently use spray drying [27] or inverse microemulsion polymerization [28],
which have high technical difficulty and preparation costs, indicating that true industrial
production is still some distance away. Therefore, this study employs the sol-gel method to
prepare vitrified bond powders of Na2O-B2O3-SiO2 with lower sintering temperatures and
basic characteristics and adopts the molding and crushing method with low technical barri-
ers and preparation costs to prepare corundum stacked abrasives and diamond stacked
abrasives. The study analyzed the thermal analysis curve and crystallization changes
of the dried gel, and systematically investigated the effects of compositional changes
on the crystallization of binders and the optimal sintering temperature, and the effects
of sintering temperature and bond addition on the single-particle compressive strength
and microstructure of corundum-stacked abrasives. Ultimately, the ingredient ratio with
fewer crystallizations, lower sintering temperatures, and higher strengths were obtained,
resulting in diamond-stacked abrasives with high single particle compressive strength.
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2. Materials and Methods
2.1. Sample Preparation
2.1.1. Selection of Component Points

According to the theory of glassy amorphous network and current research on borosil-
icate glass [29–31]: both silicon dioxide and boron oxide can individually form glass, but
due to the tetrahedral structure formed by [SiO4], and the layered structure formed by
[BO3], it is difficult to form a uniformly consistent melt between these two oxides. The
addition of Na2O provides free oxygen to the glass system. Free oxygen causes [BO3]
to transform into [BO4], thereby transforming the layered structure of boron oxide into
a framework structure, thereby enhancing the strength of the glass. Therefore, under
constant preparation conditions, the relative content of Na2O and B2O3 in borosilicate
glass will significantly affect the quantity and relative transformation of [BO3] and [BO4]
in the glass system. Generally, in Na2O-B2O3-SiO2 glass systems, an increase in the quan-
tity of free oxygen promotes the transformation of [BO3] to [BO4] in the glass system.
Based on the Na2O-B2O3-SiO2 ternary phase diagram glass formation area, the melting
coefficient empirical formula and experimental attempts, seven component points, whose
sintering temperature can be maintained in the range of 760 ◦C to 880 ◦C, were selected
and numbered as shown in Table 1.

Table 1. Chemical compositions of the vitrified bonds (molar ratio).

Sample Composition Points SiO2, % B2O3, % Na2O, %

A1 67 19 14
A2 65 23 12
A3 63 27 10
A4 61 31 8
A5 59 33 8
A6 57 35 8
A7 55 37 8

A1 to A4: the oxide ratios vary regularly. A4 to A7: the Na2O content remains unchanged, the B2O3 content
increases and the SiO2 content decreases.

2.1.2. Preparation of Vitrified Bond Powder by Sol-Gel Method

The vitrified bond powder was prepared using the sol-gel method. Raw materials
such as ethyl silicate (TEOS), boric acid (H3BO3), and sodium nitrate (NaNO3) were used,
along with solvents like ethanol (EtOH) and deionized water. Nitric acid was used as a
catalyst. The molar ratio of n (H2O)/n(TEOS) = 50:1, and the molar ratio of n (EtOH)/n
(TEOS) = 8:1. Boric acid and sodium nitrate aqueous solutions were added dropwise into
the ethanol solution of ethyl silicate, followed by the addition of the catalyst to adjust the
pH to 3.5. The mixture was stirred for 2 h to obtain a sol. The sol was dried at 100 ◦C for
36 h to obtain a dry gel, which was then subjected to heat treatment at 600 ◦C followed
by ball milling and sieving through a 200-mesh sieve to obtain the final sol-gel vitrified
bond powder.

2.1.3. Preparation of Vitrified Bond Powders by Dry Mixing Method

Analytical grade sodium carbonate, silicon dioxide, and boric acid were used as raw
materials. They were weighed according to the formulation ratio, poured into a ball mill,
and milled at a speed of 300 r/min for 2 h to achieve uniform mixing. Subsequently, the
mixture was sieved through a 300-mesh sieve to obtain vitrified bond powder prepared by
the dry mixing method.

2.1.4. Preparation of Stacked Abrasives by Molding and Crushing Method

The specific process is shown in Figure 1. The sol-gel vitrified bond powder is mixed
with alumina micro-powder, with a particle size of W1 according to the mixing ratio, and
then placed in a ball mill for wet grinding at a speed of 300 r/min for 2 h to achieve uniform
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mixing. Subsequently, after drying to remove moisture, the powder suitable for subsequent
forming is obtained. Temporary binder (gelatin solution) is added to the powder at a ratio of
5% of the mass of the powder and mixed uniformly. Then, under the condition of molding
density of 2.37 g/cm3, the material is pressed into rectangular bars with dimensions of
30 × 6 × 6 mm using a press. Subsequently, the bars are placed in a drying oven and dried
at 70 ◦C for 2 h to give them a certain strength for subsequent crushing. Then, the bars
are crushed into particles of specified particle size using a mortar and pestle, and these
particles are placed in a muffle furnace and sintered at a certain temperature for 2 h to
obtain corundum stacked abrasives. Subsequent diamond stacked abrasives are prepared
using this process, as well.
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2.2. Sample Preparation

The thermal behavior of the dried gel powder was analyzed using a thermal analyzer
(STA 449F3, NETZSCH, Selb, Germany) in the temperature range from 20 ◦C to 1000 ◦C
under an air atmosphere with a heating rate of 10 ◦C/min.

The phase composition of the vitrified bond powder under different temperature treat-
ments was analyzed using an X-ray diffractometer (XRD, D8 Advanced, Bruker, Ettlingen,
Germany), with Cu Kα radiation, scanning range from 10◦ to 90◦, and scanning speed of
10◦/min.

Elemental analysis of the microscopic surface of the stacked abrasives was conducted
using X-ray energy dispersive spectroscopy (EDS, X-MAX20, OXFORD, Oxford, UK).

Through the scanning electron microscopy (SEM, Hitachi S-4800, Tokyo, Japan), the
microstructure of the stacked abrasives and the dispersion of vitrified bonds within the
abrasive grains were observed and analyzed.
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The single particle compressive strength of the abrasives was measured using a
diamond static pressure tester (ZMC-II, Zhengzhou Research Institute of Abrasives &
Grinding, Zhengzhou, China). In the experiment, abrasive samples with a particle size of
40 mesh (0.425 mm) were selected, and their average value was calculated. The compressive
strength of 40 particles was then measured. Values above twice the average and below
half the average were discarded, and the average of the remaining compressive strength
measurements was taken as the final result.

3. Results and Discussion
3.1. Thermal Analysis and Phase Analysis of Bond Powder Prepared by Sol-Gel Method

Thermal analysis and phase analysis at different temperatures were conducted on the
sol-gel binder powder of component A2, and the specific results are shown in
Figures 2 and 3. A distinct endothermic peak was observed in the temperature range
of 40 ◦C to 200 ◦C, attributed to the evaporation of surface-adsorbed water and organic
solvents. In the range of 200 ◦C to 600 ◦C, a broad and intense exothermic peak was
observed. This phenomenon is not only caused by the continued evaporation of alcohols
and water in the gel system, but it also involves dehydration between organic groups
(such as [≡Si-OH] and [=B-OH]), and the detachment of [-OH] groups from [≡Si-OH]
and [=B-OH]. It is accompanied by the comprehensive exothermic reaction of borate de-
composition and integration into the glassy amorphous structure (in the XRD spectrum,
the diffraction peak of boric acid disappears after heat treatment at 500 ◦C). Additionally,
between 500 ◦C and 600 ◦C, there is also the decomposition reaction of nitrate, releasing
heat (the diffraction peak of sodium nitrate appears at 500 ◦C, while it disappears at 600
◦C, indicating that sodium nitrate has not completely decomposed before 500 ◦C). Based
on the thermal analysis spectrum, the glass transition temperature is approximately 698
◦C. Subsequently, according to the XRD spectrum, diffraction peaks of quartz appeared at
760 ◦C, indicating the crystallization of quartz near this temperature. Between 790 ◦C and
880 ◦C, the diffraction peak of quartz gradually decreased, while the diffraction peak of
cristobalite increased, indicating a crystallization or phase change within this temperature
range, corresponding to the exothermic peak near 853 ◦C in the thermal analysis curve (730
◦C to 890 ◦C).

The purpose of the thermal treatment is to remove excess visible physical forms of
organic solvents and water, as well as a large amount of nitrate ions, hydroxyl groups, alkyl
groups, and other organic substances in the dry gel system. If these organic substances are
not thoroughly removed during the gel thermal treatment process, it will adversely affect
the performance of the obtained vitrified bond powder. This will lead to the generation of
excess pores during the sintering process of the micro-powder and the vitrified bond, which
affects the compressive strength of the stacked abrasive. From the previous analysis, it is
known that there may still be residual sodium nitrate crystals in the ceramic bond prepared
by the sol-gel method after heat treatment at 500 ◦C. Therefore, in order to determine the
heat treatment temperature, X-ray diffraction analysis was carried out after heat treatment
at 500 ◦C and 600 ◦C for the dry gels prepared at A1 to A4 with different sodium oxide
ratios. As shown in Figure 4, the diffraction peak of sodium nitrate is gradually enhanced as
the proportion of sodium oxide is increased from A4 to A1. This indicates that the thermal
treatment temperature of 500 ◦C is insufficient to remove the sodium nitrate component
from the bond. After thermal treatment at 600 ◦C, it was found that the diffraction peaks
of sodium nitrate in the dry gels of the four component points had basically disappeared,
leaving only the amorphous diffraction peaks, confirming the amorphous structure of
the sol-gel vitrified bond after thermal treatment. Therefore, 600 ◦C was chosen as the
subsequent thermal treatment temperature for the dry gel.
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3.2. Single Particle Compressive Strength of Corundum Stacked Abrasives
3.2.1. Effect of Oxide Component Ratios of Vitrified Bonds on the Single Particle
Compressive Strength of Corundum Stacked Abrasives

The compressive strength of stacked abrasive particles is influenced by the compo-
sition of the bond itself, the sintering temperature and the crystallization behavior. The
proportion and content of oxides in the bond composition lead to variations in the glass
network structure, which in turn cause differences in the strength of the glass bond; the
sintering temperature affects the flow ability of the binder, which influences the degree
of movement and encapsulation of the fine powder by the bond. Furthermore, the com-
position of the bond and the sintering temperature also jointly affect the crystallization
of the bond. Crystallization within the glass amorphous structure can lead to weakened
grain boundaries and chemical inhomogeneity, resulting in localized stress concentration,
which affects the overall strength of the vitrified bond. At a compositional point, where
no crystallization or only weak crystallization occurs, the optimal sintering temperature
for the best single particle compressive strength is the temperature at which the bond
powder achieves its optimal flowability, thus allowing for complete encapsulation of the
abrasive particles.

Analysis from Figure 5 below shows that for the four compositional points from
A1 to A4, the content of silicon dioxide and sodium oxide decreases sequentially, while
the content of boron oxide increases, resulting in a gradual rise in the optimal sintering
temperature and an increase in the optimal single particle compressive strength, peaking
at 28.56 N for A2, followed by a gradual decrease, with a significant drop to 18.5 N for
A4. From Figure 6, the diffraction peaks of the quartz crystals gradually intensify with
the change of composition points from A1 to A4, indicating that the amount of crystal
precipitation gradually intensifies.

A1 to A2: The optimal sintering temperature for these two composition points remains
unchanged at 820 ◦C. However, the compressive strength of A2 is significantly higher than
A1 at each temperature, and as shown in Figure 6, the crystallization amount of A1 is
slightly smaller than A2, with little difference between the two composition points. This
directly indicates that the higher compressive strength of the stacked abrasives at A2 is
due to the improved strength of the glassy network structure compared to A1. Applying
current theoretical analysis of borosilicate glass, at composition point A1, B2O3 exists
simultaneously in the glass structure in both [BO3] and [BO4] forms. The free oxygen
provided by the Na2O partly serves to cut off the [SiO4] network and partly serves to allow
the [BO3] to exist in [BO4] form, so that the glass as a whole is in a state of free oxygen
excess. Compared to A1, A2 exhibits an increase in B2O3 and a decrease in SiO2 and Na2O.
Therefore, in this situation, the newly added B2O3 will absorb excess free oxygen to some
extent, entering the network structure in [BO4], thereby increasing the density of the glass
network structure and enhancing its strength.
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Figure 6. XRD patterns of stacked abrasives prepared at A1 to A4 sintered at 850 ◦C.

A2 to A4: Combining XRD data, we found that the crystallization amount of quartz in-
creases with the variation of composition points, which leads to a decrease in the strength of
the glass. Meanwhile, the content of silicon dioxide involved in the glass network structure
decreases. The [SiO4] tetrahedron is a fundamental component of glass formation, which
interconnects through shared oxygen atoms in the glass network, forming a continuous
three-dimensional random network. The decreased involvement of [SiO4] tetrahedral units
in network construction implies that the random network becomes sparser, consequently
reducing the mechanical strength of the glass particles themselves. Thus, the optimal
single-particle compressive strength of abrasive grains shows a decreasing trend. On the
other hand, according to the boron anomaly phenomenon, the decrease in sodium oxide
content reduces the number of non-bridging oxygens in the network structure, coupled
with a further increase in boron oxide content, which to a certain extent also increases the
number of [BO3] triangle, while decreasing the number of [BO4] tetrahedra. This results
in an increase in [BO3] triangles, namely layered structures in the network structure, thus
reducing the uniformity of the glass phase and weakening the mechanical strength of the
structure.

From Figure 7, it can be observed that under the constant sodium oxide content, the
decrease in silicon dioxide content and the increase in boron oxide content result in an
initial increase, followed by a decrease in the optimal single-particle compressive strength.
It reaches a maximum value of 26.10 N at point A5, while the optimal sintering temperature
shows a decreasing trend. From Figure 8, the precipitation of quartz crystals undergoes a
significant decrease at point A5 followed by a subsequent rising trend with the variation of
composition points.

A4 to A5: The optimal single-particle compressive strength at A5, compared to the
composition point at A4 (18.50 N), has significantly increased. At this component point
A4, the ratio of n (Na2O/B2O3) has reached 8:31, indicating that the content of B2O3 has
greatly exceeded that of Na2O. According to the theory of glassy amorphous network
structure, at A4, the free oxygen provided by sodium oxide in the glass structure is no
longer sufficient to allow the newly added B2O3 to enter the glass structure in tetrahedral
form [BO4]. Therefore, the newly added B2O3 will form a layered single-component glass
structure in the form of the boron-oxygen triangle [BO3], reducing the overall homogeneity
of the glass phase. Additionally, due to the molecular forces (van der Waals forces) between
the layers of planar B2O3 structures, the increase in B2O3 content will lead to a decrease in
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the mechanical strength of the glass. Although previous analysis indicates that the increase
in B2O3 content will unilaterally decrease the mechanical strength of the glass, the strength
of the vitrified bond is not only influenced by the differences in the glass network structure
but also affected by the crystallization. In cases where the amount of crystallization is
severe, crystallization becomes the primary factor limiting the compressive strength of
the stacked abrasives. From Figure 8, it can be observed that the quartz diffraction peak
of A4 is already very intense, indicating that the crystallization amount of quartz in A4
is considerable. This significantly reduces the single particle compressive strength of the
stacked abrasives at A4. In the transition from A4 to A5, we observed a significant decrease
in the amount of quartz crystallization compared to A4. This greatly reduces the formation
of microdefects caused by crystals in the glass structure, thereby enhancing the uniformity
of the glass structure. Therefore, although the increase in the planar structure of [BO3] in
A5 will change the glassy amorphous network structure of the vitrified bond and have a
negative impact on the compressive strength of the abrasive, the significant reduction in
the crystallization amount, which is the primary factor limiting the compressive strength,
still results in an increase in the maximum compressive strength of the stacked abrasives
at A5.
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Figure 7. Single particle compressive strength of stacked abrasives prepared at A4 to A7.
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Figure 8. XRD patterns of stacked abrasives prepared at A4 to A7 sintered at the 850 ◦C.
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A5 to A7: During the variation process from A5 to A7 composition points, although the
precipitation of silicon dioxide has significantly decreased compared to the A4 composition
point, the gradually rising trend leads to a decrease in the uniformity of the glass structure,
resulting in a decrease in strength. Furthermore, with the increase in boron oxide content,
while the silicon dioxide content decreases, more [BO3] triangle enters the glass network
structure, leading to reduced uniformity and increased fluidity of the glass phase. Therefore,
the optimal sintering temperature and the optimal single particle compressive strength
show a downward trend.

3.2.2. Microstructure of Stacked Abrasives at Different Sintering Temperatures

It can be observed from Figure 9a,b that the uneven distribution of the binder be-
tween the abrasive grains indicates poor fluidity of the binder, which fails to adequately
encapsulate the abrasive grains. In Figure 9c with the temperature increasing to 820 ◦C,
it is observed that although there is a small amount of silicon dioxide crystals generated,
the fluidity of the bond is high enough to allow the bond melt to completely encapsulate
the abrasive grains. The high temperature melt of the bond flows better between the
alumina abrasive grains, enveloping them comprehensively, thus achieving a uniform and
dense structure of the stacked abrasive grains. In addition, the phase analysis shows that
the cristobalite crystals have disappeared at this temperature, and the amount of quartz
crystallization is small, which has a weak impact on the compressive strength. As the
sintering temperature reaches 850 ◦C, the fluidity of the sol-gel bond further increases,
while silicon dioxide small crystals can already be clearly observed precipitating on the
surface of the binder from Figure 9d. This affects the uniformity of the glass network
structure, resulting in a decrease in the strength of the stacked abrasive grains. When the
temperature continues to rise to 880 ◦C, on one hand residual active components in the
bond undergo decomposition and some [BO3] begin to volatilize, resulting in foaming
as evidenced by the presence of some pores between the alumina abrasive grains from
Figure 9e. On the other hand, excessive fluidity of the bond leads to its aggregation under
the influence of gravity, preventing uniform dispersion among the abrasive grains, thus
causing a decrease in the strength of the stacked abrasive grains.
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Figure 9. SEM of stacked abrasives prepared with A2 component point sintered at different tempera-
tures: (a) 760 ◦C, (b) 790 ◦C, (c) 820 ◦C, (d) 850 ◦C, and (e) 880 ◦C.

3.2.3. Stacked Abrasives under Different Additions of Vitrified Bonds

Figure 10 demonstrates that the compressive strength of a single particle was only
16.76 N at 30% of the bond content and increased to a maximum value of 28.56 N at 40%.
Subsequently, as the bond content continues to increase to 45% and 50%, the compressive
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strength of the abrasives gradually decreases to 22.53 N and 15.00 N, respectively, and the
optimum amount of bond should be added at a level of 40%.
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Figure 10. Single particle compressive strength of stacked abrasives with different additions of
vitrified bonds.

In order to explain why the stacked abrasives, show the highest single particle com-
pressive strength at 40% bond addition, it is necessary to analyze the SEM of stacked
abrasives with different additions of vitrified bonds. Figure 11 shows that when the binder
content is 30% (a), although the lower amount of binder leads to less precipitation of quartz
crystals, thereby increasing the mechanical strength of the vitrified bond, it can be observed
from figure (a) that there is a lack of bonding between some alumina abrasives, resulting in
numerous voids and cracks. These defects act as stress concentration points, promoting
crack propagation, indicating that a bond content of 30% is far from sufficient to completely
coat the surface of the alumina micro-powder particles, resulting in low compressive
strength of the stacked abrasives. When the bond content is 40% (b), the vitrified bond
completely coats the abrasives, and the outlines of the abrasives are still clearly visible.
This indicates that the bond content is appropriate, and therefore, at this point, the stacked
abrasives achieve the optimal single particle compressive strength. When the bond content
is 50% (c), the increased participation of the bond in sintering in the stacked abrasives
will inevitably lead to more precipitation of the quartz crystals, resulting in a decrease in
the mechanical strength of the vitrified bond. On the other hand, it can be seen from the
figure that although a large amount of binder completely coats the abrasives, it almost
submerges the alumina abrasives. Excessive vitrified bond leads to an imbalance in the
ratio of bond to abrasives in the abrasive, causing the structure of the alumina abrasive
grains to become loose, as excess binder fills the gaps in the abrasive, reducing the density
between abrasives.
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3.3. Stacked Abrasives Prepared by Dry Mixing Method

Vitrified bonds and alumina stacked abrasives were prepared using traditional dry
mixing and sol-gel methods, respectively, according to the A2 composition ratio. As
shown in Figure 12, within the temperature range of 760 ◦C to 880 ◦C, the vitrified bonds
prepared by the traditional dry mixing method still remain in the stage of generating
reedmergnerite and searlesite. Moreover, within the low-temperature sintering range, the
compressive strength of the sol-gel bonds is significantly higher than that of the ceramic
binders prepared by the traditional dry mixing method. This is because glass bonds, due to
their amorphous structure, can often achieve faster bonding with abrasive grains during
the sintering. Vitrified bonds, prepared by the sol-gel method at low temperatures, exhibit
higher fluidity, enabling better filling of gaps between abrasive grains during sintering,
thereby improving the density and uniformity of stacked abrasives. However, vitrified
bonds prepared by the traditional dry mixing method typically have higher melting points
due to their crystalline structure. To melt them and complete sintering, it is necessary to
increase the sintering temperature. Additionally, during the high-temperature sintering of
crystalline binders, time is required for the growth and arrangement of crystal structures to
ensure strong bonding between materials. This process is relatively slow and requires a
longer time to complete, implying higher energy consumption and longer sintering time.
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3.4. Compressive Strength and Microstructure of Diamond Stacked Abrasives

Diamond stacked abrasives were prepared by the optimum A2 composition point of
sol-gel vitrified bond with diamond micropowder and sintered at 820 ◦C. After the compres-
sive strength test, the single particle compressive strength of the diamond stacked abrasives
reached 28.14 N, which was slightly lower than that of corundum stacked abrasives. Zhang
et al. [32] also utilized the molding and crushing method to prepare CBN stacked abrasives,
but unlike this study, they employed the melt quenching method to prepare the vitrified
bond. In comparison, the sintering temperature of the stacked abrasives in our study de-
creased by approximately 100 ◦C, while the compressive strength increased by about 10 N.
This also indicates the advantages of using the sol-gel method to prepare low-temperature
vitrified bond. Cao et al. [33] also prepared the vitrified bond and stacked abrasives using
melt quenching and molding and crushing methods, respectively, and in their study the
compressive strength of the corundum stacked abrasives could be maintained at 26 N
at a sintering temperature of 760 ◦C. Although the sintering temperature of the stacked
abrasives decreased by approximately 60 ◦C compared to our study, the vitrified bond used
in their research is a six-component oxide system. Therefore, the composition point is rela-
tively mature, and dispersion strengthening, and microcrystalline toughening are utilized
to enhance the compressive strength of the abrasives. However, the bond in our study is
only a ternary system. Therefore, there is reason to believe that adding some intermediate
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oxide on the basis of the A2 ternary composition point can further reduce the sintering
temperature and increase the single particle compressive strength. At the same time, it
can be seen from Figure 13 that the bond has good wrapping performance for diamond
micro-powder, and there are few pores connected to the inside of the stacked abrasives.
Meanwhile, energy spectrum scanning was performed on the surface morphology of the
diamond stacked abrasives. The EDS show that the elements B, Si, and Na are evenly
distributed on the surface of the stacked abrasives, thereby confirming that the sol-gel
vitrified bond at the A2 composition point can achieve good wetting and encapsulation on
the surface of diamonds.
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4. Conclusions

This study utilized the sol-gel method to prepare Na2O-B2O3-SiO2-based vitrified
bond powders with different composition ratios and employed the molding and crushing
method to prepare stacked abrasives of corundum and diamond. Innovatively, the study
analyzed the effects of different compositional points of sol-gel vitrified bonds, as well
as sintering temperature and bond addition amount, on the single particle compressive
strength and the microstructure of stacked abrasives.

1. The heat treatment temperature of the ternary system vitrified bond powder prepared
by the sol-gel method should be set at 600 ◦C to ensure complete decomposition of
NaNO3.

2. When the composition ratio of the ceramic bond is A2: n(SiO2):n(B2O3):n(Na2O) =
65:23:12, the sintering temperature is 820 ◦C, and the amount of bond added is 40%, the
prepared corundum stacked abrasives can reach the maximum single grain compressive
strength which is 28.56 N, and the diamond stacked abrasives can reach the single grain
compressive strength of 28.14 N.

3. Vitrified bonds were prepared using the dry mixing method at the same composition
point A2. However, within the temperature range of 760 ◦C to 880 ◦C, it was found to
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be merely a process of the crystallization of sodium borosilicate, and the strength of
the agglomerated abrasives sintered at low temperatures was far inferior to that of
sol-gel vitrified bonds stacked abrasives.

4. This paper selects the most basic ternary oxide system as the vitrified bond. Therefore,
it is possible to continue using the sol-gel method to add some intermediate oxides
such as ZnO and Al2O3 to the vitrified bond with A2. This addition aims to further
reduce the sintering temperature of the stacked abrasives while increasing the com-
pressive strength. Furthermore, the effect of the addition ratio of intermediate oxides
on the thermal expansion coefficient of the ceramic binder can be discussed in order to
achieve the most suitable match with the abrasive micro-powder, thereby preparing
stacked abrasives with excellent performance for application.
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