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Abstract: In this paper, a CatBoost model for predicting superelastic strains of alloys was established
by utilizing features construction and selection as well as model filtering and evaluation based on
125 existing data points of superelastic titanium alloys. The alloy compositions of a TiNbMoZrSnTa
system were optimized and three nickel-free titanium alloys with potentially excellent superelastic
properties were designed using the Bayesian optimization algorithm using a superelastic strain
as the optimization target. The experimental results indicated that only Ti-12Nb-18Zr-2Sn and Ti-
12Nb-16Zr-3Sn exhibited clear superelasticity due to the absence of relevant information about the
alloys’ β stability in the machine learning model. Through experimental optimization of the heat
treatment regimens, Ti-12Nb-18Zr-2Sn and Ti-12Nb-16Zr-3Sn ultimately achieved recovery strains of
4.65% after being heat treated at 853 K for 10 min and 3.01% after being heat treated at 1073 K for
30 min, respectively. The CatBoost model in this paper possessed a certain ability to design nickel-
free superelastic titanium alloys but it was still necessary to combine it with existing knowledge of
material theory for effective utilization.

Keywords: nickel-free superelastic titanium alloys; superelastic strain; machine learning; Bayesian
optimization

1. Introduction

NiTi alloys, due to their unique comprehensive mechanical properties such as high
corrosion resistance [1], excellent biocompatibility [2], shape memory effect and superelas-
ticity [3], provide a perfect solution to the challenges faced in minimally invasive surgical
procedures [4]. The maximum recovery strain (Emax

r ) of a NiTi alloy can reach 8%, generally
higher than that of nickel-free superelastic titanium alloys [3]. However, Ni is a toxic,
allergenic and mutagenic element for humans, posing significant safety risks when used
within the human body [5]. The design of nickel-free superelastic titanium alloys with
excellent superelasticity is an urgent problem that needs to be addressed.

Nickel-free superelastic titanium alloys rely on the reversible transformation of the
metastable β phase to the orthorhombic martensite phase (α′′) under stress for their su-
perelasticity. High levels of β stability lead to a martensitic transformation initiation stress
(σSIM) that is higher than the yield strength of the β phase, hindering the reversibility of
the martensitic transformation and impeding the manifestation of superelasticity. A lower
β stability will result in the generation of a significant amount of α′′ phase during water
quenching, reducing the overall recovery strain (εr). The influence of alloy elements on
the stability of the β phase is significant, making the manifestation of superelasticity in
titanium alloys sensitive to alloy compositions [6]. The elements Nb, Mo, Zr, Sn and Ta
can, to varying degrees, reduce the stability of the β phase in titanium alloys. Each 1 at.%
Nb can reduce the martensitic start temperature (Ms) of Ti-Nb binary alloys by 40 K [7–9],
Ti-Nb-Zr alloys by 40–70 K [10] and Ti-Nb-Mo alloys by 25–30 K [11]. Each 1 at.% Zr can

Materials 2024, 17, 1793. https://doi.org/10.3390/ma17081793 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17081793
https://doi.org/10.3390/ma17081793
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-0947-3475
https://doi.org/10.3390/ma17081793
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17081793?type=check_update&version=1


Materials 2024, 17, 1793 2 of 16

reduce the Ms of Ti-Nb-Zr alloys by about 40 K [12] and Ti-Mo-Zr-Sn alloys by 38 K [13].
Each 1 at.% Sn can reduce the Ms of Ti-Mo-Zr-Sn alloys by 150 K [13]. Each 1 at.% Ta can
reduce the Ms of Ti-Ta and Ti-Nb-Ta alloys by 30 K [8,14]. Different β-stabilizing elements
reduce the Ms of titanium alloys to varying degrees. Therefore, it is necessary to rationally
combine alloy elements to ensure that the Ms of the alloy is near room temperature to
achieve superelasticity.

Thermo-mechanical processing significantly influences the ultimate superelastic per-
formance of superelastic titanium alloys. Li et al. [15] conducted aging treatment on the
Ti-40Zr-8Nb-2Sn alloy at 573 K for 1 h. The addition of a high content of Zr hindered
the growth of the isothermal ω phase (ωiso), resulting in the precipitation of nano-sized
ωiso in the alloy. The nano-sized ωiso enabled the alloy to achieve an ideal balance of
high yield strength and high ductility with a large superelastic strain (εSE) of 5%. Sun
et al. [16]. conducted an extremely short-term aging heat treatment at 873 K for 6 min
on the Ti-20Nb-6Zr alloy to obtain ultrafine recrystallized β grains with sizes ranging
from 1 to 2 µm. This treatment effectively improved the alloy’s mechanical properties,
resulting in a recoverable strain (εr) of 3.2% and a tensile strength of 750 MPa. Fu et al.
subjected the Ti-18Zr-4.5Nb-3Sn-2Mo alloy to heat treatment at 1173 K for 5 min, obtaining
an Er of 6.2% which was attributed to fine-grain strengthening and the well-developed
{001}β<110>β texture. For a specific alloy, it is crucial to carefully choose the appropriate
thermo-mechanical processing scheme to optimize its superelastic performance.

The superelasticity of titanium alloys is influenced by various factors and traditional al-
loy design methods are no longer sufficient to meet the requirements of rapid advancements
in new alloys design today. Machine learning methods demonstrate enormous potential for
analyzing material knowledge from data as they can greatly reduce the cost, risk and time
associated with material research and development [17]. The most common application of
machine learning is to establish the relationship between existing data features and material
properties and then extend this relationship to new systems to predict the performance
of new data points [18]. The transformation temperatures, superelasticity and thermal
hysteresis phenomena of NiTi alloys have been widely investigated using machine learning
techniques, while there is limited research on machine learning for nickel-free superelastic
titanium alloys [19]. Xue et al. proposed a method for predicting transition temperatures
using three features or material descriptors related to chemical bonds and atomic radii
of elements in NiTi alloys [20]. Furthermore, the thermal hysteresis of NiTi alloys was
predicted and a Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 alloy with the minimum thermal hysteresis
was designed using a global optimization approach [21]. Wang et al. utilized data from
traditional Ti alloys and Ti-rich quaternary high-entropy alloys as a basis to predict the
phase composition of the alloy system and they designed a metastable Ti48Zr20Hf15Al10Nb7
high-entropy alloy with superelastic properties [22]. Although the aforementioned studies
were successful in designing alloys with superelasticity, they failed to establish a direct
relationship between material descriptors and the final mechanical properties. A more
intuitive connection between material descriptors and superelastic properties is still must
be established.

In this paper, a predictive model for the maximum superelastic strain (Emax
SE ) was

established by considering features such as alloy preparation processing and elemental
characteristics based on the data for existing traditional nickel-free superelastic titanium
alloys. The use of Bayesian optimization algorithms enabled the rapid design of novel
titanium alloys with significant potential for superelasticity. The heat treatment regimens
of each alloy were optimized to achieve the optimal superelastic performance.

2. Materials and Methods
2.1. Dataset Establishment

All data in the nickel-free superelastic titanium alloy dataset were collected from the
TiNbMoZrSnTa alloy system, which were often accompanied by information about their
well-established shape memory effects or superelasticity gained by consulting references [6].
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Each data point contained the alloy composition as well as the processing (cold rolling
reduction) and heat treatment (solution temperature and time) parameters that significantly
affect the alloy’s properties. The target performance was Emax

SE .
All alloys were obtained through arc melting, cold rolling and annealing to ensure

data consistency and Emax
SE was all obtained by cyclic loading-unloading experiments. In

addition, there was some variation in different studies for the same alloys, so only the
most trustworthy data point was utilized. Furthermore, outliers were also rejected during
data preprocessing.

After filtering, 125 data points were finally collected as the nickel-free superelastic
titanium alloy dataset. The database contained different alloy compositions and different
processes for certain compositions. The distribution of alloy compositions and superelastic
strain values in the database are shown in Figure 1a,b, respectively. Naturally, alloys of the
Ti-Nb-Zr system dominate the dataset and the range of superelastic strain was 0.26–6.48.
Figure 1b shows that the Emax

SE of nickel-free titanium alloys were mainly concentrated in
the range of 0~4%, with few alloys exceeding 4%.
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Figure 1. Distribution of (a) alloy compositions and (b) Emax
SE in dataset.

2.2. Feature Construction

The superelasticity of titanium alloys was influenced by a number of factors such as
the addition of alloying and interstitial elements, as well as heat treatment and deformation
parameters [23,24]. The atomic percentages of alloys were taken for granted as features. For
the different heat treatment regimes, only the most widely used cold rolling and annealing
process was selected. Ultimately, the features selected in the material preparation and
processing were cold rolling reduction, annealing time and temperature.

Specifically, the superelasticity of titanium alloys arises from stress-induced marten-
sitic phase transformations. Therefore, only metastable β titanium alloys can exhibit
superelasticity at room temperature. Designing titanium alloys with room-temperature
superelasticity imposes requirements on the stability of the β phase [6]. Several tradi-
tional alloy design methods involving the molybdenum equivalent method, d-electron
concept and electron/atom (e/a) ratio all have proposed parameters related to the stabil-
ity of the β phase in titanium alloys [25,26]. Consequently, the molybdenum equivalent
(Mo), two parameters of d-electron concept (Bo and Md) and the average valence electron
concentration (VEC) were added to the feature set.

In addition, a set of element features (e.g., relative atomic mass, number of periods
and groups in the periodic table of elements) and physical (e.g., Young’s modulus, melting
point and thermal expansion coefficient) and chemical (e.g., Pauling electronegativity)
parameters were selected as features. For maximizing the search for features correlated with
superelastic strain, the initial feature set extensively encompassed various features related
to thermodynamics, electricity, physics, chemistry and other factors possibly associated
with alloy performance. Such features are listed in Table 1. In order to extract potential



Materials 2024, 17, 1793 4 of 16

information from the above-mentioned features, the linear mixture rule(x1), the reciprocal
mixture rule (x2), the deviation rule(x3) and the discrepancy(x4) [27–29] were calculated
based on the atomic percentage compositions and added to the feature set. The four types
of features can be calculated as follows:

x1 = ∑n
i aixi (1)

x2 = (∑n
i=1

ai

xi
)
−1

(2)

x3 =
√

∑n
i=1 ai(xi − x1)

2 (3)

x4 =
√

∑n
i=1 ai(1 − xi/x1)

2 (4)

where ai is the atom fraction and the xi is features related to the alloy compositions. The
initial feature set ultimately contained a total of 87 features.

Table 1. Initial feature set.

Classification Description Symbol

Processing process
Cold rolling reduction strain
Annealing temperature T1

Annealing time t1

Empirical parameters of alloy design

Mo equivalent Moeq
Bo Bo
Md Md

Valence electron concentration VEC

Phase formation parameters

Enthalpy of mixing ∆Hmix
Entropy of mixing ∆Smix

Solid solution phase
formation parameter Ω

Element features

Atomic number NA
Atomic mass MA

Density ρ

Period P
Group G

Atomic radius RA
Covalent radius RC
Lattice constant a
Lattice constant c

Physical and chemical features

Young’s modulus E
Melting point MP
Boiling point BP

Resistance R
Thermal conductivity TC

Thermal expansion coefficient Cte
Pauling electronegativity PE

Heat of fusion Hf

2.3. Feature Selection

The significance of feature selection lies in eliminating redundant and irrelevant
features which means selecting as few features as possible while retaining the important
information contained in the feature set. Fewer features help to simplify the model and
enhance the model’s interpretability [30,31]. Three steps of feature selection including
Pearson correlation coefficient (PCC), recursive feature elimination (RFE) and best subset
selection (BSS) were applied in this paper.
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The first step was to use PCC to remove redundant features. The Pearson correlation
coefficient can be calculated as follows:

px,y =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1 (y i − y)2

(5)

where xi and yi are the values of two different features respectively; x and y represent the
mean of xi and yi.px,y was used to measure the linear correlation between features. The
range of px,y was between −1 and 1. The closer the absolute value of px,y was to 1, the
stronger the correlation between features. Highly correlated features were considered to
contain similar valuable information. In this paper, features with a px,y greater than or
equal to 0.95 were considered highly correlated but only one could be retained. Which
feature to retain was determined by comparing the Pearson correlation coefficient between
features and Emax

SE . Features with a higher correlation to the superelastic strain would be
retained. PCC solely examined the relationships between features and conducted an initial
screening of the feature set, removing redundant features.

The second step was RFE based on the feature importance. RFE first built a machine
learning model using the selected feature above and used the model’s built-in evaluation
parameters to rank the importance of features. Then, the least important feature based on
the ranking was removed and the above steps were repeated with the remaining features
until the number of features was reduced to 1. The performance of each iteration’s model
was recorded to facilitate the selection of the optimal number features.

The final step was BSS which used an exhaustive method to enumerate all feature
subsets and select the best feature combination. RFE selected some important features but
it could not consider all combinations. Based on the selected features in RFE, the final step
involved modeling and evaluating all of the feature combinations. The best feature subset
could be obtained by comparing differences in model performance.

2.4. Machine Learning

All machine learning processes were carried out using the programming language
Python. In order to mitigate the impact of different scales among features on calculations
and to meet the requirements of neural network computations, the data were normalized
as follows:

X′ =
x − µ

s
(6)

where x and x′ are actual value and normalized value, the symbols µ and s represent the
mean and standard deviation of the sample, respectively.

The CatBoostRegressor (CatBoost) machine learning algorithm (default parameters)
was used for RFE. The feature importance was also an inherent parameter of the CatBoost
model. After two steps of filtering features, six different models including Support Vac-
tor Regressor (SVR), CatBoost, KNeighborsRegressor (KNN), Backpropagation Neural
Network (BPNN), Gaussian process Regressor (GPR) and XGBRegressor (XGBoost) were
applied to select a the most suitable for the prediction of Emax

SE . The performances of the
models were evaluated using the coefficient of determination (R2) and mean absolute error
(MAE) shown below:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (7)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi −

-
y
)2 (8)

where n is the number of samples in the dataset, y is the mean of all experimental values
in the dataset and yi and ŷi are the experimental values and the corresponding predicted
values by the machine learning model for each sample in the dataset, respectively. Five-
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fold cross-validation (5-fold cv) was employed during the feature selection and model
evaluation processes for model establishment and assessment to avoid randomness caused
by a small dataset.

2.5. Experimental Validation

First, 10 kg alloy ingots were melted through the VISM-50 cold crucible levitation
melting equipment using high-purity Ti (99.99%), Nb (99.99%), Zr (99.99%) and Sn (99.99%).
The ingots were subjected to three forging processes after peeling and removing the riser to
obtain a slab. The slabs were hot -rolled to 16 mm after being incubated at 800 ◦C for 45 min.
The hot-rolled sheets were coated with an anti-oxidation layer on the surface, followed by
solution treatment at 950 ◦C for 1 h. After water quenching, the surfaces were milled to
achieve a clean finish. Subsequently, the sheets underwent cold rolling with a single-pass
reduction not exceeding 0.3 mm. The amount of rolling deformation was 0.8 with no
intermediate annealing performed during the cold rolling processes. The specimens for
superelasticity testing were all taken along the rolling direction from the cold-rolled sheets
and their dimensions are shown Figure 2. Subsequently, the specimens were heat -treated
at temperatures ranging from 600 to 900 ◦C for 10 min (AC) or 30 min (WC). The surface
oxide scales were removed through acid pickling and the composition of the acid pickling
solution was HF: HNO3: H2O = 1:3:7. Cyclic loading-unloading experiments were initiated
by stretching the specimens to a strain of 1.5% followed by unloading to 10 N. Subsequently,
the specimens were cyclically stretched and unloaded in increments of 0.5% strain until
they fractured or reached 10% strain before unloading. The strain rate for both loading and
unloading in the experiments was maintained at 1 × 10−3 s−1.
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3. Results
3.1. Feature Selection and Model Establishment

The Pearson correlation coefficients between all of the features have been calculated.
The Pearson correlation heatmap for partial features is shown in Figure 3a. The more
complete the pie chart, and the darker the colors, the higher the correlation between
features. PCC significantly reduced the redundancy of the feature set, reducing the number
of features from 87 to 45.

On the basis of 45 features, RFE was conducted, and the performances of various
models were evaluated using 5-fold cv with the R2 metric. The process of recursive
feature elimination is shown in Figure 3b. It can be observed that the R2 of the model
did not show significant changes with the progress of the iterations when removing a
relatively small number of features. There was only a very slight increase, indicating that
the removal of features had a minimal impact on the model’s performance at this stage.
R2 decreased from 0.795 to 0.748 when the number of removed features increased from
42 to 43. This significant change in R2 indicated that the removal of the specific feature
at this point was more impactful. Removing this feature caused the feature set to lose
crucial information leading to a decline in predictive accuracy. In this case, the removed
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feature was T1 which included data from two heat treatment processes: low-temperature
short-time annealing and high-temperature solution treatment. The material’s properties
under these two processes exhibited a significant difference making T1 a crucial feature
affecting the superelastic strain. The preparation and processing parameters of the alloys
were retained taking into account the features influencing the actual alloy system. Among
them, t1 was excluded in the 33rd iteration. The feature set before the removal of t1 was
selected as an alternative feature set (13): t1, Zr, a, Moeq, VEC4, ρ4, Hf4, PE4, E, MP3, T1,
strain, E2.
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Various machine learning models were employed based on the feature set filtered
through RFE to avoid the influence of a single machine learning model on BSS as well as
to select the most suitable machine learning model for the Emax

SE dataset. These models
included SVR, CatBoost, KNN, BPNN, GPR and XGBoost, totaling six different machine
learning models. Each model underwent hyperparameter tuning and the results of hy-
perparameter adjustments for each model are shown in Table 2. The model evaluation
was conducted using leave-one-out cross-validation (LOOCV) and a comparison of the
performances of the various models is shown in Figure 4. The CatBoost model (R2 = 0.82,
MAE = 0.45) exhibited a higher R2 and a lower MAE, demonstrating a significantly better
performance compared to the other five models and showcasing superior predictive capa-
bilities. As shown in Figure 5, the comparison between predicted values and actual values
for each model revealed that most models provide similar predictions for the majority of
the data. However, the CatBoost model outperformed the other models, especially on a
few data points where larger deviations occurred. In summary, CatBoost was chosen as the
machine learning model for the next feature selection step.

Table 2. Hyperparameters for all machine learning models.

Models Hyperparameters

SVR C: 4.87, gamma: 2.03, epsilon: 4.38 × 10−4

CatBoost iterations: 399, learning_rate: 0.23, l2_leaf_reg: 1.90, depth:6, subsample: 0.45,
rsm: 0.95

KNN n_neighbors: 6, weights: distance, algorithm: kd_tree

BPNN n_layers: 2, n_units_l0: 88, n_units_l1: 40, alpha: 0.60, learning_rate_init: 0.002,
momentum: 0.60, max_iter: 5000

GPR alpha: 0.01

XGBoost lambda: 136.32, alpha: 0.02, learning_rate: 1.49, n_estimators: 1017,
max_depth: 120, gamma: 0.0003, min_child_weight: 1
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Figure 5. A comparison between predicted values and actual values for each model: (a) SVR;
(b) CatBoost; (c) KNN; (d) BPNN; (e) GPR; (f) XGBoost.

All different combinations of the 13 features were modeled and evaluated in best fea-
ture subset selection as shown in Figure 6a. The best model was achieved with seven
features but the performance improvement from six to seven features was marginal.
Six features were chosen in order to select as few features as possible. The CatBoost
model’s MAE was 0.51 with the feature set including strain, T1, t1, E, MP3 and PE4. The
specific meanings of the six features were cold rolling reduction (strian), annealing temper-
ature (T1), annealing time (t1), average elastic modulus (E), standard deviation of melting
point (MP3) and discrepancy of Pauling electronegativity (PE4).

A CatBoost model was established based on the final feature set. Data partitioning
could significantly impact the evaluation results of the model due to the limited amount
of data. Therefore, three different data partitioning methods were employed for model
evaluation: the holdout method (testing set = 0.2), 5-fold cv and LOOCV. As shown in
Figure 6b–d, CatBoost predicted the training data almost perfectly, but biases were often
observed for the test set. The magnitudes of data bias were relatively consistent among
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the three data partitioning methods. Therefore, it was considered that data partitioning
had not significantly affected the predictive results. The data points were distributed
almost symmetrically on both sides of the 45◦ line indicating that the predicted range
was generally reasonable. However, they did not fall precisely on the line because of
the vastness of the data space combined with the insufficient and uneven distribution of
data points in the dataset. Additionally, variations in alloy preparation and processing,
data collection processes and other factors across different studies could have affected
the accuracy of the data. The proportion of small superelastic strain data was relatively
large and predictions for such data tended to be closer to the true values. Conversely,
the prediction error significantly increased when the superelastic strain exceeded 2.5%.
Therefore, the performance of this model might be less satisfactory when predicting data
with a high superelastic strain.
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Figure 6. The results of BSS and the evaluation results for different dataset partitions: (a) variation of
MAE of the models with the number of features; (b) hold-out; (c) 5-fold cv; (d) LOOCV.

3.2. New Alloy Design

After successfully establishing the correlation between key features and superelastic
strain, optimizing the alloy composition for excellent performance held significant engineer-
ing significance. Although exhaustive optimization using the established machine learning
algorithm was accurate, the significant amount of time it consumed was not acceptable.
A Bayesian optimization algorithm was employed to optimize the alloy compositions
with excellent performance based on the Optuna framework in this paper. The Bayesian
optimization analyzed the existing data points as a prior distribution. Subsequently, it used
an acquisition function to analyze the prior distribution and selected the location with the
highest probability of extreme values for testing. The test results were then added to the
prior distribution to form the posterior distribution which serves as the prior distribution
for the next iteration. This process was repeated until the allotted time or the maximum
number of iterations was reached. The optimization problem in this paper can be described
as follows:
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Maximize F (Nb, Mo, Zr, Sn, Ta)
Subject to

• 0 ≤ Nb ≤ 25 at.%,
• 0 ≤ Mo ≤ 5 at.%,
• 0 ≤ Zr ≤ 30 at.%,
• 0 ≤ Sn ≤ 5 at.%,
• 0 ≤ Ta ≤ 5 at.%,
• Nb + Mo + Zr + Sn + Ta + Ti = 100 at.%,
• Zr < Ti,
• strain = 0.985
• T1 = 1173 K,
• t1 = 30 min.

Where F is the final CatBoost model. Iterative optimization could commence after the
optimization direction and range had been determined. To seek nickel-free titanium alloys
with superior superelastic performance, the optimization direction was maximization.
The content ranges of each alloy element were initially determined based on that of the
dataset. The process parameters (strain, T1, t1) were chosen to be the most commonly used
parameters in the database.

The variation in the best Emax
SE during the iterative process with the number of iterations

was shown in Figure 7. A total of 100 iterations were conducted and the Emax
SE exceeded 6%

within just 65 iterations. The optimal value remained unchanged after 90 iterations at which
point the optimization process might have entered a local optimum. The optimization
process was repeated multiple times to prevent the optimization process from becoming
stuck in a local optimum.
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Figure 7. The evolution of the best value in Optuna optimization.

It is worth noting that the optimization problem in this article involved the challenge
of seeking multi-dimensional solutions for a single objective which might lead to the gener-
ation of unreasonable solutions which would require the application of a prior knowledge
of materials to assess whether the optimized alloy compositions met the requirements.
Most importantly, the final feature set in this study did not include features related to
β stability. It can be argued that this feature set could not accurately assess the stability
of the alloy. It can be anticipated that the Ms of some designed alloys were not in the
vicinity of room temperature and they might not even be metastable β titanium alloys,
and thus would be unable to exhibit superelastic performance. The establishment of an
Ms prediction model has been attempted before. However, it was difficult to accurately
measure through differential scanning calorimetry (DSC) tests due to the small enthalpy
change in the martensitic transformation of titanium alloys. The determination of the Ms
of metastable titanium alloys could only be achieved through tensile testing at different
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temperatures leading to limited data being available. In summary, the estimation of β
stability and the rationality of alloy composition in this article could only be determined
through manual judgment. Finally, three alloy compositions were selected for experimental
validation, as shown in Table 3. Among them, Alloy I was the alloy with the optimal Emax

SE
obtained during the optimization process. Alloys II, mentioned in Li’s paper [32], and III
were selected for validation to assess whether the effect of 1 at.% Sn in increasing β-phase
stability could be replaced by 2 at.% Zr. Additionally, the predicted performance of Alloys
II and III were superior to 4%.

Table 3. Nominal compositions (at.%) of new alloys.

Alloys Nb Zr Sn Ti

I 11 26 2 61
II 12 18 2 68
III 12 16 3 69

3.3. Feature Analysis

Machine learning possessed high predictive capabilities. However, black-box models
lacked explanations for the models’ decisions. The Shapley Additive explanations (SHAP)
method was employed to analyze the influence of each feature on the superelastic strain
variable in the optimal CatBoost model. SHAP is a novel machine learning model interpre-
tation method based on game theory, which can calculate the marginal contributions (SHAP
values) of features to the model’s output, and provide explanations for black-box models
at both global and local levels. Figure 8 illustrated the global interpretation of the feature
set, depicting the impact of each feature value on Emax

SE . The x-axis represented the SHAP
values corresponding to feature values, indicating the degree and direction of the features’
influence on Emax

SE . Positive values signified an increase in Emax
SE , while negative values

indicate a decrease. The y-axis represented feature values with colors representing their
magnitude (the red for higher values and blue for lower values). Additionally, the y-axis
was sorted by feature importance with decreasing importance from top to bottom. It can
be observed that a larger range of SHAP values corresponds to higher feature importance.
Features with higher importance, such as PE4, E and T1, demonstrated a more significant
influence on the Emax

SE variable as their values changed.
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Feature dependency figures were plotted in Figure 9 to observe the impact of individ-
ual features on the predicted values more precisely. The patterns of feature value changes of
MP3 and t1 did not show a clear influence on superelasticity, so no analysis was conducted.
In Figure 9a,d, the respective impacts of feature strain and T1 on the model predictions have
been demonstrated. Both features were material preparation and processing features and



Materials 2024, 17, 1793 12 of 16

the data for these features were relatively discrete. In Figure 9a, the closer the cold-rolling
deformation was to 1, the more positive its impact on the superelastic strain. A higher cold-
rolling deformation induced high-density dislocations in the titanium sheets, promoting
nucleation of the α and ω phases during subsequent annealing, resulting in a higher yield
strength and an enhanced superelastic strain [15,33]. From a practical perspective, cold
rolling of thick titanium alloy plates is challenging, typically commencing from a thickness
of 10 mm. A large deformation exceeding 95% results in the final sheet product having a
sheet thickness ranging from approximately 0.1 mm to 0.5 mm. The extremely small grain
size and sheet thickness in cold-rolled sheets prevent the grains from becoming excessively
large after annealing.
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In Figure 9d, it was observed that the different heat treatment temperatures almost all
contained data points adversely affecting the predicted values. The predominantly positive
impact of annealing at 1173 K on superelasticity was due to the higher cold rolling rates in
the database which required annealing above the β phase transformation point followed
by water quenching to retain the entire β phase and induce recrystallization. It could
be predicted that, for samples with lower cold-rolling deformation, annealing at higher
temperatures may result in an increase in grain size, consequently reducing the material’s
strength. In this scenario, a reasonable mid-to-low-temperature short-term annealing could
control the material’s grain size, retain a certain dislocation density, enhance the alloy’s
yield strength and, in turn, improve the superelastic properties of the alloy. Superelasticity
occurs only when the yield strength of the alloy is greater than the onset stress of marten-
sitic transformation. The impact of annealing temperature on superelasticity is complex
and needs to be considered in conjunction with cold rolling deformation and the phase
transformation temperatures of the alloy.

Figure 9b shows the change in SHAP values with the PE4 feature values. It can be
observed that, with the increase in PE4, the influence on Emax

SE gradually tends towards
being positive and approximately linear. The larger the Pauling electronegativity value,
the stronger the attraction of the atom to the shared electrons. An increase in the PE4
feature value indicates a greater difference in electronegativity between alloy elements,
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enabling the formation of stronger bonds, thus increasing the strength of the alloy [34]. A
higher critical slip stress is often more favorable for the manifestation of superelasticity.
Figure 9c illustrates the influence of feature E on the superelastic strain. The SHAP values
of E initially decreased with the increase in feature values, then stabilized and subsequently
continued to decrease. A high elastic modulus implied high bond energy, which was closely
related to the mechanical properties of materials. It can be confirmed that there was a
certain regularity between E and superelastic performance. The pattern in Figure 9c is
consistent with the fact that superelastic titanium alloys often have lower elastic modulus.
Feature E and PE4 were both derived from the calculation of elastic modulus and Pauling
electronegativity based on alloy compositions. In essence, they contained a wealth of
compositional information.

3.4. Experimental Validation

In order to validate the feasibility of the alloy design using the machine learning
model proposed in this paper, experiments were conducted to validate the three alloys
designed. Table 4 presented the chemical compositions of the alloy ingots produced by
the suspension melting furnace. Figure 10 shows the tensile loading-unloading curves
of two alloys solutions treated at 1173 K for 30 min followed water cooling. Alloy I did
not exhibit superelasticity, confirming the earlier hypothesis that the optimization process
might yield unreasonable compositions. The fundamental reason for this was that Alloy I
had an excessively high β stability, preventing stress-induced phase transformation in the
β phase. This lack of the necessary conditions hindered the manifestation of superelasticity.
The Ti-11Nb-24Zr-2Sn alloy had been proven to lack superelasticity at room temperature
due to its excessively high β stability [35]. The addition of Zr elements tended to lower the
Ms of titanium alloys, so the incorporation of more Zr in Alloy I indicated that was unlikely
to exhibit superelasticity at room temperature. The solid-solutions alloys II and III exhibited
an Emax

r of 2.78% and 1.5% in Figure 10a,b, respectively. Their Emax
SE were 1.17% and 1.88%,

respectively, which evidently fell short of the well-performing outcomes predicted by
machine learning. The addition of O and H elements could result in a decrease in the cold
formability of titanium alloys. In this paper, the ingots, due to multiple remelting steps
during the melting process, introduced O and H elements, limiting the cold deformation
capability to only 80%. The Emax

SE were 1.84% and 1.99% for each predicted based on the
actual cold rolling reduction. Evidently, the solution treatment at 1173 K for 30 min was
not suitable for the alloy with an 80% cold rolling reduction discussed in this paper.

Table 4. Chemical compositions (at.%) of the three new alloys.

Alloys Nb Zr Sn Ti

I 10.72 26.51 2.00 60.77
II 12.28 17.14 2.02 68.55
II 11.62 15.89 3.12 69.37

The heat treatment regimens were appropriately adjusted to demonstrate the supere-
lastic performance of the two alloys as shown in Figure 11. Alloy II and III achieved their
optimal superelastic performance after heat treatment at 853 K for 10 min and 1073 K for
30 min, respectively. They achieved an Emax

r of 4.65% and 3.01%, and Emax
SE of 3.19% and

2.08%, respectively. Using the optimized heat treatment regime as the input, the prediction
results of the CatBoost model were 2.19% and 2.25%, respectively. In reality, the superelastic
performance of Alloy II was better than that of Alloy III, suggesting that 1 at.% Sn cannot
fully replace 2% at of Zr.

Despite the absolute prediction error being less than 1% strain, it still fell short of the
desired outcome. The cold rolling and heat treatment of the alloy system were actually
aimed at obtaining smaller equiaxed grains and better texture orientation to improve
superelasticity. However, the data available in this paper were already very limited,
making it even more challenging to obtain information about the microstructure of nickel-
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free superelastic titanium alloys. Therefore, the next optimization direction is to directly
establish the relationship between the microstructure characteristics of the alloys and
superelastic properties.
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Figure 10. Tensile loading-unloading curves of (a) Alloy II and (b) Alloy III solution treated at 1173 K
for 30 min.
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Figure 11. Tensile loading-unloading curves of (a) Alloy II heat treated at 853 K for 10 min and
(b) Alloy III heat treated at 1073 K for 30 min.

4. Conclusions

This paper established a predictive model for superelastic strains of Ni-free superelastic
titanium alloys based on machine learning methods. Furthermore, it designed new alloys
through experimental validation utilizing Bayesian intelligent optimization algorithms.
The main conclusions are as follows:

1. Machine learning models were established based on 125 data points. Among them, the
CatBoost model constructed with features strain, T1, t1, E, MP3 and PE4 performed
the best with an R2 of 0.83 and MAE of 0.44.

2. The features included in the final feature set, such as strain, T1, and t1 were mainly
related to the processing and preparation of the alloy. The reason higher cold rolling
deformation and annealing temperature were advantageous for the superelastic
performance of the alloy was that high-temperature annealing after large-deformation
cold rolling facilitates the formation of fine grains and strong texture.

3. Three alloy compositions including Ti-11Nb-26Zr-2Sn, Ti-12Nb-18Zr-2Sn and Ti-12Nb-
16Zr-3Sn were designed using a Bayesian optimization algorithm which could quickly
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perform alloy composition optimization. After 60 iterations, it searched for alloy
compositions with a superelastic strain greater than 6%.

4. Due to the lack of assessment of β stability in the model, only the Ti-12Nb-18Zr-2Sn
and Ti-12Nb-16Zr-3Sn alloys exhibited a superelastic performance. The superelastic
performance of both alloys matched the predictions of machine learning based on
actual processes. After thermal treatment process optimization, they exhibited a
recovery strain of 4.65% and 3.01%, respectively.
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