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Abstract: In the heat insulation winding molding process of solid rocket motors, the pressure applied
by the press roller directly affects the quality of the winding molding. Insufficient pressure can result
in poor bonding quality and may cause defects. This paper aims to provide an optimal design of
the press roller to improve the winding molding quality of the heat insulation. The effect of the
cylindrical press roller on the pressure distribution was analyzed using the elastic foundation model
and a finite element (FE) model, which was assessed by Hertz theory. Subsequently, the press roller
was optimized to an elliptical concave design. The effect of the radius of the elliptical concave press
roller on the pressure distribution was analyzed. A comparison of the effect of the elliptical concave
press roller and the cylindrical press roller on the pressure distribution was conducted using the FE
model. The results show pressure uniformity is significantly improved when the elliptical concave
press roller is employed on the mandrel with the smallest radius. Additionally, the elliptical concave
press roller increases the pressure at the edge of the tape, which reduces the risk of lifted edges and,
thereby, improves the winding molding quality of the heat insulation.

Keywords: press roller; pressure distribution; heat insulation; winding molding; finite element model

1. Introduction

Internal heat insulation in a solid rocket motor is a layer of heat-barrier, ablation-
resistant material between the internal surface of the case and the propellant. The primary
function of the heat insulation is to prevent the case from reaching temperatures that
endanger its structural integrity [1] (p. 1). The fabrication techniques for the heat insulation
encompass various methods, such as the manual lay-up process, the molding process,
and the winding molding process [2–5]. The winding molding process, a relatively new
technique, is particularly suited for manufacturing large solid rocket motors. This method
not only shortens the manufacturing cycle, but also ensures the consistent quality of the
heat insulation when compared with the manual lay-up process. In the heat insulation
winding molding process, each tape is transported to the press roller independently and
then wound onto the mandrel surface or previous layers at a certain winding angle and
velocity, as shown in Figure 1 [5]. The main role of the press roller is to apply a specific
pressure to bond the tape to the mandrel surfaces or previous layers.

In composite automated placement, the press roller directly affects pressure distribu-
tion [6–9]. Several researchers have analyzed the effect of the roller on pressure distribution
and sought to improve layup quality. For example, Gonzalez Ojeda et al. [10] established a
mapping relationship between force, contact area, and pressure through FE simulation for
automated fiber placement (AFP). Cheng et al. [11] studied the contact characteristics of
the roller and the morphological change in the prepreg under the roller during composite
automated placement. In terms of press roller optimization, Sonmez et al. [12] analyzed the
relationship between process parameters and the bonding behavior of the thermoplastic
composite laminate by FE analysis. Their findings suggest that consolidation is more
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effectively achieved with larger roller diameters. Bakhshi et al. [13] examined the effect
of the stiffness and structure of the roller on the layup quality of AFP. Jiang et al. [14]
investigated the effect of the roller on the pressure distribution in AFP numerically and
experimentally, and optimized the structure of the roller. However, most of these studies
focus on optimizing the materials and dimensions of conventional cylindrical press rollers,
with fewer research efforts dedicated to improving layup quality through the optimization
of roller shapes.
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Similar to composite automated placement, the winding molding quality of the heat
insulation is also affected by the press roller [15]. The pressure applied by the roller is even
more important in the heat insulation winding molding process than composite automated
placement because it directly affects the final bonding quality of the heat insulation. The
advantage of conventional cylindrical press rollers is their relatively simple structure.
However, in the heat insulation winding molding process, if a conventional cylindrical
press roller is employed, the distance between the roller’s profile and the mandrel’s profile
(or the profile of the heat insulation) varies along the tape width direction. At the edge
of the tape, the distance is larger and the pressure is smaller, which affects the winding
molding quality and may even cause defects such as lifted edges. There are few reports on
how to improve the winding molding quality of the heat insulation through the optimal
design of the roller.

The method presented in this paper is aimed at providing an optimal design of the
press roller to improve the winding molding quality of the heat insulation. The effect of the
cylindrical press roller on the pressure distribution is analyzed using the elastic foundation
model. An FE model, assessed by Hertz theory, is used to simulate the contact between the
roller and the tape. The results show that the cylindrical press roller results in a relatively
nonuniform pressure distribution and may cause lifted edges. The press roller is then
optimized to an elliptical concave design. The effect of the radius of the elliptical concave
press roller on the pressure distribution is analyzed to optimize the design parameter.
Finally, a comparison of the effect of the elliptical concave press roller and the cylindrical
press roller on the pressure distribution is conducted using the FE models.

2. Theoretical Analysis of Pressure Distribution

The fabrication techniques we employed for the heat insulation are as follows: the heat
insulation of the forward and aft domes uses the molding process, while the heat insulation
of the cylinder section employs the winding molding process. In the winding molding
process, the roller is pressed into the tape to a specific depth to apply pressure [16], as
shown in Figure 2. The longitudinal section B-B intersects with the center of the roller and
is perpendicular to the winding direction. The cross-section C-C provides an alternative
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perspective. In Figure 2, the winding angle is represented by α, and the pressure is
represented by p.
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Figure 2. Contact between roller and tape: (a) hoop winding; (b) contact in the longitudinal section
B-B; (c) contact in the cross-section C-C.

The elastic foundation model was used to calculate the pressure distribution [17–19].
The calculations are based on the following assumptions:

• The characteristic length of the contact area is assumed to be comparable to or larger
than the thickness of the heat insulation.

• Given their high elastic modulus, both the press roller and the mandrel are considered
rigid, i.e., the elastic modulus of the materials of these elements is assumed to be
infinitely large.

• There is no shear between the adjacent elements of the foundation (the heat insulation).

Designate the initial contact point as the origin of the rectangular coordinate system.
In this system, the x-y plane corresponds to the common tangent plane at the intersection of
the two surfaces, while the z-axis aligns with the common normal, extending positively into
the heat insulation. According to the elastic foundation model, the normal displacement of
the heat insulation at any point (x, y) within the contact area can be obtained [20].

δ = δ0 − Ax2 − By2 (1)

where δ0 is the penetration at the origin of the coordinate system. The coefficients A and B
are calculated as follows:

A =
1
4

(
1

(R + t)
+

1
r

)
− 1

4

(
1

(R + t)2 +
1
r2 − 2 cos(2α)

(R + t)r

) 1
2

(2)

B =
1
4

(
1

(R + t)
+

1
r

)
+

1
4

(
1

(R + t)2 +
1
r2 − 2 cos(2α)

(R + t)r

) 1
2

(3)

where R is the radius of the mandrel, t is the thickness of the heat insulation, and r is the
radius of the roller. The winding angle α is calculated with Equation (4).

cos α =
W

2π(R + t − h)
(4)

where W is the width of the tape, h is the thickness of the tape.
The pressure is expressed as:

p = K
δ

t
(5)

K =
E(1 − ν)

(1 + ν)(1 − 2ν)
(6)

where E and ν are the elastic modulus and Poisson’s ratio of the tape, respectively.
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According to Equation (1), the relationship between the deformation δ0 in the middle
(see point Pm in Figure 3) of the tape and the deformation δe at the edge of the tape can
be obtained.

δe = δ0 −
W2

4

(
A cos2 θ + B sin2 θ

)
(7)

tan(2θ) =
r sin(2α)

(R + t)− r cos(2α)
(8)

where θ is the angle between the x-axis and the axis of the press roller.
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Figure 3. Effect of the cylindrical press roller on tape deformation in the longitudinal section B-B for
t = h.

The deformation δ0 in the middle of the tape is maximal, while the deformation δe
at the edge of the tape is minimal. According to Equation (5), δ0 and δe correspond to
the maximum pressure pmax and the minimum pressure pmin, respectively. To fulfill the
minimum pressure requirement pr for bonding quality, pmin should be larger than or equal
to pr. Due to the presence of the winding angle and the non-compliance of the rigid
cylindrical press roller with the mandrel, it is difficult to ensure the pressure at the edge of
the tape, which may result in lifted edges.

3. Simulation of Pressure Distribution

In the heat insulation winding molding process, the friction force between the roller
and the tape is small, and it has little effect on normal pressure. As a result, the dynamic
winding process can be simplified into a static one [13,14].

3.1. Finite Element Model

A 3D FE model of the contact between the roller and the tape was established using
Abaqus/CAE. The mandrels have radii of 240 mm, 400 mm, and 1000 mm, respectively.
The cylindrical press roller has a length of 102 mm and a radius of 40 mm. The tape has a
thickness of 0.8 mm and a width of 100 mm. The material of the tape is uncured EPDM
(ethylene propylene diene monomer) rubber. Its stress–strain behavior exhibits linearity
when the deformation is less than 5%. Consequently, a constant elastic modulus and Pois-
son’s ratio are employed to characterize the rubber’s elastic deformation behavior [21,22].
The material parameters of each part are presented in Table 1. The elastic modulus of the
tape was estimated to be 0.5 MPa [23]. Given that the tape is made of uncured rubber, its
behavior is close to incompressible [24]. Consequently, the Poisson’s ratio of the tape was
estimated to be 0.49.

Table 1. Material parameters of the mandrel, the press roller, and the tape.

Elastic Modulus (MPa) Poisson’s Ratio

Mandrel 1,000,000 0.1
Press roller 200,000 0.3

Tape 0.5 0.49
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To improve the calculation efficiency, only one layer (t = 0.8 mm) is modeled. The
mandrel is omitted, and the cylindrical press roller is modeled as an annular sector body
with a thickness of 0.5 mm, and is constrained as a “rigid body”. The modifications of the
roller are less important in the simulation due to its much greater stiffness compared to the
tape [25]. Finite element discretization of the tape is performed using C3D8IH. The press
roller is discretized using C3D8I. The meshes for the contact problem are carefully designed
with fine elements placed along the interface between the roller and the tape [26]. Figure 4
represents the mesh for one of the simulations. Given that the press roller is defined as a
rigid body using a rigid body constraint in Abaqus/CAE, it requires meshing [14].
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Figure 4. Finite element model of the contact between the roller and the tape.

The lower surface of the tape is fixed as it is bonded to the mandrel. The translational
and rotational degrees of freedom of the press roller are constrained at the rigid body
reference point defined at the center of the roller. The press roller is constrained to move
only in the x-direction, with pressure applied through a specified displacement of the
roller. A frictionless hard contact is defined between the press roller surface and the tape to
simulate the contact. Finally, the contact problem was solved utilizing the standard Abaqus
algorithm. In the simulation results, contact pressure (CPRESS) within the tape’s contact
area is extracted for the analysis of pressure distribution.

Pressure distribution is the primary parameter of interest here. Hence, convergence
analysis on the maximum pressure was conducted to ensure the independence of the results
from mesh size [13]. Element sizes from 0.4 mm to 0.1 mm were tried for the tape as a
convergence study, the results of which are presented in Figure 5.
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In this figure, the pressure value at each data point is normalized by the pressure
value obtained using the smallest mesh size. A mesh size of 0.1 mm was determined to be
sufficiently fine for obtaining accurate results.

3.2. Assessment of the Simulation Model Using Hertz Theory

To assess the simulation model, a comparison with Hertz theory was performed.
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Hertz theory is based on the half-space theory [27]. It provides a good approximation
for small strains and non-conforming solid contact problems. According to Hertz theory,
the shape of the contact area between the roller and the tape is elliptical, centered on the
initial contact point with the semi-axes a and b. The pressure distribution is semi-ellipsoidal
with a maximum pressure p0 at the center. By using a rectangular coordinate system (the
same as in Section 2), the Hertz pressure distribution is given by Equation (9):

p = p0

√
1 − x2

a2 − y2

b2 (9)

The semi-axes a, b, and the maximum pressure p0 is calculated as follows [28] (p. 36):
a =

√
δ0

Ae2

[
1 − E(e)

K(e)

]
b = a

√
1 − e2

p0 = E∗δ0
bK(e)

(10)

in which e is the eccentricity of the contact area, K(e) is the complete elliptic integral of the
first kind, E(e) is the complete elliptic integral of the second kind, and E∗ is the equivalent
modulus: 

1
K(e)−E(e)

[
E(e)
1−e2 − K(e)

]
= B

A

K(e) =
∫ π

2
0

dθ√
1−e2 cos2 θ

E(e) =
∫ π

2
0

√
1 − e2 cos2 θdθ

(11)

E∗ =

(
1 − ν2

E

)−1

(12)

where coefficients A and B are calculated according to Equations (2) and (3).
When the compressive displacement (δ0) is large, the contact between the roller and

the tape does not satisfy the contact conditions of Hertz theory. This is because the char-
acteristic length of the contact area is comparable to or larger than the thickness of the
heat insulation. To adhere to Hertz theory, two options are available: reducing the com-
pressive displacement or increasing the thickness of the heat insulation. Reducing only
the compressive displacement will result in a decrease in the contact half-width as well.
To ensure the accuracy of the simulation results, the edge size of the contact area element
should be correspondingly reduced [25]. However, this will significantly increase the
computational scale. Increasing only the thickness of the heat insulation will also lead to a
large computational scale. This paper adopts a method of increasing the heat insulation
thickness and reducing the compressive displacement while maintaining element sizes
consistent with the FE model of one layer.

Figure 6 shows the assessment results of the FE model (R = 240 mm, t = 20 mm,
δ0 = 0.001 mm).

Although the results of the pressure distribution obtained from the FE model and
Hertz theory are not in perfect agreement, the simulation model is still a reasonable tool.
This discrepancy can be attributed to the fact that for a compressive displacement of
0.001 mm, the minimum edge size (0.05 mm) of the element is approximately half the
semi-axes b (b = 0.107 mm). Some previous tests showed that when the edge size of the
element is much smaller than the size of the contact area, the simulation results tend to
align more closely with the predictions of Hertz theory [25]. Given that the FE model of one
layer shares the same mesh as this model, it is also considered a reasonable and suitable
tool for simulating the contact between the roller and the tape.
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Figure 6. Comparison of the pressure distribution estimated by the FE model and Hertz theory
for R = 240 mm, t = 20 mm, and δ0 = 0.001 mm: (a) pressure distribution along the semi-axis a;
(b) pressure distribution along the semi-axis b.

3.3. Simulation Results of Pressure Distribution

Figure 7 shows the pressure distribution in the longitudinal section B-B under a
compressive displacement of 0.03 mm.
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Figure 7. Effect of the cylindrical press roller on the pressure distribution in the longitudinal
section B-B.

It is clear that when the cylindrical press roller is employed on the mandrel with the
smallest radius, the uniformity of the pressure distribution in the longitudinal section B-B
is relatively low, and the pressure at the edge of the tape is minimal. As the radius of the
mandrel increases, the uniformity of the pressure distribution also increases. However, the
pressure at the edge of the tape remains minimal, making it difficult to ensure bonding
quality and may cause lifted edges.

4. Optimization of Press Roller Design

In the heat insulation winding molding process, the uniformity of the pressure dis-
tribution is affected by two main components: the press roller and the mandrel radius.
The mandrel radius is predetermined before the fabrication process. When the cylindrical
press roller is employed, the uniformity of the pressure distribution is relatively low and
may cause lifted edges. Therefore, to improve the winding molding quality of the heat
insulation, optimization of the press roller is necessary.

4.1. Shape Optimization for the Press Roller

The shape of the press roller was optimized to an elliptical concave surface [15]. The
method for designing the shape of the elliptical concave press roller is as follows:
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1. As shown in Figure 8a,b, the standard equation for the ellipse of the mandrel in the
longitudinal section B-B is:

x2 cos2 α0

R2
0

+
y2

R2
0
= 1 (13)

where R0 is the radius of the smallest mandrel, and cosα0 = W/C = W/(2πR0).

2. Construct the elliptical rotating surface of the roller. As shown in Figure 8b, the
generatrix of the roller can be obtained by translating the contour of the mandrel.
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where L is the length of the roller and r0 is the radius of the central cross-sectional circle
of the elliptical concave press roller. The equation for the elliptical concave surface of the
roller can be obtained.y2 + z2 = (−

√
R2

0 − x2 cos2 α0 + R0 + r0)
2

−L
2 ≤ x ≤ L

2

(15)

4.2. Effect of Elliptical Concave Press Roller Radius on Pressure Distribution

In Section 4.1, we outlined the design of the elliptical concave press roller. The length
of the roller can be determined by the width of the tape, while the radius of its central
cross-sectional circle is yet to be defined. To determine and optimize this design parameter,
the effect of the radius of the central cross-sectional circle of the elliptical concave press
roller on the pressure distribution is analyzed.

Simulation models of one layer were established using the method described above.
The mandrels used in these models have a radius of 240 mm. The elliptical concave press
rollers have a length of 102 mm, and the radii of their central cross-sectional circles are
20 mm, 40 mm, and 70 mm, respectively. The pressure at point Pm of the tape is regulated
to 0.076 MPa by adjusting the compressive displacement.

The simulation results of the pressure distribution along the width of contact are
shown in Figure 9.

It can be found that larger-radius elliptical concave press rollers exhibit a wider contact
width and longer dwell time (defined as the average time for each tape to be subjected to
pressure), which indicates a higher bonding quality of the heat insulation. These findings
align with the conclusions drawn by Sonmez et al. [12]. They found that in the process of
thermoplastic composite tape placement, a decrease in the press roller radius leads to a
reduction in dwell time, potentially resulting in incomplete bonding.
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Figure 9. Effect of the radius of the central cross-sectional circle of the elliptical concave press roller
on the pressure distribution along the width of contact.

Figure 10 shows the effect of the radius of the central cross-sectional circle of the
elliptical concave press roller on pressure uniformity. The pressure uniformity is calculated
according to Equation (16) [29].

u = 1 −

√
1
n

n
Σ

i=1

(
pi − paver

paver

)2
(16)

where n is the number of nodes, pi is the contact pressure value at the node i, paver =
1
n ∑n

i=1 pi, and paver is the average contact pressure value of all nodes. A larger value
of Equation (16) indicates a more uniform pressure distribution, while a smaller value
suggests less uniformity.

As shown in Figure 10, the pressure uniformity essentially remains constant with the
increase in the radius of the central cross-sectional circle of the elliptical concave press
roller, disregarding the slight decrease (less than 6%) in the pressure uniformity.
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on pressure uniformity.

This finding contradicts the conclusion that an increase in the outer diameter of the
flexible roller’s rubber cover leads to a more uniform pressure distribution [14]. The reason
for this contradiction is that the deformability of the flexible roller’s rubber cover increases
as its outer diameter enlarges. This increased deformability enables it to adapt more
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effectively to molds, thereby improving pressure uniformity. In contrast, increasing the
radius of the rigid roller does not enhance its adaptability to the mandrel.

4.3. Comparative Analysis of the Effect of the Elliptical Concave Press Roller and the Cylindrical
Press Roller on Pressure Distribution

A comparison of the effect of the elliptical concave press roller and the cylindrical press
roller on the pressure distribution was conducted using the FE models. The dimensions
of the cylindrical press roller and the mandrels, as detailed in Section 3.1, are used in this
study. The elliptical concave press roller used has a length of 102 mm, and the radius of its
central cross-sectional circle is 40 mm. A compressive displacement of 0.03 mm is set for
the simulations. Figure 11 presents the effect of both the elliptical concave press roller and
the cylindrical press roller on the pressure distribution in the longitudinal section B-B.
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Figure 11. Effect of the elliptical concave press roller and the cylindrical press roller on the pressure
distribution for three different radius mandrels: (a) R = 240 mm; (b) R = 400 mm; (c) R = 1000 mm.

The simulation results presented in Figure 11 are similar to the findings of Jiang
et al. [14]. They conducted both numerical and experimental investigations on the pressure
distribution when the cylindrical flexible roller contacts prepreg tows on three types of
molds in AFP. The three types of molds are: flat, concave and convex molds, both of the
latter with a curvature radius of 900 mm. Their results showed the pressure distribution
curve along the length of the roller on the convex mold is essentially convex, while that
on the concave mold is essentially concave. In Figure 11, when the cylindrical press roller
is employed, the pressure distribution curve is convex. This is attributed to the similarity
between the contact of the cylindrical press roller with the cylindrical mandrel (convex) in
this study and the contact of the cylindrical press roller with the convex mold. In Figure 11,
when the elliptical concave press roller is employed, the pressure distribution curve is
concave. This is due to the similarity between the contact of the elliptical concave press
roller with the cylindrical mold in this study and the contact of the cylindrical press roller
with the concave mold.

Figure 12 shows the effect of the elliptical concave press roller and the cylindrical
press roller on the pressure uniformity. As shown in Figures 11a and 12, the employment
of the elliptical concave press roller on the mandrel with the smallest radius significantly
improves the pressure uniformity in comparison to the employment of the cylindrical press
roller. Figures 11b,c and 12 show that the pressure uniformity decreases slightly when the
elliptical concave press roller is employed on other mandrels compared to the cylindrical
press roller. However, the pressure at the edge of the tape is larger than that at point Pm of
the tape when the elliptical concave press roller is employed. Consequently, the elliptical
concave press roller can ensure the bonding quality of the heat insulation, provided the
pressure at point Pm meets the bonding quality requirements. The simulation results
confirm the effectiveness of the elliptical concave press roller in improving the winding
molding quality of the heat insulation. Moreover, a single elliptical concave press roller can
be employed to wind mandrels of different radii, thus increasing manufacturing efficiency.
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5. Conclusions

This paper presents an optimal design of the press roller to improve the winding
molding quality of the heat insulation. The effect of the cylindrical press roller on the
pressure distribution was investigated using the elastic foundation model and an FE
model, which was assessed by Hertz theory. The results show that the cylindrical press
roller results in a relatively nonuniform pressure distribution and minimal pressure at
the edge of the tape, making it difficult to ensure bonding quality and may cause lifted
edges. Subsequently, the press roller was optimized to an elliptical concave design. The
effect of the radius of the central cross-sectional circle of the elliptical concave press roller
on the pressure distribution was analyzed to optimize the design parameter. Elliptical
concave press rollers with larger radii demonstrate a wider contact width and longer dwell
time, indicating a higher bonding quality of the heat insulation. The radius of the central
cross-sectional circle of the elliptical concave press roller has little effect on the pressure
uniformity. A comparison of the pressure distribution between the elliptical concave press
roller and the cylindrical press roller was conducted using the FE model. The results show
that the pressure uniformity is significantly improved when the elliptical concave press
roller is employed on the mandrel with the smallest radius. Additionally, the elliptical
concave press roller increases the pressure at the edge of the tape, which reduces the risk
of lifted edges. The simulation results confirm the effectiveness of the elliptical concave
press roller in improving the winding molding quality of the heat insulation. Furthermore,
a single elliptical concave press roller can be employed to wind mandrels of different radii,
thereby boosting manufacturing efficiency.

Most notably, this is the first study to our knowledge to investigate the application of
elliptical concave press rollers in the heat insulation winding molding process. This paper
introduces a novel method for assessing FE models using Hertz theory. This method can be
extended to the assessment of contact FE models that involve flexible press rollers, coatings,
articular cartilage, and so forth. However, some limitations are worth noting. Due to the
neglect of shear between adjacent elements of the foundation by the elastic foundation
model, there is a certain discrepancy between its pressure values and the simulation results.
Future work should therefore focus on the theoretical and experimental study of the contact
between the elliptical concave press roller and the tape to provide theoretical support for
the pressure control of the heat insulation winding molding process.
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