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1. Introduction

Materials science, especially in the context of nanotechnology, plays a key role in
today’s world, contributing to the development of advanced materials with unique proper-
ties. Plasma- and laser-based techniques have become significant tools, aiding research and
application in this field.

This Special Issue of the journal Materials is dedicated to describing devices and
processes related to advancing plasma and laser engineering. Plasma, recognized as the
fourth state of matter, exhibits properties notably distinct from those of ordinary gases.
Formed through the ionization of neutral gases, plasma, a conductive gaseous medium,
is characterized by a composition of photons, electrons and ions; however, it usually
also contains neutral atoms and molecules. The term plasma encompasses media with
very different properties, as the composition, densities and kinetic energies of the plasma
components vary by several or even more orders of magnitude for different types of plasma.
A laser is a device that emits electromagnetic radiation in the visible, ultraviolet or infrared
range. It uses the phenomenon of forced emission. Laser radiation is coherent, usually
polarized, and has the shape of a beam with very little divergence. In a laser, it is easy
to obtain radiation with a very small line width, corresponding to very high power in
a selected narrow spectral region. With pulsed lasers, it is possible to obtain very high
power in a pulse and a very short pulse duration. Both plasma devices and lasers can
have different designs, characteristics and applications. Plasma and laser applications
include, but are not limited to, the production of new materials and the enhancement of
the properties of existing materials. The plasma or laser treatment of materials can lead
to physico-chemical changes in the structure of their surfaces. This Special Issue aims to
present advances in plasma and laser technology for different materials.

As the guest editor of this Special Issue of “Advances in Plasma and Laser Engineering”
in the “Manufacturing Processes and Systems” section of the journal Materials, I will briefly
review the general areas of plasma and laser research, including all eight papers published
in this Special Issue. Finally, in the Summary, I will propose new challenges as well as new
plasma devices and sources of laser radiation for future research in materials science.

2. Results

In the following paragraph, I will briefly describe, in general terms, some selected
achievements of plasma technology that are particularly interesting to me. In addition, I
will take into account the achievements described by the authors of this Special Issue.

Mankind is at an evolutionary breakthrough in the research and development of
plasma techniques, which have become essential for the synthesis and processing of im-
portant macro- and nanoscale materials [1]. These materials include nanoparticles, carbon
nanotubes and semiconductor nanowires. Plasma processes include the etching and depo-
sition of thin films, catalytic growth of carbon nanotubes and semiconductor nanowires,
synthesis of silicon nanoparticles, and the functionalization of carbon nanotubes and self-
organizing nanostructures [1,2]. Plasma technologies have applications in fields such as
electronics, textiles, welding, automotive, aeronautics, biomedicine and storage devices
including batteries, supercapacitors, photocatalysts and electrocatalysts [1,3,4]. Plasma
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has revolutionized microelectronics, with it being used to deposit and etch thin films in
semiconductor devices and integrated circuits [1]. Mankind expects advances in nano-
electronics, photovoltaics, biomedicine and other emerging fields as plasma technology
continues to be optimized [1].

Alongside the above research areas, research on the plasma etching of silicon and
plasma treatment of polyurethane is also presented in this Special Issue. Research on
silicone etching was presented by Baek et al. [5] and Krawczyk et al. [6]. Baek et al. in [5]
discussed the influence of component ratios on plasma characteristics, active species chem-
istry and silicon etching kinetics in CF4 + O2, CHF3 + O2 and C4F8 + O2 gas mixtures.
Plasma diagnostics and etching experiments were performed in the planar inductively
coupled plasma reactor. Krawczyk et al., in [6], aimed to modify the surface of silicone
rubber using dielectric barrier discharge (DBD) to improve its hydrophilic properties. Re-
search on polyurethane processing was presented by Uricchio et al. in [7]. The authors
report the optimization of a two-step atmospheric pressure plasma process to modify
the surface properties of a polyurethane foam and, in particular, to produce a superhy-
drophobic/superoleophilic absorbent for the removal of oils and non-polar organic solvents
from water.

In the paragraph below, I will briefly comment on the selected achievements of laser
technology in applications to the synthesis/processing of some materials.

Lasers have been involved in the production of various types of nanomaterials with
improved chemical, optical, magnetic and electronic properties, such as metal nanoparticles,
oxides, non-oxides and carbon-based materials [8,9]. Laser technology has enabled the
development of photocatalytic and electrocatalytic nanomaterials, among others [8]. Laser
techniques such as laser ablation, laser vaporization and laser deposition are used to
produce nanoscale materials with a controlled size, shape and specific properties [9,10].
Another technique for the laser processing of nanomaterials that has a major impact on
nanotechnology is the laser synthesis and processing of colloids. It is a scalable method
for the synthesis of ligand-free nanomaterials in a controlled liquid environment [9,10].
Other applications of laser techniques include the use of a laser beam for cutting, drilling,
marking and engraving [11].

The series of articles presented in this Special Issue covers the laser processing of steel
and silicon, as well as laser drilling and welding. Maggiore et al., in [12], presented the use
of two non-thermodynamic equilibrium surface treatment methods with ultrashort laser
pulses to modify the surface of square plates made of austenitic stainless steel. Kovalev
et al., in [13], discussed different methods for producing light-trapping “black” silicon,
namely laser, chemical and hybrid chemical/laser. Wang et al., in [14], presented the
results of a study where a steel plate was welded by ultrasonic-assisted narrow-gap laser
welding with a filler wire, and the plasma was observed using a high-speed camera and
spectrograph. Fu et al., in [15], presented a research study in which duplex stainless steel
was welded by alternating a magnetic field with a laser-arc.

3. Summary and Conclusions

The set of eight articles discussed above covers different types of plasmas and lasers,
as well as different processes that lead to changes in the properties of different materials.
The articles discussed above describe processes such as silicon surface etching, steel surface
treatment, laser-plasma welding and the treatment of dielectrics. In addition to experimen-
tal results, they include theoretical research and a broad discussion of the phenomena that
occur when the plasma or laser beam interacts with material surfaces. These processes
have been carried out using different types of plasmas (e.g., inductively coupled plasma,
dielectric barrier discharge) and lasers (e.g., 20 ns pumped KrF laser). It seems that the
plasma and laser methods presented have potential for implementation in various fields
of technology (electrical engineering, electronics, energy, medicine, construction, geodesy,
automotive, aviation, shipbuilding, water purification and many other industries).
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I would like to suggest some challenges for the further applications of plasma and
laser techniques.

Two-dimensional (2D) materials, such as graphene, are being considered for numerous
applications in microelectronics [16,17] and other fields, but their integration into functional
devices is challenging [16,18]. In view of the above, several challenges arise. One of the
challenges is the poor adhesion of 2D materials due to their chemical inertness [16,19]. I
see opportunities here related to plasma and/or laser beam processing.

In my opinion, the next challenge is to further understand and control the processes
that occur when plasma interacts with materials at the nanometer scale. While there is
extensive knowledge of the macroscopic effects of using plasma, the understanding of
processes at the atomic and molecular level remains limited. Research into the mechanisms
of formation and reactions of nanomaterials during exposure to plasma will require in-
terdisciplinary collaboration between scientists from the fields of physics, chemistry and
materials engineering.

In my opinion, an interesting future approach could be the integration of plasma
and laser technologies to create advanced nanostructured materials. Using a combina-
tion of both technologies can enable the effective synthesis and modification of materials
with unique properties that will make a significant contribution to progress in the field
of nanotechnology.

Scientists in laboratories around the world are constantly developing new plasma
devices and laser radiation sources to achieve unique plasma and laser beam properties.
Regarding future research in the field of materials, I would like to suggest the use of the
following novel plasma and laser techniques:

- The newest plasma techniques, rarely used so far, include devices for generating
plasma planes (e.g., microwave plasma sheets and plasma arrays) and microdischarges
(e.g., microwave microdischarges and RF microdischarges), having convenient shapes
for materials treatment. So far, only dielectric barrier discharges (DBDs) have been
widely used in material surface treatment processes;

- Among the latest laser techniques with a future in materials research, I will suggest
picosecond, femtosecond and attosecond lasers (The 2023 Nobel Prize in Physics for
the discovery of the possibility of generating attosecond pulses of light, awarded to
Pierre Agostini, Ferenc Krausz and Anne L’Huillier!).
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