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Abstract: Understanding the mechanical properties of coal is crucial for efficient mining and disaster
prevention in coal mines. Coal contains numerous cracks and fissures, resulting in low strength
and challenges in preparing standard samples for testing coal fracture toughness. In engineering,
indicators such as the hardness coefficient (f value) and Hardgrove grindability index (HGI) are
straightforward to measure. Various experiments, including drop weight, grinding, uniaxial com-
pressive strength and three-point bending experiments, were conducted using notched semi-circular
bend (NSCB) specimens and particle sizes of 1–2 mm/0.425–1 mm. Theoretical and experimental
results indicate that the hardness coefficient of coal and rock is proportional to the crushing work
ratio and inversely proportional to the mean equivalent diameter. Moreover, the square of the
fracture toughness of coal and rock is directly proportional to the crushing work ratio, inversely
proportional to the newly added area, directly proportional to the mean equivalent diameter and
directly proportional to the hardness coefficient. The Mode-I fracture toughness of coal and rock can
be rapidly determined through the density, the equivalent diameter after crushing and the elastic
modulus, with experimental verification of its accuracy. Considering that smaller particle sizes exhibit
greater resistance to breakage, the distribution mode of new surface areas after particle breakage was
established, influenced by the initial particle size and the energy of a single broken particle. This
study can assist in quickly and accurately determining the fracture toughness of coal.

Keywords: coal; mechanical properties; fracture toughness; hardness coefficient; newly added
surface area

1. Introduction

In recent years, the rapid progress in deep geological engineering—including shale gas
and coalbed methane exploration, deep mineral extraction, nuclear waste burial, geother-
mal resource development and underground carbon dioxide storage—has garnered increas-
ing attention toward the characteristics of rock and coal. Generally, coal plays a pivotal role
as the primary energy source in the world, and it is extensively utilized in power generation,
metallurgy, the chemical industry and various other essential sectors. As coal resources are
being exploited at greater depths, the incidence of coal mine gas dynamic disasters, such as
coal gas outbursts, has intensified [1]. The mechanical properties of coal mass significantly
influence the occurrence and progression of coal mine gas dynamic disasters [2]. Elasticity
parameters describe the elastic deformation of rock under load, while strength represents
the critical stress at which rock failure occurs. Fracture toughness, closely associated with
strength, measures the rock’s resistance to crack propagation and is crucial in analyzing
brittle fracture growth [3]. Rock breakage is best described by tensile-based rock mechanics
tests, and particularly Mode-I fracture toughness [4]. In coal mine safety, the hardness
coefficient (f value) denotes coal breakability; the Hardgrove grindability index (HGI)
signifies grindability; and hardness-coefficient-related indicators aid in preventing and
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controlling coal gas outbursts. The hardness coefficient and HGI are straightforward to
measure. For easy prediction of coal fracture behavior, Bhagat demonstrated a significant
correlation between fracture toughness and 1/HGI [5]. Consequently, a comprehensive
understanding of coal fracture behavior is essential for coal mine gas dynamic disasters.
Exploring the relationship between the f value and fracture toughness holds important
implications for preventing and controlling coal mine gas dynamic disasters.

Ken P. Chong’s study on fracture toughness determination of layered materials con-
cluded that linear elastic fracture mechanics is valid for anisotropic rock materials [6].
Numerous methods for determining Mode-I fracture toughness exist in the literature, with
reviews on their attributes, advantages and drawbacks provided by Whittaker et al. [7] and
Bearman [4]. To obtain precise, accurate and consistent results, the International Society
for Rock Mechanics (ISRM) recommends four test procedures: (1) chevron bend (CB);
(2) short rod (SR); (3) cracked chevron notched Brazilian disc (CCNBD); and (4) notched
semi-circular bend (SCB) [8–13]. These standards outline sample preparation, dimensions
and test procedures, including loading type and rate. They also provide formulae for
fracture toughness from failure load and geometrical factors [3]. Mohammad Reza Mo-
hammad Aliha et al. examined the effect of specimen type on tensile fracture toughness of
rock materials, finding significant dependence of Mode-I fracture toughness on specimen
geometry and loading type [14]. Morteza Nejati et al. modified the semi-circular bend test
to determine the fracture toughness of anisotropic rocks and illustrated Mode-I fracture
growth in anisotropic rocks [15–17].

For dynamic static fracture characteristics, Yin et al. investigated the fracture mech-
anism of coal rock using three-point bending tests under different gas pressures. They
found that Mode-I fracture toughness and rupture energy decrease in coal is influenced by
gas [18]. The use of more than one type of specimen is regarded as appropriate when it is
required to measure the fracture toughness of anisotropic materials in different material
directions of a rock sample [8]. Wang et al. examined the influence of bedding planes on
both Mode-I and mixed-mode (I–II) dynamic fracture toughness of coal [19]. For coal, the
fracture toughness measured at different scales and different orientations varies signifi-
cantly. The fracture toughness of anisotropic materials varies elliptically with the bedding
angle [20]. Shi et al. considered the co-effects of bedding planes and loading conditions on
Mode-I fracture toughness of anisotropic rocks. The experimental results indicated that
the bedding effects are the most obvious under static loading and become weaker as the
loading rates increase [1]. Sun et al. investigated the combined impact of specimen size and
anisotropy on the Mode-I fracture toughness of coal and developed a size effect model for
fracture toughness considering micro-cracks and bedding angle, as well as an anisotropy
model accounting for specimen size [21]. For dynamic fracture characteristics of coal, Wang
et al. studied the dynamic toughness of coal with a bedding structure based on the NSCB
impact test [22].

The macro-mechanical properties of coal are closely related to its microscopic mechan-
ical properties. Nanoindentation experiments, as utilized by Liu et al., offer an efficient and
precise approach for investigating the micro-mechanical properties of soft and fractured
coal at the nanoscale [23]. Moreover, Ma et al. highlighted the growing popularity of
nanoindentation as a method to determine mechanical properties in both homogeneous
and heterogeneous materials [24]. G.L. Manjunath et al. introduced a model to estimate
the micro-scale fracture toughness of Gondwana coal using nanoindentation, calculat-
ing the fracture energy and fracture area from pop-in events in the loading curve [25].
Sun et al. investigated the mechanical properties of crushed coal samples based on the
nanoindentation technique [26]. Liu Peng et al. utilized nanoindentation tests to probe the
nano-mechanical behavior of coal [27]. Meng et al. investigated the mechanical properties
and failure mechanisms of different rank coals at the nanoscale [28]. These results revealed
clear linear relationships between nanoindentation hardness, the elastic modulus and
fracture toughness of coal [26–28].
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Fracture toughness denotes the critical stress intensity factor threshold beyond which
catastrophic crack propagation occurs. In rock comminution, the intrinsic tensile property,
measured as fracture toughness, often governs the breakage of individual rock particles.
Breakage in comminution is itself mainly due to compression-induced tensile failure [4]. In
linear elastic fracture mechanics, fracture toughness is closely linked to Griffith’s concept
of fracture energy. According to Griffith’s theory, the strain energy released during fracture
growth creates fracture surfaces. The surface area of particles during coal particle crushing
is accessible to calculate when testing the f value and HGI. Cai et al. experimentally
analyzed the relationship between Mode-I static fracture toughness and newly added
surface area after crushing [29].

Particle size distributions and energy conversion during fragmentation are two of
the principal problems in coal particle fragmentation research. Hossein Bayat reviewed
particle size distribution models, along with their characteristics and fitting capabilities,
mainly including power law models, exponential power models, logarithmic models,
hyperbolic models, statistical distribution models, logarithmic exponential models and
fractal models [30,31]. The distribution models after particle crushing currently include the
Gates–Gaudin–Schuhmann (GGS) model, Rosin–Rammler (RR) model, lognormal model,
normal model, etc. [32,33]. Jiang et al. investigated the effects of impact velocity on the
energy and size distribution of rock crushing [34]. Luo et al. examined the relationship
between the distribution of micro-coal particles and the crushing energy [35]. Wang et al.
conducted impact crushing experiments and proposed a new fractal-theory-based index
for evaluating rock firmness, calculating the surface areas of coal particles after impact
crushing using the fractal particle size distribution theory [36]. Li et al. investigated the
drop weight impact fragmentation of gas-containing coal particles. They supported the
fractal particle size distribution model, which can most effectively describe the crushed
coal particle sizes [37]. The above particle size distribution models mostly describe the
volume distribution of particles after crushing. However, when using the newly added
surface area after particle crushing to estimate fracture toughness, there is a lack of analysis
of the distribution of the newly added surface area with different particle sizes after coal
rock crushing.

This article conducted experiments using marble, sandstone, non-outburst raw coal
and outburst raw coal. Various tests, including drop weight, grinding, uniaxial compressive
strength and three-point bending experiments, were performed. Theoretical derivations
established the relationship between fracture toughness, hardness coefficient (f value)
and HGI. A novel method for measuring fracture toughness was developed, and the
correlation between fracture toughness and new surface area was deduced. Additionally,
the distribution pattern of new surface area after particle crushing was analyzed. The
distribution of broken coal aids in the application of the compacting of coals and crushing
of coals [38,39]. Simultaneously, the relationship between the f value and fracture toughness
contributes to the prevention and mitigation of dynamic-gas-related disasters in coal mines.

2. Relationship between Fracture Toughness and Hardness Coefficient

Linear elastic fracture mechanics posits that when the energy dissipation during crack
expansion is disregarded, and the crack does not bifurcate during expansion, the strain
energy release rate of a Type I crack under a plane stress state is given by [13,40]

G =
K2

I
E

(1)

where G is the strain energy release rate (J/mm2); KI is the fracture toughness (MPa·m1/2);
E is the elastic modulus (GPa).

When the strain energy release rate is G = 2γ, the crack propagates stably. Equation (1)
can be written as

γ =
K2

I
2E

(2)
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where γ is the unit surface fracture surface energy (J/mm2).
The law of crushing states that the effective energy consumed during crushing is

proportional to the newly increased surface area of the particles after crushing. The energy
per unit area of the sample, which is the surface energy, can be expressed as

γ =
U
∆S

(3)

where U is the effective energy consumed by crushing (J); ∆S is the new surface area after
crushing (m2). Based on Equations (2) and (3), the relationship between fracture toughness,
the newly added surface area and the elastic modulus can be expressed as [29]

K2
I = c1

E
∆S

(4)

where the fitting constant c1 = 2U signifies that different crushing methods will consume
different amounts of effective energy.

According to the standard GB/T 23561.12-2010 [41], the hardness coefficient, denoted
as f , represents the hardness of coal, and it is a comprehensive index of its ability to resist
external force damage.

f =
20n

l
(5)

where f is the hardness coefficient; n is the number of impacts for each sample; l is the
measured height of sieved coal powder for each group of samples (mm).

The crushing energy exerted by the falling weight on the sample is U = ml ghn. The
crushing energy per unit mass of the sample is denoted as A = mlghn/m0. The work
consumed to produce new unit surface area after crushing, which is the crushing work
ratio, can be expressed as

W =
U

m0∆S
(6)

The crushing work ratio is an important indicator reflecting the rock’s resistance to
external force crushing, where W is the crushing work ratio (J/(g·m2)); m0 represents the
mass of the sample; ∆S is the new apparent area after the sample is broken.

The bottom area of the measuring cylinder is considered constant. Measuring the
height of the sample under the sieve (l) is equivalent to measuring the total volume of the
sample under the sieve (V). In Equation (5), the relationship between the crushing work
ratio and the hardness coefficient is

f ∝
U
V

=
∆S
V

m0W (7)

where V = m/ρ is the volume of sample under the sieve with a certain particle size; ρ is
the sample density.

It is assumed that the initial volume of coal rock with a uniform grain size is V0, and
the granularity is 2R0. Therefore, the particle size distribution can be represented as

ψ(r) = δ(r − R0) (8)

After the sample is crushed, let V be the volume under the sieve, and m be the mass
under the sieve. The particle size distribution function is denoted as φ(r), which satisfies∫ R

0 φ(r)dr = 1. The new area of the sample under the sieve before and after crushing is

∆S = Sn − Sm =
∫ Rmax

0
φ(r)Σ̂(r)Vdr − Σ̂(R0)V (9)

where Rmax is the maximum particle radius of the sample particles before and after crushing;
Sm, Sn are the apparent areas before and after coal crushing, respectively; Σ̂ is the apparent
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specific surface area of a single particle
(
Σ̂ = Ŝ/V̂

)
; Ŝ is the apparent area of a single

particle; V̂ is the volume of a single particle. Generally, the maximum particle size after
crushing will be smaller than the particle size before crushing. For non-existent particle
sizes, the particle size distribution function value is zero.

The apparent specific surface area Σ̂(r) decreases with the increase in sample particle
size. The newly added surface area is mainly determined by the smaller particle size. Thus,
it can be assumed that the newly added area is approximately equal to the particle size
surface area after crushing. Based on Equations (7) and (9), the relationship between the
crushing work ratio and the hardness coefficient is

f ∝ m0W
∫ Rmax

0
φ(r)Σ̂(r)dr =

c1

d
m0W (10)

where m0W is determined by the inherent properties of coal rock; d is the mean equivalent
diameter of particles smaller than 2Rmax; c1 is the shape factor for a sphere c1 = 6. The
mean equivalent diameter under the sieve d can be expressed as

1
d
=

∫ Rmax
0 φ(r) 1

d dr = ∑ γi
di

,
γi =

mi
m , m = ∑ mi, i = 1, 2, · · ·

(11)

where m is the total mass of particles under the sieve; mi is the mass under the sieve with a
particle size of di; γi is the mass proportion of the particle size of di.

It can be observed in Equations (4) and (6) that under the condition of crushing energy
U on the particles, the relationship between fracture toughness and crushing work ratio is

K2
I = 2Em0W (12)

Based on Equations (10) and (12), it can be seen that the relationship between fracture
toughness and the robustness coefficient is

K2
I ∝ f dE (13)

where d is the mean equivalent diameter of the particles under the sieve.
Based on Equations (7), (11) and (13), the fracture toughness can be obtained as

K2
I = c2 fKIC, fKIC =

ρ

m
dE =

ρE
∑ mi

di

(14)

where fKIC is a parameter linearly related to the square of fracture toughness; c2 is a fitting
constant. Based on Equation (14), it can be observed that fracture toughness can be quickly
determined based on the particle crushing experiment.

According to the standard GB/T 2565-2014 [42], the Hardgrove grindability index
(HGI) of coal is directly proportional to the quality under the sieve.

HGI ∝ m (15)

Based on Equations (14) and (15), the relationship between fracture toughness and
HGI can be approximated as

K2
I ∝

ρ

HGI
dE (16)

This result also indicates that fracture toughness has a strong correlation with 1/HGI [5].
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3. Materials and Methods
3.1. Sample Preparation and Equipment

Drop weight experiments (DWE), grinding experiments (GCE), uniaxial compressive
strength experiments (UCS) and three-point bending experiments (TPB) were conducted
using marble, sandstone, non-protruding coal and protruding coal as the test materials.
The experimental equipment used is depicted in Figure 1.

Figure 1. Part of the experimental equipment: (a) Coal robustness coefficient measuring instrument;
(b) Sample dividing sieve; (c) Electronic balance; (d) Ball mill; (e) Strain gauge; (f) AG–250 kN-IS
testing machine.

The various test types conducted on the four coal rocks were enumerated, and the
results are presented in Table 1.

Table 1. Experiment types.

Experiment Type Condition Number

DWE The weight drops five times. DW-5
GCE The rotation speed is 150 r/min; the duration is 5 min. GC-1-5
GCE The rotation speed is 250 r/min; the duration is 5 min. GC-2-5
GCE The rotation speed is 250 r/min; the duration is 2 min. GC-2-2
UCS The loading rate is 0.1 mm/min. UCS
TPB The loading rate is 0.1 mm/min. TPB

The dimensions of the four coal and rock samples utilized in different experiments are
outlined in Table 2.

Table 2. Sample dimensions for different experiments.

Sample Sample
Number DW-5 GC-1-5 GC-2-5 GC-2-2 UCS TPB

Marble DLY Particle size
1–2 mm

50 g/portion

Particle size
1–2 mm

50 g/portion

Particle size
1–2 mm

50 g/portion

Particle size
0.425–1 mm
50 g/portion

Φ50 × 100
NSCB

a = 15 m
R = 37.5 mm
b = 30 mm

Sandstone SY
Non-outburst raw coal FTM

Outburst raw coal TM

The schematic diagram of the NSCB sample size recommended by the ISRM was
utilized to measure the Type I static fracture toughness, as depicted in Figure 2.
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Figure 2. Geometry and loading configuration of the SCB specimen.

The sample numbers utilized for different experiments are displayed in Table 3.

Table 3. Sample numbers used for experiments.

Sample DW-5 GC-1-5 GC-2-5 GC-2-2 UCS TPB

Marble DW-DLY GC-1-5-DLY GC-2-5-DLY GC-2-2-DLY UCS-DLY TPB-DLY
Sandstone DW-SY GC-1-5-SY GC-2-5-SY GC-2-2-SY UCS-SY TPB-SY

Non-outburst raw coal DW-FTM GC-1-5-FTM GC-2-5-FTM GC-2-2-FTM UCS-FTM TPB-FTM
Outburst raw coal DW-TM GC-1-5-TM GC-2-5-TM GC-2-2-TM UCS-TM TPB-TM

3.2. Experimental Procedure

• Drop weight experiment

The drop weight experiment procedures refer to “(GB/T 23561.12-2010) [41]”. Raise
the weight with a mass of 2.4 kg to a height of 600 mm and drop it freely to impact each
sample five times. Then, sieve and measure the mass of different particle size ranges after
the coal and rock particles are crushed.

The drop weight experiment procedures follow the guidelines outlined in
“(GB/T 23561.12-2010) [41]”. The process involves raising a weight with a mass of 2.4 kg to
a height of 600 mm and freely dropping it to impact each sample five times. Subsequently,
the coal and rock particles are crushed, sieved, and the mass of different particle size ranges
is measured.

• Grinding experiment

The grinding experimental procedures adhere to the “(GB/T 2565-2014) [42]”. The
process involves using a ball mill for grinding experiments at various rotation speeds:
150 r/min for 5 min; 250 r/min for 2 min; and again at 250 r/min for another 2 min.
Subsequently, the material is sieved, and the mass is measured in different particle size
ranges after grinding.

• Mechanical properties of coal and rock
• The experimental procedures for measuring the uniaxial compressive strength, elastic

modulus and Poisson’s ratio utilize a Φ50 × 100 standard cylindrical specimen. These
procedures follow the “(GB/T 23561.7-2009) [43]” and “(GB/T 23561.8-2009) [44]”. Dis-
placement control was employed during loading, with a loading rate set at 0.1 mm/min.

• Three-point bending experiment
• Three-point bending experiments were conducted using NSBN specimens, following

the experimental procedures described in the references [8,29]. The loading rate
employed was 0.1 mm/min, and the loading method is illustrated in Figure 3.
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Figure 3. Three-point bending experiment loading method.

4. Results
4.1. Drop Weight and Grinding Experiment

Four types of coal rocks were utilized to perform the drop weight and grinding
experiments. The mass distribution under the sieve after crushing of the samples is
depicted in Figure 4.

Figure 4. The mass of each particle size under the sieve: (a) DW-5; (b) GC-1-5; (c) GC-2-5; (d) GC-2-2.
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The mass distribution under the sieve can be analyzed using the Gates–Gaudin–
Schuhmann (GGS) model.

Φ =

(
d

dmax

)β

(17)

Equation (17) is utilized to fit the mass distribution under the sieve under various
conditions, and the results are depicted in Figure 5. The fitting outcomes and coefficient of
determination (R2) are summarized in Table 4.

Table 4. Cumulative particle size distribution under sieve.

Sample
DW-5 GC-1-5 GC-2-5 GC-2-2

β R2 β R2 β R2 β R2

Marble 1.233 0.997 1.183 0.988 0.573 0.959 0.809 0.973
Sandstone 0.961 0.965 0.962 0.990 0.389 0.804 1.105 0.984

Non-outburst raw coal 1.280 0.990 0.978 0.954 0.821 0.995 1.031 0.991
Outburst raw coal 1.073 0.990 1.764 0.997 0.535 0.978 0.891 0.987

4.2. Uniaxial Compression Experiment

The uniaxial compressive strength of coal and rock was experimentally determined
using the AG–250 kN-IS testing machine. Strain gauges were employed to measure the
deformation of coal and rock during uniaxial compression, where ε1 represents longitudinal
deformation; ε2 represents transverse deformation; and εv = ε1 + 2ε2 represents volumetric
strain. The stress–strain curve measured is depicted in Figure 6. Based on the figure, the
elastic modulus, Poisson’s ratio and peak strength of the four coal rocks can be inferred.

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Cumulative mass distribution under sieve: (a) DW-5; (b) GC-1-5; (c) GC-2-5; (d) GC-2-2.

4.3. Three-Point Bending Experiment

Three-point bending fracture experiments were conducted on marble, sandstone, non-
outburst raw coal and outburst raw coal. The load–displacement relationship of the NSCB
specimen is depicted in Figure 7.

The calculation formula for determining Type I static fracture toughness during exper-
imentation is as follows [8]:

KI =
Pmax

√
πa

2RB
Y (18)

where Pmax is the peak load at specimen failure (kN); a is the artificial prefabricated crack
length (mm); R and B are the radius and thickness of the specimen, respectively (mm); Y is a
dimensionless stress intensity factor, which is related to the length of artificial prefabricated
cracks and the support spacing of the specimen during the experiment, calculated using
the formula

Y = −1.297 + 9.516[S/(2R)]
−{0.47 + 16.457[S/(2R)]}α
+{1.071 + 34.401[S/(2R)]}α2

(19)

where α = a/R is the dimensionless prefabricated crack length; S is the distance between
the two support points where the specimen is loaded during the experiment; and S/2R is
the dimensionless support spacing (where S = 50 mm for this experiment). The uniaxial
compressive strength σc, elastic modulus E, Poisson ratio ν, three-point bending peak load
Pmax, fracture toughness of coal and rock obtained in Figures 6 and 7 and Equation (18) are
summarized in Table 5.
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Figure 6. Stress−strain curves of four types of coal rocks: (a) Axial strain and stress; (b) Strain power.

Table 5. Basic mechanical parameters of coal and rock.

Sample ρ g/cm³ σc/MPa E/GPa ν Pmax/kN KIC/MPa·m1/2

Marble 2.74 70.82 7.84 0.20 3.00 1.26
Sandstone 2.49 51.88 4.62 0.17 1.76 0.75

Non-outburst raw coal 1.50 27.50 1.86 0.27 0.75 0.31
Outburst raw coal 1.40 10.93 2.12 0.10 0.24 0.10
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Figure 7. Load–displacement relationship.

The failure and fracture conditions of the four types of specimens are depicted in
Figure 8.

Figure 8. Rock fracture results following the fracture toughness experiment.

Figure 8 reveals that, as the load increases in marble and sandstone, the crack expan-
sion path almost coincides with the straight line where the prefabricated crack is located.
However, as the load increases for non-outburst raw coal and outburst raw coal, the crack
expansion path deviates from the straight line where the prefabricated crack is located.
This deviation is attributed to the greater impact of pore and crack development in coal on
the crack expansion path. The actual area of newly opened cracks in coal samples differs
from the crack opening areas in marble and sandstone.

5. Discussion
5.1. Distribution of New Area

After crushing, the newly added surface area of each particle size under the screen
comprises two primary components. One part is the mass occupied by each particle size
after crushing; the other part is the newly added area of the corresponding particle size
unit mass crushed. The new surface area corresponding to each particle size is the product
of these two components.

The mass distribution of the particles after crushing represents the mass occupied
by each particle size. The law of crushing indicates that finer particles entail greater
energy consumption per unit mass of particles. When the energy is minimal, particles
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may not undergo destruction. Drawing an analogy to the blackbody radiation law, it is
hypothesized that there exists a relationship between the particle size after crushing and
the new surface area:

fs =
c

d3
1

e
1

dE0 − 1
(20)

where fs indicates the distribution of the new area; c is the fitting constant; E0 is a fitting
constant related to the crushing energy. The larger the E0, the greater the intensity of the
crushing energy and the greater the new surface area of the particles.

Equation (9) was utilized to calculate the newly added surface area, while Equation
(20) was employed to fit the newly added surface area. The distribution of the new area
after the coal and rock particles are subjected to hammer drop and grinding is illustrated
in Figure 9, with the fitting parameters presented in Table 6. The results demonstrate that
Equation (20) adeptly captures the relationship between the newly added surface areas.

Table 6. New surface area distribution fitting results.

Sample
DW-5 GC-1-5 GC-2-5 GC-2-2

c E0 R2 c E0 R2 c E0 R2 c E0 R2

Marble 232 0.116 0.904 294 0.113 0.997 3362 0.145 0.994 1725 0.119 0.991
Sandstone 639 0.163 0.711 780 0.122 0.948 4062 0.133 0.959 3048 0.143 0.911

Non-outburst raw coal 406 0.164 0.846 234 0.505 0.548 2416 0.122 0.980 950 0.116 0.958
Outburst raw coal 597 0.121 0.934 3672 0.753 0.950 2288 0.091 0.994 1277 0.103 0.976

Equation (20) establishes the distribution mode of new surface areas after particle
breakage, which is influenced by the initial particle size and the energy (E0) of a single
broken particle. It is evident in Table 6 that, in comparison to non-outburst coal, the param-
eter values (E0) associated with crushing energy in outburst coal are smaller, suggesting
that outburst coal tends to fracture under lower energy conditions. Furthermore, the
distribution of crushed coal particles holds significance for coal crushing applications.

5.2. Determining Fracture Toughness of Coal

The data for marble and sandstone were selected to fit the relationship between
fracture toughness and new surface area according to Equation (4), while the relationship
between fracture toughness and fKIC was fitted according to Equation (14). The approach
of calculating coal fracture toughness using the fitting results of Equation (4) is denoted as
the KIC-S method, while the method employing Equation (14) is termed the KIC-f method.
The fracture toughness fitting curves are illustrated in Figure 10.

Figure 10 illustrates that the ratio of the square of the elastic modulus to the fracture
toughness is consistent with a linear relationship with the newly added surface area.
Moreover, the square of the fracture toughness is also proportional to fKIC. The fitting
parameters of Equations (4) and (14) are presented in Table 7.

Table 7. The fracture toughness parameters determined.

Experiment
DW-5 GC-1-5 GC-2-5 GC-2-2

c1 R2 c2 R2

DW-5 0.104 0.999 39 0.999
GC-1-5 0.009 0.999 56 0.999
GC-2-5 0.043 0.999 251 0.999
GC-2-2 0.035 0.999 223 0.999
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Figure 9. Cont.
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Figure 9. Distribution of new area after hammer drop, grinding and crushing. (a) DW-5; (b) GC-1-5;
(c) GC-2-5; (d) GC-2-2.
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Figure 10. Fracture toughness fitting curve: (a) KIC-S method; (b) KIC-f method.

The fitting results obtained from DW-5 and GC-2-5 were utilized to estimate the
fracture toughness of coal, as depicted in Figure 11.

Figure 11. Determining the fracture toughness of coal: (a) KIC-S method; (b) KIC-f method.

The estimation results of fracture toughness are summarized in Table 8. In Table 8,
Ce-V represents the fracture toughness of coal tested in the three-point bending experiment;
DW-E represents the fracture toughness of coal determined using drop weight experimental
data; and GC-E represents the fracture toughness of coal determined using grinding
experimental data.

Table 8. Estimation results of fracture toughness.

Sample Ce-V
KIC-S KIC-f

DW-E GC-E DW-E GC-E

DLY 1.26 1.241 1.254 1.244 1.252
SY 0.75 0.820 0.776 0.809 0.785

FTM 0.31 0.688 0.535 0.610 0.524
TM 0.10 0.409 0.430 0.410 0.432

Figure 11 and Table 8 illustrate that by employing both KIC-S and KIC-f methods,
the results obtained from measuring sandstone and marble samples with undeveloped
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internal cracks are largely consistent with those measured by the three-point bending
test. The maximum error in the test results is 9%, with a minimum of 0.5%. However,
when measuring non-outburst raw coal and outburst raw coal, discrepancies are observed
between the results obtained from KIC-S and KIC-f methods compared to those from
the three-point bending test. The discrepancy arises because the NSCB coal specimen
inherently contains numerous cracks, leading to inconsistencies in the crack expansion
direction during the three-point bending test compared to the direction of the prefabricated
cracks [29]. The KIC-S method and KIC-f method are employed to determine the fracture
toughness of coal at smaller scales. Hence, a disparity exists between the fracture toughness
of coal tested using semi-discs and that tested using particles. As the initial particles
are fully ground, most particles have a maximum size smaller than the initial particle
size, and the newly added area is significantly larger than the initial area. Consequently,
fracture toughness can be determined more accurately. However, when experimenting
with the fracture toughness of coal, the developed crack structure of coal leads to the actual
new area of coal fracture being smaller than the calculated value. This leads to lower
fracture toughness values obtained from the three-point bending experiment compared
to those determined using particles. Additionally, due to the varying crack structures of
coal across different particle sizes, the estimated fracture toughness results, using materials
with different particle sizes, exhibit inconsistencies. Hence, further research on the fracture
toughness of coals with different particle sizes is warranted.

6. Conclusions

Due to the bedding and fissures developed in coal, the preparation of standard samples
becomes challenging, potentially resulting in inaccurate experimental results for Mode-I
fracture toughness. Meanwhile, the hardness coefficient is relatively straightforward to
measure. Therefore, this paper investigates the relationship between the f value and fracture
toughness. Furthermore, a method is proposed to determine Mode-I fracture toughness,
with experimental verification of its accuracy. The distribution model of the newly added
surface area was proposed based on the observation that finer particles require greater
energy consumption for crushing per unit mass. The key conclusions are as follows.

1. The hardness coefficient of coal rock varies directly with the crushing work ratio and
inversely with the average equivalent diameter, as determined by crushing energy;

2. The square of the fracture toughness of coal and rock is directly proportional to the
crushing work ratio, inversely proportional to the newly added area, directly pro-
portional to the mean equivalent diameter and directly proportional to the hardness
coefficient;

3. The Mode-I fracture toughness of coal and rock can be quickly determined through
the density, the equivalent diameter after crushing and the elastic modulus;

4. Considering that smaller particle sizes are more resistant to breakage, the paper
establishes the distribution mode of new surface areas after particle breakage, which
is influenced by the initial particle size and the energy of a single broken particle. This
law further elucidates that smaller particles necessitate more energy for crushing.
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