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Abstract: Marigold flower is a traditionally used plant material topically applied on the skin due to
its anti-inflammatory properties and antibacterial activity. This potential of action justifies the imple-
mentation of marigold extract in nanofiber scaffolds based on poly-vinylpyrrolidone/hydroxypropyl-
β-cyclodextrin (PVP/HPβCD) and polycaprolactone/polyvinylpyrrolidone (PCL/PVP) obtained by
electrospinning for wound treatment. Using SEM, the morphology of electrospun scaffolds showed
a fiber diameter in the range of 298–527 nm, with a uniform and bead-free appearance. ATR-FTIR
spectroscopy confirmed the presence of marigold extracts in nanofibrous scaffolds. The composition
of the nanofibers can control the release; in the case of PVP/HPβCD, immediate release of 80% of
chlorogenic acid (an analytical and functional marker for marigold extract) was achieved within
30 min, while in the case of PCL/PVP, the controlled release was achieved within 24 h (70% of
chlorogenic acid). All systems showed weak antibacterial activity against skin and wound-infecting
bacteria Staphylococcus aureus (MIC 100 mg/mL), and Pseudomonas aeruginosa (MIC 200 mg/mL) and
yeasts Candida albicans (MIC 100 mg/mL). Analysis of the effect of different scaffold compositions of
the obtained electrofibers showed that those based on PCL/PVP had better wound healing potential.
The scratch was closed after 36 h, compared to the 48 h required for PVP/HPβCD. Overall, the
study shows that scaffolds of PCL/PVP nanofibers loaded with classic marigold extract have the best
potential as wound dressing materials because of their ability to selectively modulate inflammation
(via inhibition of hyaluronidase enzyme) and supportive antimicrobial properties, thereby aiding in
the early stages of wound healing and repair.

Keywords: marigold flower; Calendulae flos; chlorogenic acid; nanofibers; electrospinning; wound healing

1. Introduction

Over the past few decades, improving and planning for the management chronic
wounds has become increasingly important to prolong life and improve human quality of
life [1]. Numerous developing technologies are being explored because more complicated
and biomimetic tactics are needed [2]. Many of the approaches used are based on polymer
scaffolds containing biodegradable polymers, which, depending on their composition
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and/or structure, offer protection, moisture retention, and therapeutic effects [3]. The de-
velopment of biopolymeric scaffolds involves various procedures, including conventional
casting, hydrogel production, and extracellular matrix decellularization, in addition to
innovative electrospinning and 3D bioprinting methods [4].

As an alternative to conventional fabrication techniques, electrospinning has gained
popularity because it is an easy-to-use procedure that allows for one to modify the fabrica-
tion parameters (such as the nozzle diameter, flowrate, and voltage of the electric fields)
to control the porosity and/or morphology of nanofibers [5]. Specifically, the mechanical
qualities, high porosity, tunable surface area-to-volume ratio, strong biocompatibility, and
good porosity make electrospun nanofibers an attractive choice for wound dressing [6,7],
and the combination of producing nanofibers containing plant extracts is becoming an
increasingly popular center of interest for scientists [8,9].

Numerous plant raw materials have the potential to heal wounds; the most frequently
used raw materials include Centella asiatica [9], Aloe barbadensis [10], and
Calendula officinalis [11]. Inflammations of the skin, small cuts, and the mouth or throat have
long been treated with alcoholic and oil extracts of Calendulae flos, also known as marigold
flowers, according to a report from the European Medicines Agency (EMA) [12]. Triter-
penes, carotenoids, polyphenols, and other specific categories of secondary metabolites are
linked to the anti-inflammatory properties of plant raw materials [12]. Numerous in vitro
and in vivo studies have demonstrated the beneficial effects of Calendulae flos extracts
on wound healing. These studies have shown that the extracts stimulate angiogenesis,
decrease collagen degradation, and increase the proliferation and migration of human
fibroblasts and keratinocytes [13,14]. Apart from its recommended use in wound care,
marigold extract possesses various pharmacological properties, such as anti-inflammatory
and antioxidant properties, as well as antibacterial, antifungal, and antiviral properties
against a range of pathogens, including Bacillus subtilis and Staphylococcus aureus [15,16].

To date, several attempts have been made to create innovative wound delivery sys-
tems containing marigold extract, also including nanofibers. Chitosan- [11], polyvinyl
alcohol- [17], and polyacrylamide-based [18] hydrogels have been tested. Calendula extract
loaded in chitosan/polyethylene oxide nanofibrous scaffolds (CS/PEO) have shown the
potential to promote collagen synthesis, tissue remodeling, and re-epithelization during
wound healing [19]. Moreover, polycaprolactone (PCL), due to its unique structural charac-
teristics, biocompatibility, and slow biodegradation qualities, has produced a promising
substrate for various applications, including wound healing nanofibers [20]. PCL/gelatin
and PCL/gum arabic nanocomposite scaffolds were found to be appropriate for fibroblast
cell proliferation [21,22]. Nanofibers containing polyvinyl alcohol (PVA)/sodium alginate
(SAlg) were characterized by proper adhesion to the site of inflammation and favorable
release kinetics of active compounds. First, active compounds were released immedi-
ately; then, the release profile ensured constant concentrations of active compounds [22].
While the above data provide evidence for the use of both calendula extract and nanofiber
structures for wound treatment, they do not indicate the pharmaceutical aspects of such
innovative dressings. Therefore, the aim of our work was, apart from the morphological
and structural assessment (PVP is designed to store large amounts of water without losing
mechanical integrity, and PCL is designed to provide flexibility and biocompatibility), for
the first time, to compare the influence of the nanofibrous mat matrix on the release of active
compounds and the assessment of biological activity (HPβCD, as the most water-soluble cy-
clodextrin, is intended to improve the solubility of the extract’s active compounds). For this
purpose, two marigold extracts and two different compositions of nanofibers containing
substances that dissolve quickly in water like polyvinylpyrrolidone/hydroxypropyl-β-
cyclodextrin (PVP/HPβCD) and those with a prolonged dissolution time like polycapro-
lactone (PCL) were prepared.

The above justifications for using marigold extracts in the form of nanofibers obtained
by electrospinning are important; therefore, it is worth expanding the area of research
concerning the development of dressings dedicated to wound treatment. In our work,
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we developed dressings based on scaffolds containing PVP/HPβCD and PCL/PVP. Con-
sidering the functional benefits of combining selected biopolymer systems and an extract
from the medicinal raw material marigold flower, our work aimed to obtain and fully
characterize the identity of the obtained dressings and assess their functionality.

2. Materials and Methods
2.1. Plant Materials

The flowers of Calendula officinalis L. were purchased from the “Kawon-Hurt”, Gostyń,
Poland (Lot No. 130.2022).

2.2. Chemicals

Chlorogenic acid (Phyproof® Reference Substance) and narcissin = isorhamnetin
3-rutinoside (Phyproof® Reference Substance) were obtained from Sigma-Aldrich (Poznan,
Poland). Excipients from Sigma-Aldrich (Poznan, Poland) included polyvinylpyrrolidone
K30, (2-hydroxypropyl)-β-cyclodextrin (average Mw ~1460), and polycaprolactone. Sigma-
Aldrich (Poznan, Poland) provided reagents for dissolution tests (phosphate buffer) and ac-
tivity testing (2,2-Diphenyl-1-picrylhydrazyl (DPPH), sodium chloride, bovine serum, hex-
adecyltrimethylammonium bromide (CTAB), and hyaluronic acid (HA)). Mueller–Hinton
agar was obtained from Graso Biotech (Starogard Gdański, Poland). HPLC-grade acetoni-
trile and water were obtained from Merck (Darmstadt, Germany). High-quality pure water
and ultrahigh-quality pure water were prepared using a Direct-Q 3 UV Merck Millipore
purification system.

2.3. Preparation and Characterization of Calendulae flos Lyophilized Extracts, and Investigation of
Biological Activity

Two types of extracts were prepared, (1) using the classical extraction method (CF-CE)
and (2) ultrasonic-assisted extraction (CF-UAE). In brief, CF-CE was prepared as follows:
three times, 300 g of dried plant material was extracted using ethanol/water (7:3), for 30 min
at 95 ◦C in a water bath each time. The obtained extracts were concentrated under vacuum,
and then lyophilized (CHRIST 1-4 LSC, Osterode am Harz, Germany) [11]. CF-UAE was
prepared as follows: using an ultrasonic bath, 300 g of dried plant material was extracted
3 times for 30 min at 70 ◦C. The extracts were combined, concentrated, and lyophilized.
The freeze-drying parameters were the same for both extracts and included a condensation
temperature set at −48 ◦C under reduced pressure (1.030 mbar) for 48 h.

The presence and concentration of active substances in the freeze-dried Calendulae flos
extract were determined using a previously developed, validated HPLC method [11], while
the total content of phenolic components was determined spectrophotometrically [23].
Antioxidant action of freeze-dried Calendulae flos extract was studied by using the DPPH
method [23], and anti-inflammatory activity was expressed as inhibition of hyaluronidase
enzyme activity.

The assay that was used to measure the antioxidant activity involved the use of
2,2-Diphenyl-1-picrylhydrazyl (DPPH). Using a turbidimetric technique, the hyaluronidase
inhibition approach was ascertained. Both methods have already been described [23].

2.4. Electrospun Nanofiber Preparation

Four different types of nanofibers were prepared using NS + NanoSpinner Plus
Electrospinning Equipment (Inovenso Ltd., Istanbul, Turkey) (Table 1). Table 1 states that
all components were dissolved in the designated solvent for two hours. The solution was
then put into a syringe and electrospun at 27 kV voltage, 2 mL/min flow rate, and 12 cm
distance. Aluminum foil-wrapped rotary collectors were used to gather the nanofibers.
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Table 1. Composition of electrospun nanofibers.

Nanofiber
(N1)

Nanofiber
(N2)

Nanofiber
(N3)

Nanofiber
(N4)

CF-CE 0.5 g - 0.5 g -
CF-UAE - 0.5 g - 0.5 g

PVP 2.0 g 2.0 g 1.9 g 1.9 g
HPβCD 2.0 g 2.0 g - -

PCL - - 0.5 g 0.5 g
Methanol 10.0 mL 10.0 mL - -

Methanol/dichloromethane - - 10.0 mL 10.0 mL
PVP—polyvinylpyrrolidone; HPβCD—(2-hydroxypropyl)-β-cyclodextrin; PCL—polycaprolactone.

2.5. Identification of the Electrospun Nanofibers
2.5.1. Scanning Electron Microscopy (SEM)

The surface morphology of the nanofiber was observed using SEM. The nanofibers
were examined using a Quanta 250 FEG (FEI, Waltham, MA, USA) scanning electron
microscope () following gold–palladium sputter coating.

2.5.2. X-ray Diffraction (XRPD)

Using a Bragg–Brentano reflection mode configuration with 45 kV and 40 mA settings,
an X-ray diffraction (XRD) apparatus with a copper anode (CuK—1.54 Å) was used to
study the sample structure. The apparatus was purchased from Panalytic Epicurean in
Almelo, The Netherlands. The measurement parameters were set consistently between
3 and 60◦, with a step of 45 s between each degree.

2.5.3. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance
(ATR-FTIR) and DFT Study

The ATR-FTIR spectra were acquired using an IRTracer-100 (Shimadzu, Kyoto, Japan)
spectrophotometer, covering a range from 400 to 4000 cm−1 in absorbance mode. The spec-
trometer settings included a resolution of 4 cm−1, 400 scans, and Happ–Genzel apodization.
LabSolutions IR software (version 1.86 SP2, Shimadzu, Kyoto, Japan) was employed to
compute the second derivative of CF-CE, CF-UAE, narcissin, and chlorogenic acid spec-
tra using the Savitzky–Golay numerical algorithm, with a smoothing parameter set to
11 points. The derivative spectrum facilitated the identification of peak positions in the
original spectrum and the separation of closely located or shoulder peaks. The minima of
the second derivative corresponded to the extremes of the original ATR-FTIR spectrum. Ori-
gin 2021b (OriginLab Corporation, Northampton, MA, USA) was utilized for the analysis
of the collected data.

The DFT spectra of narcissin (PubChem CID 5481663) and chlorogenic acid (PubChem
CID 1794427) (website: https://pubchem.ncbi.nlm.nih.gov/, accessed on 8 February 2024)
were obtained using GaussView software (Wallingford, CT, USA, Version E01), and the
normal modes were inspected visually. The molecular geometries of narcissin and chloro-
genic acid were optimized using the density functional theory (DFT) method with Becke’s
three-parameter hybrid functional (B3LYP) implemented with the standard 6–311G(d,p) as
a basis set.

2.6. Studies of Electrospun Nanofiber’s Functionality
2.6.1. Release of Active Components

Electrospun nanofibers were subjected to dissolve experiments using Agilent 708-
DS dissolving equipment (Santa Clara, CA, USA). A typical basket method was used,
with 50 rpm and stirring at 37 ± 0.5 ◦C. Nanofibers were added to 300 mL of phosphate
buffer (pH 5.5), which mimics the pH of skin. At regular intervals, liquid samples were
collected, and the same volume of temperature-stabilized medium was swapped out. A
nylon membrane filter with a mesh size of 0.45 µm was used to filter the samples. Using

https://pubchem.ncbi.nlm.nih.gov/


Materials 2024, 17, 1736 5 of 16

the previously mentioned HPLC procedure, the amounts of chlorogenic acid in the filtrated
acceptor solutions were ascertained. The resulting active compound release patterns were
fitted to the Higuchi, Korsmeyer–Peppas, zero-order, and first-order models in order to
examine the release kinetics [24].

2.6.2. Microbiological Activity

Nanofibers N1–N4 were dissolved in pure water, obtaining stock solutions at a con-
centration of 200 mg/mL. A series of dilutions in the concentration range 25–200 mg/mL
were prepared. Chlorogenic acid was dissolved in water, and dilutions ranging from
0.156 to 10 mg/mL were employed. In this study, clinical strains of Staphylococcus aureus
and Pseudomonas aeruginosa bacteria and Candida albicans yeast were used. The microbial
growth inhibitory potential of the tested nanofibers was determined by using the agar disc
diffusion method as described in our previous publication [25]. In brief, the inoculums were
adjusted to obtain a final concentration of 105 CFU/mL for bacteria and 104 CFU/mL for
fungi. The pathogens were transferred on Mueller–Hinton agar (Graso Biotech, Starogard
Gdański, Poland), and 20 µL of each nanofiber or chlorogenic acid dilution was transferred
onto sterile filter papers (6 mm diameter). Plates were incubated at 37 ◦C for 24 h. The
presence of a zone of growth inhibition indicated the antimicrobial inhibitory activity (MIC)
at a particular concentration of the product.

2.6.3. Wound Healing Assay

Wound healing properties of nanofibers were examined on Hs27 cells using a scratch
assay. The American Type Culture Collection (Manassas, VA, USA) provided human skin
fibroblasts Hs27 (CRL-1634), which were cultivated in DMEM/high glucose supplemented
with 10% FBS, penicillin (100 U/mL), and streptomycin (100 µg/mL). Before the experiment,
the Hs27 cells were detached using trypsin/EDTA and, subsequently, seeded on 6-well
culture plates (Corning Inc., Corning, NY, USA) at a density of 1 × 105 cells/mL. Next,
using a sterile pipette tip, a vertical linear scratch was made in the monolayer when the cell
confluence reached roughly 90%. After three rounds of phosphate-buffered saline (PBS)
washing to remove any remaining cell debris, new media containing either nanofibers or
2% FBS (control group) was added to the corresponding wells. Following that, pictures of
the scratch were captured using an Olympus CKX53 microscope equipped with an XM10
digital camera (Olympus, Warsaw, Poland) at 0 h, 24 h, 36 h, and 48 h. At least two people
carried out the experiments. At the start of the trial (0 h), 100% of the scratch area was
taken into consideration. NIH ImageJ software (Bethesda, Rockville, MD, USA) (https:
//imagej.net/nih-image/ access date: 1 September 2023) was used to quantify the open
wound area. The following formula was used to determine the wound closure percentage:

Wound closure(%) =
open wound area at 0 h − open wound area at 24/36/48 h

open wound area at 0 h
× 100%

2.7. Statistical Analysis

Statistica 13.3 was used to conduct the statistical analysis. To check if the data were
normal, the Shapiro–Wilk test was performed. The variances between the mean values
were investigated using the ANOVA test and Tukey’s post-hoc range test for multiple
comparisons. Differences between groups were considered significant at p < 0.05. PQStat
Software version 1.8.4.142 (2022) was used to evaluate correlations through principal
component analysis (PCA).

3. Results and Discussion

The first stage of the research was the preparation of marigold flower extract. Based on
previous work, the extract was prepared using the classical method, i.e., heating the plant
material under a reflux condenser, according to European Pharmacopoeia (Ph. Eur.) 9th Edi-
tion, Calendulae flos monograph (CF-CE) [11,26], which was an attempt to compare it to the

https://imagej.net/nih-image/
https://imagej.net/nih-image/
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extract prepared using the ultrasonic-assisted extraction method (CF-UAE). The influence
of the type of extraction on the content of active compounds expressed as total pheno-
lic content (TPC), chlorogenic acid and narcissin contents measured by validated HPLC
method (Table S1, Supplementary Material), and the antioxidant and anti-inflammatory
activity of the obtained extracts were assessed (Table 2).

Table 2. Phytochemical and biological characteristics of classical and ultrasound-assisted extracts.

TPC
[mg GAE/1 g

Plant Material]

Chlorogenic Acid
Content

[µg/1 mg of
Lyophilized Extract]

Narcissin Content
[µg/1 mg of
Lyophilized

Extract]

Antioxidant
Activity

IC50 [mg/mL]

Anti-Inflammatory
Activity

IC50 [mg/mL]

CF-CE 8.53 ± 1.15 a 9.96 ± 0.24 b 0.26 ± 0.02 a 1.37 ± 0.08 a 10.44 ± 0.45 a

CF-UAE 8.95 ± 1.51 a 10.44 ± 0.08 a 0.27 ± 0.03 a 1.28 ± 0.04 a 9.75 ± 0.50 a

Using Duncan’s test, mean values within a column with the same letter do not differ substantially at p < 0.05; the
highest values are represented by the first letter of the alphabet, and statistically significant falling values by the
following letter.

A slightly higher content of active compounds was observed in the case of CF-UAE, as
well as increased antioxidant and anti-inflammatory activity. Still, the obtained differences
were not statistically significant. Due to the comparable properties of both obtained extracts,
it was decided to continue work with the CF-CE and CF-UAE extracts. At this stage, none
of them were rejected for further testing.

In this work’s second part, the method of producing electrospun nanofibers loaded
with marigold extracts, both CF-CE and CF-UAE, was developed. The aim was to assess the
polymer’s impact on the synthesized nanofibers’ pharmaceutical properties. A combination
of polyvinylpyrrolidone (PVP) as a substance highly soluble in water and hydroxypropyl-β-
cyclodextrin (HPβCD) as a solubilizer was used. This combination was intended to improve
the solubility properties of the active compounds in the extract loaded in nanofibers N1
and N2 (Table 1) [27,28]. The second option was to combine polycaprolactone (PCL), a
substance known from biomedical engineering and with frankly described properties in
wound healing [29], and PVP in nanofibers N3 and N4 (Table 1). Based on preliminary
tests, the appropriate concentration of polymers and extracts and the best solvents were
selected to prepare the mixture for electrospinning. As a result, N1–N4 nanofibers were
obtained, and the process was problem-free and repeatable.

Then, the formation of nanofibers and the morphology of the electrospun nanofibers
N1–N4 were examined using a scanning electron microscope (SEM) (Figure 1). The
SEM analysis of nanofibers N1–N4 indicated the formation of smooth, beadless, and
uniform nanofibers mats, made up of interconnected, randomly oriented fibers in a three-
dimensional, highly porous structure. The analysis of the PCL/PVP nanofiber (N3–N4)
diameter distribution, as depicted in Table 3, estimated that the mean fiber diameter was in
the range 298–392 nm. It seems that the addition of HPβCD to PVP increased the diameter
distribution almost two times (the average diameter of nanofibers N1–N2 was in the range
521–527 nm). Additionally, it is worth noting that PCL/PVP nanofibers (N3 and N4) are
characterized by higher uniformity of fiber sizes, and the diameter of fibers decreased
with the addition of PCL. Poor spinnability of PVP resulting in large fiber diameter has
already been observed, and the addition of PCL increases the solution spinnability, leading
to finer fibers [30,31]. Varsei et al. concluded that the PVP concentration is the dominant
factor (compared to the PCL concentration and other electrospinning parameters) in the
morphology of the nanofibers [32]. This also confirms the results obtained in this work. No
significant influence of the type of extract used, CF-CE or CF-UAE, was observed. So, the
type of polymer matrix used influences the size of the nanofibers and their uniformity [31].
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no crystalline planes. Freeze-drying is a well-known method to produce amorphous solid
dispersions with various substances [33]. The raw PVP exhibits two broad peaks at around
11◦ and 21◦, which are referred to the amorphous nature of PVP [34]. The raw PCL is a
semi-crystalline polymer with high intensity peaks at 21.25◦ and 23.7◦ [35]. The extracts
form ultrafine amorphous particles in PVP matrices within nanofibers N1 and N2. With the
increase in PVP content in the case of nanofibers N3 and N4, the relative intensity of the
PCL hump diminishes while its broadness grows, indicating the success of mixed spinning
of PCL and PVP. Only a very low intensity peak at 20◦ remains visible in nanofibers N3–N4,
which means a higher degree of amorphousness of the PVP/HPβCD systems (nanofibers
N1–N2). As a result of the complexation between extracts and polymers, no peaks were
observed, indicating that the extracts were completely dissociated in polymer matrices. No
appearance of a diffraction peak indicates the amorphous nature of nanofibers N1–N4.
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The FTIR spectra of CF-CE and CF-UAE are the same and showed prominent absorp-
tion bands at 469, 781, 818, 1030, 1055, 1404, 1456, 1599, 1732, 2855, 2924, and 3318 cm−1

(Figure 3a).
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Figure 3. ATR-FTIR analysis of CF-CE (black line), CF-UAE (red line), range 400–4000 cm−1 (a), and 

second derivative infrared spectra (by the Savi�ky–Golay polynomial fi�ing method, 11-point 

smoothing) of CF-CE/CF-UAE (black line), narcissin (blue line), and chlorogenic acid (green line), 

range 600–1700 cm−1 (b). 
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Figure 3. ATR-FTIR analysis of CF-CE (black line), CF-UAE (red line), range 400–4000 cm−1 (a),
and second derivative infrared spectra (by the Savitzky–Golay polynomial fitting method, 11-point
smoothing) of CF-CE/CF-UAE (black line), narcissin (blue line), and chlorogenic acid (green line),
range 600–1700 cm−1 (b).

A second derivative of the FTIR spectra was utilized to verify the existence of narcissin
and chlorogenic acid (primary active compounds) in CF-CE and CF-UAE. To improve the
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apparent spectral resolution for more precise identification, the Savitzky–Golay polynomial
fitting method was implemented (LabSolution IR software, version 1.86 SP2, Shimadzu,
Kyoto, Japan) [36,37]. Figure 3b shows the second derivative infrared spectra of CF-CE,
CF-UAE, narcissin, and chlorogenic acid.

In the CF-CE and CF-UAE, bands corresponding to narcissin are observed at about
621, 650, 669, 982, 1028, 1124, 1206, 1358, 1601, and 1653 cm−1. The bands that can be
attributed to the presence of chlorogenic acid are observed at 818, 870, 1057, 1070, 1204,
1516, and 1599 cm−1. Based on the DFT analysis, assignments of narcissin and chlorogenic
acid bands were proposed (Supplementary Material, Table S2)

The ATR-FTIR spectra of CF-CE, CF-UAE, HP-β-CD, PCL, PVP, and nanofibers N1–N4
were compiled to indicate potential interactions between individual components in the
nanofibers (N1–N4) (Figure 4).
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Figure 4. ATR-FTIR analysis of CF-CE (black line), HPβCD (red line), PVP (blue line), and N1 (green 

line), range 400–4000 cm−1 (a); CF-UAE (black line), HPβCD (red line), PVP (blue line), and N2 (green 

line), range 400–4000 cm−1 (b); CF-CE (black line), PCL (red line), PVP (blue line), and N3 (green 

line), range 400–4000 cm−1 (c); CF-UAE (black line), PCL (red line), PVP (blue line), and N4 (green 

line), range 400–4000 cm−1 (d). 

The ATR-FTIR spectrum of HPβCD showed prominent absorption bands at 847 cm−1 

(hydrogen bond formation between primary and secondary OH group and the presence 

of glucopyranose units), 948 cm−1 (presence of glucopyranose units), 1006 cm−1 (C–H and 

C–O stretching vibrations), 1082 cm−1 (stretching vibration of the C–C and C–O bonds, and 

wagging vibration of the C–H bonds), 1152 cm−1 (C–H and C–O stretching vibrations), 

2915 cm−1 (C–H stretching of sp3 carbons), and 3350 cm−1 (O–H stretching vibrations) [38–

42]. The ATR-FTIR spectrum of PVP showed prominent absorption bands at 1167 cm−1 (C–

C=O), 1229 cm−1 (lactone structure), 1283 cm−1 (C–N stretching vibrations), 1371 cm−1 (–CH 

deformation vibrations), 1420 cm−1 (CH2 wagging), 1458 cm−1 (CH2 bending vibrations), 

1665 cm−1 (C=O), and 2951 cm−1 (C–H stretching vibrations) [42–45]. The FTIR spectrum of 

PCL showed prominent absorption bands at 733 cm−1 (C–H out-of-plane bending vibra-

tion), 1167 cm−1 (–C–O–C- symmetric stretching), 1238 cm−1 (C–O–C asymmetric stretch-

ing), 1294 cm−1 (C–O and C–C bands), 1364 cm−1 (stretching of OH group), 1472 cm−1 

(stretching of CH2 group), 1722 cm−1 (–C=O stretching vibrations of the ester carbonyl 

group), 2866 cm−1 (symmetric stretching of CH2 group), and 2945 cm−1 (asymmetric stretch-

ing of CH2 group) [46,47]. A detailed summary of the changes observed in the FTIR spectra 

for N1 and N3 is summarized in Table S3, while those for N2 and N4 are summarized in 

Table S4 (Supplementary Materials). 

In the spectrum of N1 within the range of ~570–1150 cm−1, bands predominantly cor-

respond to HP-β-CD, while in the range of 1270–1700, bands corresponding to PVP were 

observed. This confirmed the dispersion of CF-CE in the HP-β-CD/PVP matrix. The dis-

appearance of CF-CE bands, and shifts in the characteristic HPβCD bands (571→573 cm−1, 

948→939 cm−1, and 1006→1030 cm−1) and PVP bands (1269→1273 cm−1, 1283→1288 cm−1, 

1371→1369 cm−1, 1420→1423 cm−1, 1458→1462 cm−1, 1491→1497 cm−1, and 1665→1655 cm−1) 

confirm the interaction between the individual components of the nanofiber. Changes in 

the position of the HPβCD band observed at about 1006 cm−1 suggested that the C–H and 

C–O groups formed interactions between CF-CE and/or PVP, whereas changes in the po-

sition of the PVP band observed at about 1283 cm−1 (C–N), 1371 cm−1 (–CH), 1420 cm−1 

(CH2), 1458 cm−1 (CH2), and 1665 cm−1 (C=O) suggested that these groups can form inter-

actions with CF-CE and/or HP-β-CD. Analogous changes are observed in the N2 spec-

trum. The spectra of N3 and N4 have features typical of pure PVP. Bands corresponding 

to CF-CE/CF-UAE and PCL are not observed. The characteristic bands’ disappearance in-

dicates that CF-CE/CF-UAE and PCL have been fully dispersed in the PVP matrix. Simi-

larly to the case of N1 and N2, here, the shifts in the characteristic PVP bands (1229 cm−1 

(lactone structure), 1283 cm−1 (C–N), 1371 cm−1 (–CH), 1420 cm−1 (CH2), 1458 cm−1 (CH2), 

Figure 4. ATR-FTIR analysis of CF-CE (black line), HPβCD (red line), PVP (blue line), and N1 (green
line), range 400–4000 cm−1 (a); CF-UAE (black line), HPβCD (red line), PVP (blue line), and N2
(green line), range 400–4000 cm−1 (b); CF-CE (black line), PCL (red line), PVP (blue line), and N3
(green line), range 400–4000 cm−1 (c); CF-UAE (black line), PCL (red line), PVP (blue line), and N4
(green line), range 400–4000 cm−1 (d).

The ATR-FTIR spectrum of HPβCD showed prominent absorption bands at 847 cm−1

(hydrogen bond formation between primary and secondary OH group and the presence
of glucopyranose units), 948 cm−1 (presence of glucopyranose units), 1006 cm−1 (C–H
and C–O stretching vibrations), 1082 cm−1 (stretching vibration of the C–C and C–O
bonds, and wagging vibration of the C–H bonds), 1152 cm−1 (C–H and C–O stretching
vibrations), 2915 cm−1 (C–H stretching of sp3 carbons), and 3350 cm−1 (O–H stretching
vibrations) [38–42]. The ATR-FTIR spectrum of PVP showed prominent absorption bands at
1167 cm−1 (C–C=O), 1229 cm−1 (lactone structure), 1283 cm−1 (C–N stretching vibrations),
1371 cm−1 (–CH deformation vibrations), 1420 cm−1 (CH2 wagging), 1458 cm−1 (CH2
bending vibrations), 1665 cm−1 (C=O), and 2951 cm−1 (C–H stretching vibrations) [42–45].
The FTIR spectrum of PCL showed prominent absorption bands at 733 cm−1 (C–H out-of-
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plane bending vibration), 1167 cm−1 (–C–O–C- symmetric stretching), 1238 cm−1 (C–O–C
asymmetric stretching), 1294 cm−1 (C–O and C–C bands), 1364 cm−1 (stretching of OH
group), 1472 cm−1 (stretching of CH2 group), 1722 cm−1 (–C=O stretching vibrations of
the ester carbonyl group), 2866 cm−1 (symmetric stretching of CH2 group), and 2945 cm−1

(asymmetric stretching of CH2 group) [46,47]. A detailed summary of the changes observed
in the FTIR spectra for N1 and N3 is summarized in Table S3, while those for N2 and N4
are summarized in Table S4 (Supplementary Materials).

In the spectrum of N1 within the range of ~570–1150 cm−1, bands predominantly cor-
respond to HP-β-CD, while in the range of 1270–1700, bands corresponding to PVP were
observed. This confirmed the dispersion of CF-CE in the HP-β-CD/PVP matrix. The dis-
appearance of CF-CE bands, and shifts in the characteristic HPβCD bands (571→573 cm−1,
948→939 cm−1, and 1006→1030 cm−1) and PVP bands (1269→1273 cm−1, 1283→1288 cm−1,
1371→1369 cm−1, 1420→1423 cm−1, 1458→1462 cm−1, 1491→1497 cm−1, and
1665→1655 cm−1) confirm the interaction between the individual components of the nanofiber.
Changes in the position of the HPβCD band observed at about 1006 cm−1 suggested that
the C–H and C–O groups formed interactions between CF-CE and/or PVP, whereas changes
in the position of the PVP band observed at about 1283 cm−1 (C–N), 1371 cm−1 (–CH),
1420 cm−1 (CH2), 1458 cm−1 (CH2), and 1665 cm−1 (C=O) suggested that these groups can
form interactions with CF-CE and/or HP-β-CD. Analogous changes are observed in the N2
spectrum. The spectra of N3 and N4 have features typical of pure PVP. Bands corresponding to
CF-CE/CF-UAE and PCL are not observed. The characteristic bands’ disappearance indicates
that CF-CE/CF-UAE and PCL have been fully dispersed in the PVP matrix. Similarly to
the case of N1 and N2, here, the shifts in the characteristic PVP bands (1229 cm−1 (lactone
structure), 1283 cm−1 (C–N), 1371 cm−1 (–CH), 1420 cm−1 (CH2), 1458 cm−1 (CH2), and
1665 cm−1 (C=O)) also indicate the participation of these groups in the formation of bonds
with CF-CE/CF-UAE and PCL. The PCL/PVP nanofibers showed the distinctive peaks of
PVP and PCL nanofibers, proving that the combined spinning of PCL and PVP was successful.
Furthermore, no new distinctive peaks were seen in the PCL/PVP nanofibers. This suggests
that the PCL and PVP have physical interactions rather than the presence of new chemical
bonds in the FTIR spectra of the PCL/PVP nanofibers [31].

A crucial parameter greatly influences the product’s efficacy: the active ingredient’s
release from the nanofibers (Figure 5). For this purpose, a previously developed modified
method using baskets was used [27]. A significant difference can be seen in the chlorogenic
acid release profiles from PVP/HPβCD-based and PCL/PVP-based nanofibers. In the case
of N1 and N2 nanofibers (PVP/HPβCD-based nanofibers), an immediate burst release of
chlorogenic acid was observed within the first 30 min. These phenomena can be explained
by the benefits of creating nanofibers, which include high load capacity, effective encapsula-
tion, and a high surface area-to-volume ratio, all of which can boost the dissolving rate [48].
Because the cyclodextrin’s high amorphization, wetting, solubilizing, and complexing
capabilities increased the solubility of substances, the composition employed to create the
nanofibers is also crucial [27,28]. Higuchi kinetics, which postulates that chlorogenic acid
is released via diffusion across dispersed vesicles, is the most plausible release mechanism
(Table S5, Supplementary Material).

However, in the cases of nanofibers N3 and N4, based on PCL and PVP, prolonged
release profiles of chlorogenic acid were observed. Since PCL is a highly hydrophobic
polymer and PVP is a highly hydrophilic, the hydrophilicity of PCL/PVP nanofibers can
be controlled to provide prolonged substance release by varying the ratio of PCL to PVP
in the fibrous matrix [49]. The chlorogenic acid release curves of nanofibers N3 and N4
could be divided into two phases, namely, the burst release phase due to the quick release
of amorphous substance present on the surface of the nanofibers, and the final slow-release
phase. The second phase exhibits zero-order kinetics characteristics and happens at an
exact constant rate of delivery. Korsmeyer–Peppas kinetics with n around 0.4, indicating
Fickian diffusion, is the second likely explanation (Table S5, Supplementary Material).
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Figure 5. Dissolution profiles of chlorogenic acid from nanofibers N1–N4.

The influence of the type of extract on dissolution behavior within the same matrix
was also assessed. For this purpose, the release profiles (N1 and N2, and N3 and N4) were
compared using the difference coefficients f 1 and similarity f 2 (Table S6, Supplementary
Material). The profiles significantly differed statistically, with larger amounts of chlorogenic
acid released from the matrices containing the CF-UAE extract (nanofibers N2 and N4).

The study of antimicrobial activity found that all examined nanofibers are effective
at high concentrations of 100 mg/mL or above (Table 4). Nanofiber N4 demonstrated
the highest activity with an MIC of 100 mg/mL. Nanofibers N2 and N3 exhibited better
efficacy against Staphylococcus aureus and Candida albicans (MIC 100 mg/mL) than against
Pseudomonas aeruginosa (MIC 200 mg/mL or above). Nanofiber N1 showed the weakest
activity with an MIC of 200 mg/mL or above. The MIC levels for pure chlorogenic acid
ranged from 1.25 to 2.5 mg/mL and were compared with the activity of the extract itself [11].
Based on the presented results, the activity of nanofibers against S. aureus and P. aeruginosa
is weaker than what should result from the content of the extract. On the other hand, the
activity of nanofibers against C. albicans is higher. However, with the entire spectrum of
activity, especially against S. aureus and C. albicans [50,51], one of most important wound
pathogens, this does not limit the use of nanofibers.

Table 4. Minimal inhibitory concentrations (MICs) of nanofibers N1–N4 and chlorogenic acid
determined against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans.

Pathogen
MICs (mg/mL)

N1 N2 N3 N4 Chlorogenic
Acid

Lyophilized
Extract [11]

Staphylococcus aureus 200 100 100 100 2.5 8

Pseudomonas aeruginosa >200 >200 200 100 2.5 4

Candida albicans 200 100 100 100 1.25–2.5 64

The proposed nanofiber composition meets the requirements for innovative materials
for wound treatment, because PVP can store large amounts of water without loss of
mechanical integrity and flexible and biocompatible PCL [52]. To observe the wound
healing process, a cell line scratch experiment was used. During this process, cells polarize
toward the wound and start to protrude, move, and close the wound (Figures 6 and 7).
Nanofibers N1 and N3 statistically significantly increased the migration of fibroblasts and
the healing of wounds. After 24 and 36 h of incubation, N1 and N3 nanofibers showed
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even greater wound healing characteristics, with wound closure percentages of up to 61%
and 52%, and 85% and 82%, respectively. Using these nanofibers, the wound was 100%
closed. Additionally, there was no difference between N1 and N3.
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Figure 7. Effect of nanofibers N1–N4 over time on human normal skin fibrocytes’ (Hs27 cells’) ability
to close scratches after scratching. The means ± SD of the results are presented. Using a two-way
ANOVA and Tukey’s post-hoc test, statistical significance was determined as (*) p < 0.05; (**) p < 0.01;
(***) p < 0.001; and (****) p < 0.001 (compared to the control at the various time points).

There are no previous reports regarding PVP- and PVP/PCL-based nanofibers contain-
ing calendula extract in wound treatment. PCL/calendula-based nanofibers increase fibrob-
last cell proliferation and attachment [22]. Meanwhile, the healing ability of CS/PEO/CO
dressings was assessed in vivo on rat wounds, and 87.5% wound closure was observed
after 14 days [19].

Figure 8 shows the results of the PCA analysis for the nanofibers’ characteristics. A
statistically significant correlation was indicated between the diameter of the nanofibers
and the percentage of released chlorogenic acid (Table S7, Supplementary Material). How-
ever, this relationship does not depend directly on the diameter of the nanofibers because
the smaller the diameter of the nanofibers, the faster the loaded drug was released from
the nanofibers [53]. As described above, the relationship depends on the hydrophilicity
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and hydrophobicity of the matrix. A very weak negative correlation was noticed be-
tween wound closure and drug release behavior, i.e., with the decreasing diameter of the
nanofibers, better wound closure was observed, which indicates a greater usefulness of
PCL/PVP-based nanofibers.
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Figure 8. Principal component analysis (PCA) showing the factor loading plot considering the average
diameter of nanofibers (= diameter), percentage of chlorogenic acid release at 2 h (= dissolution), and
wound closure after 36 h (= wound closure).

By observing the dots representing individual nanofibers, two sets can be distin-
guished in terms of the polymer base (N1 and N2, and N3 and N4) and the extract used
(N1 and N3, and N2 and N4). The polymer base significantly impacts both the diameter of
the produced nanofibers and the rate of dissolution of active compounds. However, the
type of extract was important in examining the wound healing properties. Therefore, the
relationships described above are confirmed by the statistical analysis performed.

Based on all the results, structural studies, active substance release kinetics, as well as
antibacterial and wound regeneration-improving properties, it was assessed that nanofibers
N3 (based on PCL/PVP loaded with CF-CE extract) have the greatest potential in
wound treatment.

Notably, the suggested preparation has a high level of clinical utility when considering
the outcomes of the experimental investigations. It is important to take note of the patient-
friendly form of the nanofibrous mat, which is simple to apply and remove if the dressing
needs to be changed, in addition to its proven biological impact on wound healing.

4. Conclusions

The nanofibers obtained via electrospinning are characterized by properties that are
key to dressings recommended for wound treatment. The scaffolds used fulfilled their
function as a structural matrix suitable for releasing the active compounds present in the
calendula extract with the required kinetics. Moreover, synergism of action was observed
between the biopolymers used and the compounds present in the marigold extract, which
are responsible for their healing properties. All nanofibers had highly effective antibacterial
properties, promoted fibroblast migration, and accelerated wound healing. Concerning
the obtained results, it can be indicated that electrospun nanofibers based on PCL/PVP
scaffolds containing CF-CE extract offer the most promising properties in wound treatment.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17081736/s1, Table S1. Validation parameters of HPLC
method; Table S2. Location and band assignment of narcissin and chlorogenic acid bands observed
on the second derivative infrared spectrum of narcissin, chlorogenic acid, and CF-CE/CF-UAE
(see Figure 3b). Assignments of narcissin and chlorogenic acid bands made based on DFT calcu-
lations with application of 6-31G(d,p) basis set; Table S3. Selected characteristic bonds (in cm−1)
of CF-CE, HPβCD, PCL, PVP, N1, and N3. Assignments bands of HPβCD [37–41], PVP [41–44],
PCL [45,46] were made based on the literature; Table S4. Selected characteristic bonds (in cm−1) of
CF-UAE, HPβCD, PCL, PVP, N1, and N3. Assignments bands of HPβCD [37–41], PVP [41–44], and
PCL [45,46] were made based on the literature; Table S5. Parameters of mathematical models fitted to
the chlorogenic acid release profiles of nanofibers N1–N4; Table S6. Comparison of the chlorogenic
acid release profiles of nanofibers N1–N4; Table S7. Correlation matrix.
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