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Abstract: PC/ABS composites are commonly used in airbag covers. In this paper, uniaxial tensile
experiments of a PC/ABS composite at different temperatures and strain rates were conducted. The
results showed that the temperature and loading rate affect the mechanical properties of the PC/ABS
composite. As the temperature increases, the yield stress decreases and the strain at the moment
of fracture increases, but the strain rate at the same temperature has a relatively small effect on the
mechanical properties, which are similar to ductile materials. The experimental results were applied
to the Abaqus model which considered thermal effects and the exact Johnson–Cook constitutive
parameters were calculated by applying the inverse method. Based on the constitutive model and
the failure analysis findings acquired by DIC, the uniaxial tensile test at the room temperature and
varied strain rates were simulated and compared to the test results, which accurately reproduced
the test process. The experiment on target plate intrusion of the PC/ABS composite was designed,
and a finite-element model was established to simulate the experimental process. The results were
compared with the experiments, which showed that the constitutive and the failure fracture strains
were valid.

Keywords: failure analysis; polymers and plastics; Johnson–Cook constitutive; numerical simulation;
inversion method

1. Introduction

In recent decades, polymers have become increasingly popular in various indus-
tries due to their superior properties, such as high specific strength and low cost. ABS
(acrylonitrile-butadiene-styrene) has a good durability and rigidity, containing rubber
particles which allow it to suffer more plastic deformation under impact loads [1]. PC
(polycarbonate) is often used in structural support due to its wide temperature and impact
resistance [2]. TC-45M is a composite material made of a mixture of PC and ABS, which
exhibits better impact toughness and tensile strength compared to pure polymer [3–5]. It
has gradually replaced PC materials and is extensively used in the automotive industry for
airbag covers. The study of its failure behavior can provide effective theoretical support for
the study of vehicle safety performance.

During the last few decades, uniaxial tensile or compressive testing has represented a
widely used method for studying polymer mechanical properties at different temperatures
and strain rates Zheng et al. performed uniaxial stretching of Poly-Ether-Ether-Ketone at
elevated temperatures and simulated its deformation behavior using a phenomenological
model named DSGZ [6]. A study on the uniaxial compressive deformation behavior of
PC/ABS blends at different rates and temperatures was conducted by Wang et al. [7].
They utilized a modified DSGZ model to characterize the deformation after unloading and
reloading. Louche et al. conducted uniaxial tensile experiments on ABS polymer materials
at various strain rates and temperatures to investigate their performance under impact
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loading, simulated the experimental process using the J-C constitutive (Johnson–Cook con-
stitutive) to simulate the experimental process, and finally compared the experimental and
numerical results to prove the correctness of the model [8]. Based on uniaxial tensile tests
and single-edge-notch-tension (SENT) tests, two rubber-toughened thermoplastic polymer
blends with different volume fractions of PC and ABS were analyzed experimentally, as
well as by constitutive models and finite-element simulations with regard to their large
strain deformation and fracture behavior by Hund et al. [9]. The impact behavior and
modeling of ABS and polybutylene-terephthalates (PBT) were obtained as a function of
impact velocity and temperature from a multiaxial impact test by Duan et al., and the
deformation and failure of polymers were analyzed using a combination of experiments
and finite-element analysis [10,11].

When a car is subjected to a violent impact force, airbag ejection leads to an impact
loading, and the cover plant temperature increases [12]. However, there are limited
thermodynamic constitutive models available for impact loading and the viscoplasticity
model which considers temperature, suffers from the issue of too many parameters. In
this paper, a uniaxial tensile test of the PC/ABS composite was conducted. Based on
the experimental results of middle and low strain rates, the initial parameters of the J-C
constitutive were obtained by MATLAB fitting. It should be noted that the parameters
determined in this way may have some inaccuracy [13–15]. Subsequently, the initial
parameters were substituted into Abaqus 2020 to simulate the experimental process, and
the parameters were gradually adjusted to invert the modified constitutive model, and
the results have a high accuracy [16–18], and apply to the high strain rate case. Based
on the determined constitutive model and fracture parameters, numerical simulations of
high-speed tensile testing of PC/ABS were conducted and compared with experimental
results. Finally, a target plate impact experiment for the PC/ABS composite was designed,
and a finite-element model was established to simulate the experimental process. The
results were compared with the experiments, indicating the validity of the constitutive
model and the failure fracture strain.

2. Materials and Methods
2.1. Material

The material used in the experiments of this paper is the PC/ABS composite. The
PC/ABS composite material can combine the excellent properties of PC and ABS, improve
the heat resistance, impact resistance and tensile strength of ABS, reduce the cost of PC and
the viscosity of the melt, improve the processing performance, and reduce the internal stress
of the product and the sensitivity of the impact strength to the thickness of the product. In
addition, it also has a low price, low density, and other characteristics. The PC/ABS can be
used as a structural material. It has been widely used in the car tool industry as a car cover.

A composite is not a simple blend of many materials. Therefore, it is not possible
to derive accurate results of PC/ABS failure behavior from a single ABS or PC [19]. To
accurately simulate the failure behavior of automotive covers during vehicle impacts, the
material behavior at different temperatures and strain rates is investigated in this paper.

2.2. Uniaxial Tensile Test of the PC/ABS Composite Material

The PC/ABS composite model TC-45M (Dongguan Xinrui polymer material Technol-
ogy Co., Ltd., Dongguan, China) was used in this study, and a specimen of the PC/ABS
composite was designed for testing in the MTS-810 dynamic and static materials testing
machine (MTS Systems Corporation, Eden Prairie, MN, USA), as shown in Figure 1a. The
MTS-810 has a measured strain rate range of 10−4–10 s−1. The low and medium strain
rate tensile test at various temperatures can be realized with the temperature chamber.
The influence of specimen size on the force balance error should be considered in the
case of high-speed drawing [20]. The specific dimensions of the specimen are shown in
Figure 1b. The specimen length of 15 mm can greatly reduce the influence of specimen size
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on the results of high-speed tensile experiments and can be used in quasi-static experiments
too [21].
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Figure 1. Design of uniaxial tensile experiment: (a) MTS-810 dynamic and static materials testing
machine; (b) Size of test material (unit: mm); (c) ZwickRoell-5020 high-speed hydraulic tensile testing
machine system.

The MTS-810, shown in Figure 1a, was used to perform uniaxial tensile tests on
the PC/ABS composite at various ambient temperatures and strain rates. The ambient
temperature was accurately controlled by a temperature chamber (238.15 K was achieved
by continuously passing liquid nitrogen into the chamber). The PC/ABS composite is
mostly used in automobile manufacturing, so its failure behavior under a high strain rate
is also the focus of this paper. The ZwickRoell-5020 high-speed hydraulic tensile testing
machine system (ZwickRoell GmbH & Co. KG, Ulm, Germany) was selected, shown in
Figure 1c, which can also cooperate with the temperature chamber. This device has a strain
rate measurement range of 10–1000 s−1. The sample still uses the specifications shown in
Figure 1b. The above experimental conditions are listed in Table 1.

Table 1. Uniaxial tensile test conditions.

Strains (s−1) Temperature (K) Equipment Model Loading Rate (mm/s)

0.01

238.15/273.15/293.15
MTS-810

0.15
1 15
10 150

100
ZwickRoell-5020

1500
1000 15,000

2.3. PC/ABS Composite Material Ballistic Impact Test

The PC/ABS composite material penetration test sample was designed as a
100 mm × 100 mm × 3 mm rectangular target plate. Four holes were punched into the
sample’s four corners to make it unmovable. The bullet used in the experiment is a
cylindrical length of 24 mm with a hemispherical head measuring 12 mm in diameter.
The bullet is made of Cr12MoV tool steel. Figure 2a provides the plate’s and bullet’s
precise design.

The experiment of the ballistic impact test uses a high-speed air gun in combination
with a high-speed camera system. Figure 2b displays the schematic of the experimental
device arrangement. The caliber of the high-speed air gun launch tube is 12 mm, and
the length of the gun tube is 4 m. A tachymeter was placed between the high-speed air
gun barrel and the test simple to measure the average velocity of the bullet strikes. After
research, it was found that the average speed of cars on the highway was approximately
30 m/s. To test the applicability of the PC/ABS composite material, the speed of the
experiment should be greater than 30 m/s [22]. After many empty gun experiments, with
the same bullet and the conditions of the pressure, the bullet’s hitting speed is maintained
at around 34 m/s.
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Figure 2. Ballistic impact test experimental design diagrams: (a) Design dimensions of target plate
and bullet (unit: mm); (b) Layout of penetration test device.

The bullet penetration process is captured by a high-speed camera system. The camera
is pointed toward the side of the target plate, and the camera’s shooting direction is
perpendicular to the path of the bullet’s incidence. A mirror was placed on the target’s rear
to capture back-view pictures during the bullet impact, positioned at a 45◦ angle to both
the direction of the bullet and the direction of high-speed photography. This allowed the
high-speed camera to capture images of the deformation and fracture on the specimen’s
back. In all experiments, the sampling frequency of the high-speed camera was set at
4 × 104 Hz, the time interval between neighboring photos was 25 µs, and the shooting
resolution was set at 384 × 288 pixels.

3. Results and Discussion
3.1. Uniaxial Tensile Test Results

Uniaxial tensile tests were conducted on the MTS-810 testing machine at varying
temperatures and strain rates. Uneven material distribution can lead to unrepeatable
experimental results, so this paper performs three replications under each experimental
condition to assess the homogeneity of the composite [23]. The typical results are displayed
in Figure 3, which illustrates the composite’s good homogeneity. Figure 4a,b depict the
results of averaging three sets of test results for different ambient temperatures at the same
strain rate, as well as different strain rates at the same ambient temperature.

Materials 2024, 17, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 3. Three times quasi static test results of the PC/ABS composite under 273.15 K and a strain 
rate of 0.01 s−1. 

  
(a) (b) 

Figure 4. Effect of a single variable for the failure behavior of the PC/ABS composite: (a) Force–
displacement curve of the PC/ABS composite under the same strain rate (1 s−1) and different 
temperatures; (b) Force–displacement curve of the PC/ABS composite under different strain rates at 
room temperature. 

The figure shows that the mechanical properties of the PC/ABS composite are 
influenced by both the loading rate and ambient temperature. The temperature factor 
responds to these mechanical properties in a particularly noticeable way: as the ambient 
temperature rises, yield stress and fracture strain respectively decrease and increase. The 
mechanical properties’ effects are relatively weak by the strain rate at the same 
temperature and the mechanical properties are similar to those of traditional ductile 
materials [24,25]. 

The yield stresses at different temperatures and strain rates are compared and 
analyzed as shown in Figure 5. The results show that the yield stress of the material is 
linear with the temperature and the logarithm of strain rate. The yield stress of the 
material increases with the increase in strain rate and decreases with the increase in 
temperature. When the temperature rises, the movement of polymer chains in the PC/ABS 
composite is activated, and under the action of external load, the molecular chains are 
rotated and displaced, the plastic flow is strengthened, and the yield stress is reduced. 
Under quasi-static tensile conditions, the material is in a steady state, allowing infinite 
plastic flow; under medium to high strain rates, the polymer chains in the PC/ABS 
composites cannot rotate and displace rapidly, resulting in the strengthening of the yield 
stress. 

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

St
re

ss
(M

Pa
)

Strain

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

St
re

ss
(M

Pa
)

Strain

1s-1(238.15K)
1s-1(273.15K)
1s-1(293.15K)

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

St
re

ss
(M

Pa
)

Strain

 0.01s-1

 1s-1

 10s-1

Figure 3. Three times quasi static test results of the PC/ABS composite under 273.15 K and a strain
rate of 0.01 s−1.
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Figure 4. Effect of a single variable for the failure behavior of the PC/ABS composite: (a) Force–
displacement curve of the PC/ABS composite under the same strain rate (1 s−1) and different
temperatures; (b) Force–displacement curve of the PC/ABS composite under different strain rates at
room temperature.

The figure shows that the mechanical properties of the PC/ABS composite are influ-
enced by both the loading rate and ambient temperature. The temperature factor responds
to these mechanical properties in a particularly noticeable way: as the ambient temperature
rises, yield stress and fracture strain respectively decrease and increase. The mechanical
properties’ effects are relatively weak by the strain rate at the same temperature and the
mechanical properties are similar to those of traditional ductile materials [24,25].

The yield stresses at different temperatures and strain rates are compared and analyzed
as shown in Figure 5. The results show that the yield stress of the material is linear with
the temperature and the logarithm of strain rate. The yield stress of the material increases
with the increase in strain rate and decreases with the increase in temperature. When the
temperature rises, the movement of polymer chains in the PC/ABS composite is activated,
and under the action of external load, the molecular chains are rotated and displaced, the
plastic flow is strengthened, and the yield stress is reduced. Under quasi-static tensile
conditions, the material is in a steady state, allowing infinite plastic flow; under medium to
high strain rates, the polymer chains in the PC/ABS composites cannot rotate and displace
rapidly, resulting in the strengthening of the yield stress.
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Figure 5. Comparison of yield stress under different experimental conditions: (a) Yield stress
temperature curve; (b) Yield stress strain rate (logarithmic) curve.
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3.2. Experimental Results of Ballistic Impact Test

Target plate penetration experiments were conducted on the PC/ABS composite under
the required experimental conditions. The high-speed impact process was recorded by
a high-speed camera. For the convenience of observation, the instant of bullet impact
(when the bullet was just in touch with the target plate) was defined as the start time.
Figure 6 displays the experimental processes of the penetration procedure from the side
and rear perspectives. It can be found that it has a large deformation and a long plastic
stage during the experiment, rather than a brittle fracture. Therefore, it is found that the
PC/ABS composite material is a typical ductile material by analyzing the deformation and
failure mode of the target plate.
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3.3. Determination of the Parameters of the J-C Constitutive

The number of viscoelastic thermodynamic coupling models under impact loads is
small, and there are many problems such as too much parameter measurement [26–28].
Because PC/ABS is widely used in the preparation of vehicles, the study of its failure
behavior should pay attention to the influence of strain rate and temperature, especially
the plastic deformation and failure at a high strain rate, rather than its creep or relaxation
behavior. Therefore, the J-C constitutive is selected in this paper. The J-C constitutive
model is a phenomenological model that describes plastic hardening, strain rate effects,
and thermal softening of materials [29]. These three phenomenological formulations are
connected multiplicatively in the J-C constitutive. The J-C constitutive is mainly applied
to materials with large deformations, high strain rates, and high temperatures, meaning
it is suitable for numerical simulations of most materials. The form of Equation (1) is as
follows [30–32]:

σ = (A + Bεn
p)(1 + C ln

.
ε
.
ε0
)[1 − (

T − T0

Tm − T0
)

m
] (1)

where εp—equivalent plastic strain;
.
ε—equivalent plastic strain rate;

.
ε0—reference strain

rate; T0—reference temperature; Tm—melting point temperature of the material; T—test
temperature. A, B, C, n, m are the material parameters.

The following is the principle used in this research to determine the parameters
A, B, C, n, m of the J-C constitutive: The stress–strain curve transformed by the force–
displacement curve at the reference temperature of 238.15 K and strain rate of 0.01 s−1 gives
the values of A, B and n, the stress–strain curve transformed by the various strain rates at
238.15 K gives the value of C; the stress–strain curve transformed by the various tempera-
tures at 0.01 s−1 gives the value of m. Based on this principle, the initial parameters of the J-C
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constitutive are determined as A = 60 MPa, B = 115 MPa, C = 0.03, n = 1.75, m = 0.95.
However, the parameters determined by this method have a large error and cannot accu-
rately reproduce the failure behavior of the material [15]. The constitutive model is mainly
used in the field of numerical simulation, so researchers will reproduce the experimental
process by numerical simulation and modify the parameters by comparing with the results
of uniaxial tensile experiment. The above parameters are put into the Abaqus 2020 to apply
the same loading conditions as the test. Then, numerical simulation is compared with the
tests, and the parameters are adjusted until they are in total agreement with the test. The
specific process of determining the final parameters is shown in Figure 7. This method
is hereafter referred to as the inversion method. The basic mechanical parameters of the
PC/ABS composite are as follows: the density is 1120 kg/m3, the modulus of elasticity
is 1750 MPa, Poisson’s ratio is 0.38, and the specific heat capacity is 1400 J/(kg·K). The
Abaqus solver was used for numerical simulation, and the mesh type was C3D8R. After
many attempts, the mesh size had no obvious influence on the simulation results.
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Figure 7. Process of determining parameters by the inversion method.

Through the above inversion method, J-C constitutive parameters are determined and
shown in Table 2. A comparison between numerical and experimental results is shown
in Figure 8, and it should be pointed out that there is no failure criterion, so there is no
steep drop in the numerical simulation curve. At this time, the deformation process can be
basically reproduced at low and medium strain rates.

Table 2. J-C constitutive parameters of the PC/ABS composite.

A B C n m

57.5 MPa 120 MPa 0.032 1.734 1.02
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Figure 8. Comparison between numerical simulation and experiment after modification by inversion
method: (a) Test results with strain rate of 0.01 s−1; (b) Test results with strain rate of 1 s−1; (c) Test
results with strain rate of 10 s−1.
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3.4. Validation of J-C Constitutive Parameters

The results obtained using the inversion method are only applicable to low and
medium strain rates. However, the cover material is often subjected to high-speed impact
loading when the airbag is deployed. To test the validity of the J-C constitutive determined
by the inversion method when applied to high strains, we calibrated it with high strain
rate tensile tests. Using a ZwickRoell-5020 high-speed tensile tester, we performed uni-
axial tensile tests at strain rates of 100 s−1 and 1000 s−1 at three ambient temperatures
sustained by particular temperature chambers. The test results were compared with the
J-C constitutive numerical simulation data obtained using the inversion approach. The
numerical simulation results of the J-C constitutive were close to the test results. Figure 9
presents the comparative results. This shows that the J-C constitutive derived from the
inversion approach is fit for large strain rates. It should especially be pointed out that the
experimental process can be regarded as an adiabatic process under high-speed impact [33],
and a large amount of heat will be generated in the experiment, and a large degree of
temperature change will be generated in the pattern. Therefore, a mechanical thermal effect
is added in the simulation to correct for the effects of adiabatic warming.
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Figure 9. Experiments and simulations at high strain rates validate the accuracy of the constitu-
tive model: (a) Comparison of results under different temperatures with strain rate of 100 s−1;
(b) Comparison of results under different temperatures with strain rate of 1000 s−1.

3.5. Failure Behavior Analysis in One-Dimensional Tensile State

The J-C constitutive parameters constructed above do not include a failure criterion.
Researchers are concerned with the failure behavior of materials in engineering. The
failure behavior of this composite material is examined in this chapter. A high-speed video
camera recorded the deformation and fracture process of the PC/ABS composite at room
temperature with different strain rates. Note that other temperatures were achieved by
an ambient temperature box. Therefore, the process for other temperatures could not
be captured with a high-speed video camera. Figure 10 shows typical results. Digital
image correlation (DIC) can be used to measure dimensional changes in drawing patterns
in real-time using optical sensors. The deformation information of the specimen under
tension at different strain rates and the local deformation of the specimen at the failure
time was obtained with a DIC, and the fracture strain εtr is calculated (Equation (2) shows
the calculation, where A0 represents the original cross-sectional area of the material, and
A represents the cross-sectional area of the material fracture) [34]. The local strains in the
failure region are listed in Table 3.

εtr = ln
(

A0

A

)
(2)
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Table 3. Fracture strains and sample temperature.

strain rate (s−1) 0.01 1 10 100 1000

fracture strain 0.825 0.833 0.922 0.646 0.527

sample temperature by simulation (K) 293 313 328 311 309

sample temperature by theory (K) 293 320.6 326.5 313.9 312.1

In this paper, based on the J-C constitutive constructed by the inversion method
combined with the fracture strain εtr calculated by the deformation information of the
specimen. Numerical simulation was conducted to analyze the uniaxial tensile behavior
of the PC/ABS composite at room temperature (293.15 K) under different strain rates.
The simulation compares the process to the recording of a high-speed camera. Figure 10
displays the typical comparison results, while Figure 11 compares the force–displacement
curves of the tests under different strain rates with the numerical simulations. It can be
seen from the figures that the J-C constitutive determined by the inverse method and the
failure parameters obtained by using DIC can reproduce the uniaxial tensile test process of
the PC/ABS composite under different strain rates at room temperature.
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Figure 11. Comparison between uniaxial tensile test results and numerical simulation of the PC/ABS
composite at room temperature and different strain rates.

The J-C failure model is shown in Equation (3) [35], which describes the effects of
stress triaxiality, strain rate, and temperature in a decoupled form so that factors can be
removed when they are not important to the study.

εtr = [D1 + D2 exp D3(
σm

σeq
)][1 + D4 ln

.
ε
.
ε0
][1 + D5(

Ts − Tr

Tm − Tr
)] (3)

where σm—hydrostatic stress; σeq—equivalent strength; Ts—sample temperature; Tr—reference
temperature. It should be noted that the temperature of the sample during the stretching
process will change significantly due to the generation of a large amount of heat, so Ts
refers to the internal temperature of the material before the sample fracture, rather than the
ambient temperature.

Polymer materials are highly sensitive to temperature [36], and during the tensile
process, a large amount of heat is generated in the sample, leading to a temperature rapid
increase in material. To accurately analyze failure behavior, the failure temperature in the
finite-element simulation is chosen as the specimen’s fracture temperature. This paper
focuses on the effect of strain rate and temperature on the failure behavior of the PC/ABS
materials, for which the J-C failure model is degraded as shown in Equation (4).

εtr = [d1 + d2 ln
.
ε
.
ε0
][1 + d3(

Ts − Tr

Tm − Tr
)] (4)

where
.
ε0 = 0.01 s−1, Tr = 293 K, Tm = 450 K. After fitting, it can be determined that

d1 = 0.825, d2 = −0.043, d3 = 2.6. At medium strain rates, thermal softening takes a
dominant role and the temperature rises rapidly, leading to a slight increase in the fracture
strain. However, at high strain rates, high-velocity impacts dominate the fracture strain of
the material, the fracture strain decreases, heat fails to accumulate in the material in large
quantities, and the temperature rise before fracture is relatively few.

TS is shown in Table 3, and its theoretical temperature can also be calculated from
Equation (5) [37], where density ρ = 1120 kg/m3, specific heat capacity c = 1400 J/(kg·K)
and mechanical thermal effect β = 0.9, and ∆T is the elevated temperature. At a strain rate
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of 0.01 s−1, the sample is in thermal equilibrium with the outside world and the TS can be
regarded as the same as the ambient temperature.

∆T =

β
εtr∫
0

σdεtr

cρ
(5)

3.6. Failure Behavior Analysis under Ballistic Impacts

The ballistic impact experiment was numerically simulated. The inputs were the DIC-
calculated failure fracture strain and the J-C constitutive parameters. A friction coefficient
of 0.25 was used to describe the interaction between the bullet and the target plate.

Figure 12 shows the simulation results of the finite-element simulation of the PC/ABS
composite for the penetration experiment, as well as a comparison to the experimental
process of penetrating the target plate. Time (t0 = 0 µs) was defined as the moment the bullet
began contact with the target plate. Then, we compared the simulation with the target
plate’s damage shape and the bullet’s location at each of the following times: t0 = 0 µs,
t1 = 200 µs, t2 = 400 µs, t3 = 600 µs, t4 = 800 µs, and t5 = 1000 µs. The results of the
finite-element simulation were found to be in good agreement with the experimental
results. The finite-element simulation’s damage shape and experimentally reclaimed target
plate were compared, as shown in Figure 13. The finite-element simulation results can be
accepted given the intricacy of the experimental procedure, the target plate fixation error,
and several irresistible factors like air pressure instability, bullet ejection deviation, etc., [38].
In conclusion, the failure fracture strain computed by the deformation information of the
specimen and the J-C constitutive parameters of the PC/ABS composite established using
the inversion method are both accurate in this paper.
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4. Conclusions

PC/ABS composites were subjected to uniaxial tensile tests at different speeds and
temperatures. A high-speed video camera filmed the samples’ deformation process while
they were at room temperature. Based on the experimental results, this paper used the
inverse method to determine the J-C constitutive model that can be used to describe such a
composite. The high-speed impact tensile tests of the PC/ABS composite were simulated
numerically using Abaqus 2020 and the determined constitutive model and compared
with the test results. In addition, the numerical simulation can reproduce the test process
recorded by a high-speed camera in combination with the failure parameters obtained from
the DIC analysis. We carried out the design of target penetration experiments simulation.
The penetration simulation reproduces the experimental process and the failure model is
correct. The main conclusions are as follows:

(1) The results of tensile tests at different temperatures and different strain rates show
that such composite have more obvious temperature effect and strain rate effect, the
yield stress decreases with the increase in temperature and increases with the increase
in strain rate. The yield stress is linearly dependent on temperature and the logarithm
of the strain rate;

(2) The J-C constitution established by the inversion method in this paper has high
accuracy and is applicable to the PC/ABS composite. The failure behavior of the
material at different temperatures and strain rates can be predicted;

(3) Based on the local deformation of the sample recorded by the DIC technique, the
fracture strain of the PC/ABS composite can be deduced. This fracture strain can
accurately reproduce the fracture behavior of uniaxial tensile materials.
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