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Abstract: This work focuses on the synthesis and properties of quaternary ZnSnP2-yAsy chalcopyrite
solid solutions. Full miscibility of the solid solution is achieved using ball milling followed by hot
press sintering. The measured electrical conductivity increases substantially with As substitution
from 0.03 S cm−1 for ZnSnP2 to 10.3 S cm−1 for ZnSnAs2 at 715 K. Band gaps calculated from the
activation energies show a steady decrease with increasing As concentration from 1.4 eV for ZnSnP2

to 0.7 eV for ZnSnAs2. The Seebeck coefficient decreases significantly with As substitution from
nearly 1000 µV K−1 for ZnSnP2 to −100 µV K−1 for ZnSnAs2 at 650 K. Thermal conductivity is
decreased for the solid solutions due to alloy phonon scattering, compared to the end members with
y = 0 and y = 2, with the y = 0.5 and y = 1.0 samples exhibiting the lowest values of 1.4 W m−1 K−1

at 825 K. Figure of merit values are increased for the undoped solid solutions at lower tempera-
tures when compared to the end members due to the decreased thermal conductivity, with the
y = 0.5 sample reaching zT = 1.6 × 10−3 and y = 1 reaching 2.1 × 10−3 at 700 K. The largest values of
the figure of merit zT for the undoped series was found for y = 2 with zT = 2.8 × 10−3 at 700 K due to
the increasing n-type Seebeck coefficient. Boltztrap calculations reveal that p-doping could yield zT
values above unity at 800 K in case of ZnSnAs2, comparable with ZnSnP2.

Keywords: chalcopyrites; pnictides; thermoelectric materials

1. Introduction

Chalcopyrites ABX2 adopt an ordered supercell of the zincblende type, with a doubled
c axis because of the ordering of the cations A and B. Typical representatives include
charge-balanced pnictides A+2B+4(Pn−3)2 and chalcogenides A+1B+3(Q−2)2. The 2022 NIST
Inorganic Crystal Structure Database lists 17 pnictides (A = Mg, Zn, and Cd; B = Si, Ge, and
Sn; Pn = P, As, and Sb) and 26 chalcogenides (A = Li, Cu, and Ag; B = Fe, B, Al, Ga, In, and
Tl; Q = S, Se, and Te) adopting the chalcopyrite type. For several decades, chalcopyrites
have been studied for a number of different applications [1], including ZnGeP2 [2–4],
AgGaSe2 [5] and others [6] as nonlinear optical materials, photovoltaics [7], LEDs [8] and
thermoelectric materials [9,10].

Thermoelectric (TE) materials are capable of converting the abundant otherwise lost
waste heat into useful electricity, which may contribute to more sustainable energy genera-
tion [11–14]. Additionally, today’s researchers focus also on investigations into powering
the countless sensors in the Internet of Things [15–17], and utilizing body heat for various
sensors [18–21], both with TE materials. TE materials are classified by their figure of merit,
zT, with classical materials having peak values around unity. Recent progress in, for exam-
ple, nanostructuring and utilizing the phonon glass electron crystal (PGEC) approach [22]
to lower thermal conductivity, led to significantly higher values, even exceeding zTmax = 2
at high temperatures in selected examples such as PbTe with nanodomains [23] or with SrTe
nanoadditions [24], nanostructured Cu2Se [25] and Cu2Se/CuInSe2 nanocomposites [26],
and p-doped SnSe [27–29].
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For the most part, phosphides and arsenides are neither among the best performing
thermoelectrics nor among the heavily investigated ones, mostly because they typically
comprise higher thermal conductivity than the more traditional antimonides and tellurides.
Notable exceptions exist however [30–32], with figure of merit values of the order of 1
for both p- and n-doped phosphides [33]. Several Zn-based chalcopyrite phosphides and
arsenides (ZnBPn2 with B = Si, Ge, and Sn; Pn = P and As) were predicted to have high ther-
mopower [34]. We recently experimentally demonstrated that despite the high symmetry
crystal structures and relatively light constituent elements, the solid solutions ZnGe1-xSnxP2
can achieve reasonably low thermal conductivity, and ultimately high figure of merit values
when properly doped [35]. Here, we report on the solid solutions ZnSnP2-yAsy, focusing on
Sn instead of Ge because of its lower price, higher abundancy, and (partially) substituting
As for P because of its higher weight despite its higher toxicity, as higher weight typically
occurs with lower lattice thermal conductivity [13].

2. Materials and Methods

All reactions began from the elements (Zn powder (99.9% Alfa Aesar, Tewksbury,
MA, USA, −100 mesh), Sn powder (99.998% Alfa Aesar, −100 mesh), Ge pieces (99.999%
STREM Chemicals, Newburyport, MA, USA), P powder (99% Alfa Aesar, −100 mesh),
and As powder (99.98% Alfa Aesar, −100 mesh), which were loaded into zirconia lined
ball mill jars with ~10 g of 1 mm zirconia balls in an argon filled glove box. The jars were
milled at 600 rpm for 5 min increments with 1 min rest times, with the direction reversed
after each rest time, using the Fritsch Pulverisette 7, (acquired from Laval Lab, Laval, QC,
Canada). Three milling steps were employed, all as described above; after the first milling
step of 5 h, the jars were opened in the argon glovebox and agglomerated materials were
mechanically reincorporated before the two final 2 h milling steps. After those steps, the
reacted materials were ground by hand to yield a uniform micro-crystalline sample. Finally,
high-pressure sintering was performed as a final reaction step in graphite dies of a diameter
of 12.7 mm under a pressure of 56 MPa using an Oxy-Gon Industries (Epsom, NH, USA)
hot press; the temperature was ramped up over two hours to at 850 K and held there for
6 h, followed by a pressure-free cooldown.

Powder X-ray diffraction (PXRD) was performed on the ground samples as well
as polished pellets at room temperature using the Inel (Artenay, France) powder X-ray
diffractometer, which utilizes a position sensitive detector and Cu Kα1 radiation. Rietveld
refinements were performed using the GSAS-II (v. 5761) analysis software [36].

An FEI (Hillsboro, OR, USA) Quanta FEG ESEM microscope was used for the energy-
dispersive analysis of X-ray (EDAX) measurements with an acceleration voltage of 20 kV.
Five-point measurements were taken for each sample and then averaged, and area scans
and elemental mapping were performed on a 150 µm × 150 µm area.

Thermal diffusivity was measured on the pressed pellets under argon using the TA
Instruments (Hillsboro, OR, USA) DLF-1200 system. The Seebeck coefficient was measured
by the direct method, and electrical conductivity measured by a standard 4-point method,
both with the ULVAC RIKO ZEM-3 apparatus under helium on rectangular pellets of
8 × 2 × 2 mm, cut from the original round pellet after the thermal diffusivity measurements.
Estimated measurement errors are 3% for the Seebeck coefficient, 5% for the electrical
conductivity [37], and 5% for the thermal conductivity measurements [38], resulting in 10%
for the figure of merit. The error bars were included in the corresponding figures.

Electronic structure calculations were carried out using the WIEN2k_21.1 package that
employs the full potential linearized augmented plane wave (LAPW) method [39–41]. Here,
we used the generalized gradient approximation (GGA) from Perdew, Burke and Ernzerhof
(PBE) [42]. We used a grid of 1000 k points evenly distributed throughout the first Brillouin
zone, which resulted in 99 symmetry independent k points for ZnSnAs2. As convergence
criterion, we used 10−4 Ry for the maximum energy change. In addition, we employed the
BoltzTraP2 (v22.3.1) package [43] that uses the Boltzmann transport equations to calculate
the thermoelectric properties. Although assuming a constant relaxation time results in
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an additional uncertainty [44,45], this often leads to good agreement between theory and
experiment [46].

3. Results and Discussion
3.1. Chemical and Structural Characterization

After thermal diffusivity measurements were performed, the samples were cut into
bars for transport measurements, and PXRD was performed on the leftover pellet pieces
hand ground into powders. Long time (>12 h) PXRD measurements for ZnSnP2-yAsy were
performed for y = 0, 0.5, 1, 1.5, and 2 (Figure 1). The patterns are very consistent and do not
exhibit any signs of any side products.
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Figure 1. PXRD patterns of ZnSnP2-yAsy series (y = 0, 0.5, 1, 1.5, 2) with calculated patterns for
comparison (ZnSnP2: ICSD 22179; ZnSnAs2: ICSD 611439).

A shift of the characteristic peaks to lower angles occurs with increasing As concentra-
tion due to the unit cell expansion, caused by the larger size of the As atoms, compared to
the P atoms. The expansion of unit cell parameters is illustrated in Figure 2a,b, and sum-
marized in Table 1, namely a relatively steady increase with increasing As concentration
from y = 0 to y = 1.5, followed by a larger increase when moving from y = 1.5 to y = 2. The
tetragonality of the system, defined as c/(2a), slowly increases from 0.998 at y = 0 to 1.000
at y = 2 (Figure 2c).
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Table 1. Rietveld refinement results for ZnSnP2-yAsy.

y a, b (Å) c (Å) V (Å3) c/(2a)

0.0 5.6584(14) 11.290(4) 361.48(30) 0.9976(5)
0.5 5.7057(2) 11.3895(5) 370.79(1) 0.9981(1)
1.0 5.7659(4) 11.511(1) 382.69(3) 0.9982(2)
1.5 5.8133(2) 11.6085(5) 392.31(1) 0.9984(1)
2.0 5.9112(8) 11.814(2) 412.81(5) 0.9993(3)

The chemical compositions of the series were evaluated by refining the occupancy pa-
rameters during Rietveld refinements as well energy dispersive X-ray spectroscopy (EDAX)
analysis. The y values (As content) of the solid solutions were refined to 0.59(1), 1.06(3), and
1.66(1) for the solid solutions with nominal y values of 0.5, 1.0, and 1.5. EDAX results for the
solid solutions and end members can be found in Table 2. The concentrations determined
from EDAX measurements match well for the solid solutions with expected atomic percent
values showing differences of less than 8%, while the end member ZnSnAs2 displayed
significantly lower than expected Zn and As (higher Sn) concentration. EDAX atomic
mapping for these materials can be found in the Supplementary Information (Figure S1).

Table 2. EDAX analysis results in atomic-% obtained using five-point measurements for ZnSnP2-yAsy.

Element y = 0.5 y = 1.0 y = 1.5 y = 2.0

Zn 24.8 23.9 24.8 21.9
Sn 25.8 24.8 25.6 32.1
P 37.5 27.1 12.7 -

As 11.9 24.2 36.9 45.9

3.2. Experimental Physical Properties

Electrical conductivity versus temperature measurements were carried out for all
members of the series (Figure 3). We verified the stability of the samples under the mea-
surement conditions by measuring a few additional datapoints during cooldown. These
datapoints (open circles in Figure 3) match the corresponding points obtained during heat-
ing to approximately 800 K very nicely, confirming the samples’ stabilities. The electrical
conductivity of the P-rich members was too low to be measured at room temperature,
but became measurable around 450 K or above, depending on y. As expected for semi-
conductors, the electrical conductivity increases with temperature for all members. An
overall increase in conductivity with increasing As concentration is evident, in line with
the expected decreasing band gap and higher degree of covalency (which increases carrier
mobility), both caused by the lower electronegativity of As, compared to P. The conductivity
for ZnSnP2 rises from σ = 0.01 S cm−1 at 650 K to 0.1 S cm−1 at 800 K, and for ZnSnAs2
from σ = 0.03 S cm−1 at 300 K to 7.0 S cm−1 at 650 K.
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For comparison, ZnSnAs2 crystals grown by chemical vapor transport displayed a σ
value of only 1.4 × 10−4 S cm−1 at 300 K, much lower than observed in this work, likely
due to the low level of impurities typically found in perfect single crystals [47]. On the
other hand, single crystals synthesized by the Bridgman method displayed σ = 24 S cm−1

at 295 K [48]. ZnSnAs2 bulk samples studied under various heat treatments had σ values
ranging from 0.1 S cm−1 to 1200 S cm−1 at 300 K, with most values around 400 S cm−1 [49].
Heat treatments of the quenched samples tended to decrease conductivity, indicating heal-
ing of possible defects in these samples, which then resulted in lower electrical conductivity.
Chalcopyrite CuInSe2 single crystals exhibited σ values ranging from 0.15 S cm−1 at 300 K
to 0.46 S cm−1 at 575 K [50], likely low because of their low amounts of intrinsic defects.
Studies of vacancy doped p-type Cu0.99InSe2.05—which adopts the same structure type and
has the same number of electrons—displayed σ values ranging from 1.5 S cm−1 at 325 K to
6.0 S cm−1 at 760 K with degenerate semiconducting behavior [51].

An Arrhenius plot of ln(σ) versus T−1 is shown in Figure 4, where a linear trend is
expected for intrinsic semiconductors and curved trends for extrinsic semiconductors. The
series members displayed mostly intrinsic semiconducting behavior, except for ZnSnAs2
with its extrinsic behavior indicative of a significant amount of defects. Band gaps of the
series members are calculated from the slope (in the high temperature linear region) using
the Arrhenius expression for the activation energy. A clear trend of decreasing band gaps
with As concentration is observed as postulated above (inset of Figure 4). The previously
determined band gaps of Eg = 1.4 eV for ZnSnP2 and 0.7 eV for ZnSnAs2 are comparable to
the literature values of 1.68 eV for ZnSnP2 [52] and 0.59 eV for ZnSnAs2 [48].
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The Seebeck coefficient data measured for the full series are displayed in Figure 5. The
values decrease with increasing As concentration, for example at the highest temperatures
from S = 744 µV K−1 for y = 0 down to −125 µV K−1 for y = 2, in line with the opposing
trend in the electrical conductivity. The temperature dependence for the materials from
y = 0 to y = 1.5, decreasing steadily with increasing temperature, is typical of p-type intrinsic
behavior. A turnover of the slope in Seebeck versus temperature is indicative of bipolar
conduction, which is seen at 475 K for the y = 2 end member, which ultimately results in a
p-type to n-type transition.

Previous studies of bulk ZnSnAs2 showed degenerate p-type semiconducting behavior,
with Seebeck coefficient values ranging from S = 41 µV K−1 at 300 K to 60 µV K−1 at 440 K
similar to the results found in this work for the same temperature range. Various heat
treatments and synthesis methods produced room temperature S values ranging from
26 µV K−1 (slowly cooled sample) to 224 µV K−1 (after annealing at 883 K) [49]. Single crys-
tals displayed larger overall S values with degenerate semiconducting behavior, ranging
from 310 µV K−1 at 300 K to 400 µV K−1 at 600 K [48]. The analogous I–III–VI chalcopy-
rite CuInSe2 single crystals grown by vapor deposition displayed S values ranging from
542 µV K−1 at 300 K down to 300 µV K−1 at 400 K, and then increasing again to 600 µV K−1

at 625 K [50]. Vacancy doped p-type Cu0.99InSe2.05 had S values of 300 µV K−1 at 300 K,
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which increased to 625 µV K−1 at 620 K to finally decrease to 500 µV K−1 at 775 K [51]. A
similar p-type to n-type transition was observed in one study of CuInSe2, with 100 µV K−1

at 300 K increasing slightly to 200 µV K−1 at 390 K and then decreasing rapidly to
−200 µV K−1 at 560 K [53].
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The thermal conductivity data are shown in Figure 6, revealing a typical decrease
with temperature due to increased phonon frequencies. Here as well, the data collected
after the first heating cycle during the cooldown (open circles) match the data during
heating, showing stability of the materials under the measurement conditions. The end
members exhibit the largest values with κ = 4.2 W m−1 K−1 and 5.6 W m−1 K−1 at 300 K to
2.4 W m−1 K−1 and 2.7 W m−1 K−1 at 825 K for y = 0 and y = 2, respectively. The
lowest values are observed in y = 0.5 and y = 1 with κ = 2.2 W m−1 K−1 and 2.3 W m−1

K−1 at 300 K, respectively, which have equal values of 1.4 W m−1 K−1 at 825 K. Slightly
larger than the other solid solutions, the material with y = 1.5 displays κ values between
2.8 W m−1 K−1 at 300 K and 1.7 W m−1 K−1 at 825 K. Increased phonon scattering due to
mass fluctuation effects and disorders thus reduces the thermal conductivity by more than
a factor of two at room temperature for the solid solutions compared to the end members.
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Considering the low electrical conductivity values, the electronic contribution to
the measured total thermal conductivity remains always below 0.01 W m−1 K−1 based
on the Wiedemann-Franz law. Therefore, the measured thermal conductivity is basi-
cally directly equal to the lattice thermal conductivity. Gasson et al. measured between
κ = 4.3 W m−1 K−1 (sintered sample) and 14.1 W m−1 K−1 (slowly cooled sample) for
ZnSnAs2 [49], demonstrating again how the properties, e.g., charge carrier concentration
and thus electronic thermal conductivity, depend on the heat treatment.

The calculated thermoelectric figure of merit is obtained from combining Seebeck
coefficient, electrical and thermal conductivity, as well as temperature via zT = TσS2 κ−1.
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As the thermal data were obtained for a larger temperature range, the zT values are lim-
ited to the temperature ranges of the electrical measurements. The largest and smallest
zT values are observed in the y = 2 end member with zT = 1.4 × 10−9 at 300 K to 0.003
at 700 K and hypothetically zero at the p-n transition temperature (Figure 7). At high
temperatures, the relatively large electrical conductivity, increasing negative Seebeck co-
efficient, and decreasing thermal conductivity contribute to improving thermoelectric
performance. Gasson et al. determined zT of slowly cooled ZnSnAs2 to be 0.004 at 300 K,
with a carrier concentration of 5.7 × 1020 cm−1 [49]. The maximum zT values for all solid
solution members (i.e., containing both P and As) occur at 700 K with 2.0 × 10−3 for y = 1,
1.6 × 10−3 for y = 0.5, and 4.3 × 10−4 for y = 1.5. The ZnSnP2-yAsy solid solutions outper-
form the y = 0 end member.
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3.3. Calculated Physical Properties

The band structure and density of states of ZnSnAs2 are shown in Figure 8, as the
corresponding results for ZnSnP2 were published before [35]. A small direct band gap
exists at the Γ point, with several bands converging at the top of the valence band, in line
with the high degree of tetragonality. There are strong resemblances to the calculated band
structure of ZnSnP2 [35], with the smaller band gap being the most noticeable difference.
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Using BoltzTraP2, the Seebeck coefficient S, the electrical conductivity σ, the power
factor σS2, and the electronic contribution to the thermal conductivity κ0 were calcu-
lated (relative to the relaxation time τ) for temperatures up to 800 K, as displayed in
Figure 9. Depending on the carrier concentration (relative energies), high Seebeck values
around +500 µV K−1 and −400 µV K−1 may be achievable at 400 K, and power factor
values of S2σ τ−1 = 6 × 1011 W m−1 K−2 s−1 for both p- and n-type at 800 K. For compar-
ison, the corresponding peak values were 13 × 1011 W m−1 K−2 s−1 for ZnGeP2 and
11 × 1011 W m−1 K−2 s−1 for ZnSnP2 (both at 900 K).
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To obtain estimated figure of merit values for ZnSnAs2, we used a standard relaxation
time of τ = 10 fs, as typical for these materials [54], and the experimentally obtained lattice
thermal conductivity values κlat (Equation (1)):

zT = T
(
σS2/τ

)
·τ

(κ0/τ)·τ + κlat
(1)

As shown in Figure 10, the zT values increase steadily from room temperature up to
800 K, reaching values slightly above unity (zT = 1.07, at 1.4 × 1020 carriers per cm3,
or 0.006 carriers per formula unit) for p-type and 0.48 for n-type doped ZnSnAs2 at
1.4 × 1020 carriers per cm3. The maximum for the p-type compares well with ZnSnP2,
where a zTmax = 1.0 was obtained at 800 K.

While the work from Gasson et al. implies that a large range of different charge
carrier concentrations of between 0.2 × 1020 cm−1 and 33 × 1020 cm−1 can be obtained
for ZnSnAs2 [49], a systematic doping study has not yet been performed on ZnSnAs2.
p-type doping could be systematically achieved by partial replacements of Zn with Cu
or Sn with In, with formulae of Cu0.006Zn0.994SnAs2 and ZnIn0.006Sn0.994As2, respectively,
corresponding to a hole carrier concentration of the order of 1020 cm−3.



Materials 2024, 17, 1712 9 of 11

Materials 2024, 17, x FOR PEER REVIEW 9 of 12 
 

 

𝑧𝑇 𝑇 / ∙/ ∙ . (1)

As shown in Figure 10, the zT values increase steadily from room temperature up to 
800 K, reaching values slightly above unity (zT = 1.07, at 1.4 × 1020 carriers per cm3, or 0.006 
carriers per formula unit) for p-type and 0.48 for n-type doped ZnSnAs2 at 1.4 × 1020 carri-
ers per cm3. The maximum for the p-type compares well with ZnSnP2, where a zTmax = 1.0 
was obtained at 800 K.  

 
Figure 9. BolzTraP2 calculation results for ZnSnAs2: (a) Seebeck coefficient S; (b) electrical conduc-
tivity σ, (c) power factor σS2, and (d) electronic thermal conductivity κ0. 

 
Figure 10. Estimated figure of merit for ZnSnAs2. Figure 10. Estimated figure of merit for ZnSnAs2.

4. Conclusions

We successfully synthesized and characterized the solid solution series ZnSnP2-yAsy
via a mechanochemical route. Full miscibility exists, and the increasing As concentra-
tion causes a smaller band gap and higher electrical conductivity. The lowest thermal
conductivity values were measured for the solutions with y = 0.5 and y = 1.0.

The undoped as-prepared samples all exhibit poor thermoelectric performance (low
figure of merit). Our calculations showed that proper p-type doping of ZnSnAs2 should
lead to outstanding performance with figure of merit values exceeding zT = 1, while n-
doping would be less successful with peak zT values of the order of 0.5. As previously
demonstrated [35], the other end member, ZnSnP2, should be able to achieve comparable
performance when p-doped, and better performance when n-doped.
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