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Abstract: Due to its exceptional qualities, ultra-high-performance concrete (UHPC) has recently
become one of the hottest research areas, although the material’s significant carbon emissions go
against the current development trend. In order to lower the carbon emissions of UHPC, this
study suggests a machine learning-based strategy for optimizing the mix proportion of UHPC. To
accomplish this, an artificial neural network (ANN) is initially applied to develop a prediction model
for the compressive strength and slump flow of UHPC. Then, a genetic algorithm (GA) is employed to
reduce the carbon emissions of UHPC while taking into account the strength, slump flow, component
content, component proportion, and absolute volume of UHPC as constraint conditions. The outcome
is then supported by the results of the experiments. In comparison to the experimental results, the
research findings show that the ANN model has excellent prediction accuracy with an error of less
than 10%. The carbon emissions of UHPC are decreased to 688 kg/m3 after GA optimization, and
the effect of optimization is substantial. The machine learning (ML) model can provide theoretical
support for the optimization of various aspects of UHPC.

Keywords: ultra-high-performance concrete; machine learning; artificial neural network; genetic
algorithm; carbon emissions

1. Introduction

Ultra-high-performance concrete is a cementitious material with excellent properties.
UHPC research has gained popularity recently, and its range of applications has been
steadily growing. It has been used in civil engineering including high-rise buildings,
bridges, architectural decorating materials, marine structures, explosion-proof structures,
nuclear waste storage containers, and thin-walled structures. Materials such as Portland
cement, silica fume, mineral powder, fly ash, quartz powder, quartz sand, high-performance
water-reduction agent, steel fiber, etc. are the primary types of raw materials adopted in
UHPC [1]. Compared to ordinary concrete, the relation between UHPC performance and
raw components is more complicated and exhibits a highly nonlinear relationship. The
performance of UHPC cannot be predicted using traditional approaches, and obtaining
precise regression equations is challenging. High carbon emissions are another major
factor restricting the adoption of UHPC. There is presently no uniform design approach
or standard for UHPC mix design due to the complexity of raw materials. For designing
UHPC mix proportions without adjustment, the conventional mix design procedure for
ordinary concrete based on empirical characteristics is not appropriate.

Machine learning (ML) methods have advanced quickly in recent years, and their
theories and techniques have been widely utilized to tackle challenging issues in a variety
of engineering and scientific domains [2–8]. Researchers have been driven to apply ANN
models and optimization methods to address a variety of civil engineering issues due to
the growth of ML techniques [9]. A popular area of research right now is utilizing ANN
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to predict the mechanical properties of concrete. Ly et al. [10] predicted the compressive
strength of self-compacting concrete using the grey wolf optimizer and ANN. Through the
application of ANN, Zhu et al. [11] developed a prediction model for the early compressive
strength of UHPC. Because ANN is capable of universal approximation, academics have
come to value it more and more. The parameters in the model can have an impact on how
accurately predictions are made, according to existing studies. The prediction model’s
accuracy can be increased, and its physical process can be clarified by utilizing the right
parameters. Using ML techniques to improve concrete performance can help avoid its
influence mechanism and also offer recommendations for experimental investigation.
Sobolev et al. [12] optimized the sequential packaging algorithm using GA and used
it to model the tight packing of concrete aggregates. The optimization of concrete mix
proportions can be accomplished using this technique. To reduce the risk of early cracking,
Chiniforus et al. [13] utilized a mixed design method based on the numerical simulation
of concrete heat transfer and GA optimization. Employing the ANN-GA model, Latif
et al. [14] optimized the opening ratio and masonry wall stiffness of buildings. Previous
research has proved the precision of the ANN-GA model in civil engineering [15].

Due to the enormous number of parameters in UHPC, researchers need to develop
novel selection algorithms based on data-driven models. The required model is a function
of UHPC components, and by identifying and reducing input parameters, the ANN model
can be simplified. It can simultaneously increase computational effectiveness and forecast
precision. The UHPC mix proportion with the lowest carbon emission that satisfies engi-
neering requirements can be obtained by creating a concrete performance prediction model
that is stressed in engineering, with the required performance indicators as constraint
conditions and the carbon emission as the optimization objective.

To achieve ultra-high performance, the usual UHPC compositions employ a lot of
cement and other raw materials, which emits 0.68–0.85 tons of CO2 per cubic meter of
materials [16,17]. Although there are many different paths being developed to improve
sustainability in the construction industry, the most practical and feasible ones involve min-
imizing the amount of Portland cement in concrete by replacing it partially or completely
with supplementary cementitious materials (SCMs), such as fly ash (FA), silica fume (SF),
and ground granulated blast-furnace slag (GGBFS) [18–21]. Additionally, maximizing the
amount of recycled material in concrete can be achieved by replacing coarse aggregates
partially or completely with recycled concrete aggregates, recycled glass, and recycled
plastic aggregates [22,23]. These environmentally friendly methods have shown signifi-
cant potential in reducing embodied carbon. According to Miller et al. [24], the concrete
mix ratio also affects the potential for global warming. The life cycle of concrete will be
determined by its durability. UHPC is durable and does not even need to be maintained
for 80 years [25]. Regarding the application of nano additions, several contributions have
noted that employing various cement substitutes could increase the mechanical qualities
and durability [26]. Authors also have proved that cementitious materials’ endurance
can be further increased by adding SCMs through experiments [27]. Hence, if the carbon
emissions can be reduced, the UHPC will have a wider usage. To lower CO2 emissions,
alternative cement materials should undergo an environmental impact study.

At the beginning of this study, the dataset of UHPC is developed. Then, an ANN
prediction model for the 28 day compressive strength and slump flow of UHPC is estab-
lished. Next, the genetic algorithm is used to optimize the UHPC mix proportion with the
lowest carbon emissions, taking into account the minimum 28 day compressive strength
and minimum slump flow required in engineering as constraints, as well as the constraints
of component content, component proportion, and absolute volume. The experimental
results prove the accuracy of the proposed ML model. In order to achieve the lowest carbon
emissions while still meeting the engineering specifications for concrete performance, the
goal of this research is to simulate the intricate relationship between the composition and
performance of UHPC using ML methods. This will increase the likelihood that UHPC will
be applied in various applications.
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2. Machine Learning Methods
2.1. ANN

ANN is a research hotspot in the field of artificial intelligence. The development of a
nonlinear information processing ANN model involves imitating the neural network of the
human brain. A sizable number of nodes (or neurons) coupled to one another make up
the model. The activation function, a particular output function, is represented by each
node. An artificial neural network’s memory is represented by the connection between
each pair of nodes as a weight, which is a value for the signal traveling through the link.
The activation function is triggered when a node receives a signal over its threshold, and
the outcome is regarded as the input to the following neuron. The network’s activation
function, weight value, and connection patterns all influence its output. The connection
weight value is wi. The input xi is multiplied by wi on each node. An offset will be included
following the addition of all earlier products. The output value is then transferred using
the activation function, as seen in Equation (1).

y = f
(
∑n

i=1 wixi + Biasi

)
(1)

It is capable of accurately approximating any nonlinear function. In order to com-
prehensively address the issue of hidden layer connection weights in multi-layer neural
networks, ANN utilizes the error backpropagation (BP) algorithm [28]. BPNN is a multi-
layer feedforward neural network trained using the gradient descent methodology and
the error backpropagation algorithm. Between the input layer nodes and the output layer
nodes, the ANN inserts numerous hidden layer nodes. Each layer may have multiple
nodes. The forward propagation of signals and the backward propagation of errors are
two processes that make up the BPNN. While modifying the weights and thresholds is
performed in the direction from output to input, calculating the error output is executed in
the direction from input to output. The weights and thresholds when the error reaches an
acceptable range are established after repeated learning and training. The model has been
created and the network training has been finished.

In order to build a BPNN, it is required to decide how many hidden layers there will
be and how many nodes will be in each layer. The number of nodes in the input and output
layers is equal to the number of input vectors and output vectors, respectively. One can use
optimization algorithms or trial-and-error procedures to figure out how many hidden layer
nodes there are. By contrasting the network simulation results corresponding to various
hidden layer nodes, trial and error methods establish the ideal number of hidden layer
nodes. The vast majority of real-world issues can now be resolved by using a single hidden
layer, and increasing the number of hidden layers frequently has more drawbacks than the
benefits and poorer cost-effectiveness.

When designing UHPC using the ANN model, the input layer nodes are the UHPC
mix ratios, and the output layer nodes are the required performances. While statistical
approaches may be impacted by the overfitting of several decision variables and redundant
terms in the model, ANN has advantages over traditional statistical methods in modeling a
large number of decision variables and objectives. To assure the ANN model’s accuracy, the
training process necessitates a wide range of dataset parameters and a substantial amount
of data.

2.2. Gradient Descent Method

The gradient descent method belongs to an iterative method. The gradient descent
approach is frequently used to iterate step by step until the least value of the error func-
tion and its accompanying optimal model parameters are obtained while solving model
parameters of ML.

The downhill problem can be used to visualize the gradient descent approach. The
error function’s initial value is considered to be at a specific peak position, and the iterative
process of the error function using the gradient descent method is thought to be a downhill
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process, or the challenge of going downhill at the fastest speed. The quickest way to get to
the bottom of the mountain is to determine the gradient direction at the present location
and then move along it with a predetermined step size to reach the next spot. Afterward,
the gradient is determined there, the parameters move in the gradient’s direction, and the
process is repeated iteratively. When the procedure is finished, the mountain’s bottom will
have been reached, signifying that the model’s parameters have been solved and the error
function has reached its minimum value.

Stochastic gradient descent (SGD), batch gradient descent (BGD), and mini-batch
gradient descent (MBGD) are the three primary variations of the gradient descent method.
The randomness in SGD is reflected in the fact that the samples undergo a shuffling
operation during each iteration process. After training, the node weights and deviations are
updated using a randomly chosen sample. This operation is iterated, and the method does
not need to traverse all datasets. BGD needs the calculation of all samples for each iteration,
which necessitates the traversing of all datasets to determine errors. As a result, this method
demands a heavy computing load and lengthy convergence when the data is enormous.
However, BGD can better represent the sample population, and the direction obtained by
traversing the dataset is closer to the direction where the extreme value is located. With
partial samples used for error calculation and parameter adjustments throughout each
iteration, MBGD can be thought of as an intermediate solution between SGD and BGD.
Its training speed is significantly faster than that with BGD, and its model convergence is
more stable than that with SGD.

2.3. GA

GA was first proposed by John Holland in the 1970s, and it was later described as
“a kind of simulated evolutionary algorithm” by DeJong and Goldberg et al. [29]. It is a
model that simulates Darwin’s biological evolution theory’s natural selection and genetic
mechanisms in an effort to find the optimal solution. Six steps make up the fundamental
operation procedure of a genetic algorithm.

(1) Initialization: In genetic algorithms, the initial population consists of a set of ran-
domly selected potential solutions. The effectiveness of genetic algorithms is strongly
influenced by the initial population. Since the parameters of the solution cannot
be handled directly by genetic algorithms, the solved problem must be encoded to
become an individual in the genetic space. Binary encoding, octal encoding, hexadeci-
mal encoding, real encoding, tree encoding, permutation encoding, etc. are some of
the common encoding techniques. For different types of computational problems, spe-
cific forms of transformations play an important role. Although binary encoding can
speed up crossover and mutation operations, it is unsuitable for some sophisticated
engineering design issues. The use of hexadecimal and octal encoding is not widely
used. Real number encoding works better for some more difficult issues, particularly
those involving neural networks. Tree encoding can be applied with any encoding
language and is appropriate for use in constantly evolving programs or expressions.

(2) Individual evaluation (fitness calculation): The fitness function, which can be single-
or multi-objective, is a crucial part of genetic algorithms. The objective function is a
function that assesses how well a group of parameters—individuals who make up
the population—perform. When creating a fitness function for a practical situation,
care should be taken to ensure that it is non-negative, continuous, single-valued,
logical, and consistent. Based on specific challenges, the fitness function should be
easy to understand and computationally efficient. The iterative convergence of genetic
algorithms is directly influenced by the fitness function’s design’s rationality, which
also has an impact on the effectiveness of optimization outcomes.

(3) Selection operation: Selection operation controls whether an individual participates in
population reproduction, and it also affects how quickly genetic algorithms converge.
The Boltzmann algorithm, ranking algorithm, roulette wheel algorithm, random
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traversal sampling method, etc. are some of the frequently used selection methods.
For the selection processes in this study, a roulette wheel algorithm is utilized.

(4) Cross operation: In order to complete the recombination of genetic information and
create a new generation of individuals in the population, cross operation simulates
chromosomal exchange in biology. The population can be continuously optimized
through selection operations when new individuals change in terms of their fitness
value. The commonly used crossover operators include single-point crossover, two-
point crossover, k-point crossover, uniform crossover, etc.

(5) Mutation operation: Crossover operation produces new individuals with the same
alleles as their parents, which will have a detrimental effect on population variety. The
goal of mutation operation is to maintain population diversity. The alleles of offspring
are changed at random by the mutation operation, and the mutation probability
should be as low as feasible or else the genetic algorithm will be identical to the
random search algorithm. Exchange mutation, inversion mutation, random shuffling
mutation, etc. are some of the frequently utilized mutation operators.

(6) Termination condition judgment: Three criteria need to be met for a genetic algorithm
to be judged to have met its termination requirement. The genetic algorithm’s default
iteration, which is typically set to 100 to 500, is the first. The genetic algorithm’s
iteration process ends, and the ideal individual is produced after the predetermined
number of iterations has been reached. The second is to set the fitness function
threshold, which allows the genetic algorithm to skip iterations and output the best
candidate if an individual satisfies the objective function’s requirements and the
required fitness value during the iteration process. The third criterion is that the
genetic algorithm has achieved the convergence threshold and cannot achieve the
optimization effect through further iterations if the population’s fitness function value
is not increasing during the genetic algorithm’s iteration process. As a result, it is
possible to finish the iteration and produce the optimal individual.

In this study, the carbon emission function of UHPC is employed as the fitness function,
and various UHPC mix ratios serve as various individuals in the population. The individual
with the highest fitness is the UHPC mix ratio with the lowest carbon emissions after
selection, crossover, and mutation processes.

2.4. K-Fold Cross Validation Method

Stone introduced the k-fold cross validation (CV) in 1974, and it is now commonly
used in machine learning techniques to choose appropriate hyperparameters [30]. K-fold
cross-validation is a commonly used technique for evaluating the performance of machine
learning models. Using this approach, the original dataset is divided into k equal subsets.
Of these, k-1 subsets are used as training sets, and one subset is used as a validation
set. Every k times, this process is performed with a distinct validation set. Lastly, the
model’s performance measure is determined by averaging the performance metrics of each
validation set. Furthermore, K-fold cross-validation can give a more accurate evaluation of
the models’ capacity for prediction while reducing bias and variance issues brought on by
incorrectly partitioned datasets. To address the issues of overfitting and underfitting in the
training dataset, this work divides the dataset into ten folds [31].

The performance of the prediction model is assessed using the correlation coefficient
(R), mean squared error (MSE), and mean absolute error (MAE). The square difference
between the predicted and experimental values is calculated via MSE. R determines how
closely two variables are correlated. MSE and MAE can measure the predictive ability
of the model by calculating the difference between the true and predicted values. MSE,
MAE, and R are commonly used indicators to measure the predictive ability of regression
models [17,31]. Equations (2)–(4) can be used to calculate MSE, R, and MAE, respectively.

MSE =
1
N ∑N

i=1(yi* − yi)
2 (2)
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R =
∑N

i=1
(
yi* − y*

)
(yi − y)√

∑N
i=1

(
yi* − y*

)2
√

∑N
i=1(yi − y)2

(3)

MAE =
1
N ∑N

i=1|yi* − yi| (4)

where yi* represents the predicted result and yi is the experimental result.

3. Materials and Experiments
3.1. Materials

The raw materials of UHPC in the research contain cement, fly ash (FA), mineral
powder (GGBS), silica fume (SF), fine aggregate, steel fibers, superplasticizer, and water,
as displayed in Figure 1. Portland cement (P.I. 52.5R) is provided by Sichuan Esheng
Company. The Chongqing Fuhuang Company (Chongqing, China) provides first-class FA
with a specific surface area of 415 m2/kg. Ningxia Boyu Company’s GGBS (Ningxia, China)
has a specific surface area of 427 m2/kg. SF has an average particle size of 13.3 µm, provided
by Shanghai Shanying Environmental Protection Technology Co., Ltd. (Shanghai, China).
The chemical makeup and densities of cement, FA, GGBS, and SF are all listed in Table 1.
Fine aggregate is made of machine-made sand, with an apparent density of 2630 kg/m3

and a fineness modulus of 3.34. The water-reducing agent used in this experiment is a
polycarboxylic acid superplasticizer made by China Construction West Construction Co.,
Ltd. (Chengdu, China), with a water-reducing rate of 45% and a solid content of 40%. The
steel fiber is 12 mm long, 0.25 mm in diameter, and 1800 MPa for ultimate tensile strength.
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Figure 1. UHPC raw material: (a) cement; (b) fly ash; (c) GGBS; (d) silica fume; (e) fine aggregate;
(f) steel fiber; (g) superplasticizer.

Table 1. Chemical composition and density of cementitious materials.

SiO2
(%)

Al2O3
(%)

CaO
(%)

MgO
(%)

Na2O
(%)

K2O
(%)

Fe2O3
(%)

TiO2
(%)

SO3
(%)

P2O5
(%)

Density
(kg/m3)

P.C 21.39 5.15 61.04 2.82 0.64 0.62 3.86 0.85 3.1 0.10 3190
FA 48.54 27.12 3.19 11.08 1.63 2270

GGBS 26.74 12.36 41.34 4.56 3.89 0.03 2750
SF 94.57 0.67 0.34 0.23 0.82 0.15 2.07 0.90 2310
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3.2. Experiments

A total of 41 mix proportions are prepared for this experiment, of which 40 are used to
confirm the ANN prediction model’s accuracy in predicting UHPC compressive strength
and slump flow. The other mix ratio is designed for the validation of the GA optimization
of UHPC carbon emissions. The specific mix ratio of UHPC is provided in Table 2. Given
that they are supplied for the purpose of testing the ML model, the mix ratio needs to take
into account the broadest feasible range.

Table 2. The mix proportion of UHPC in the experiments.

Cement/kg FA/kg GGBS/kg SF/kg Fine
Aggregates/kg

Steel
Fibers/% Superplasticizer/% Water/kg

565 154 154 154 1141 2.0 1.8 164
569 155 155 155 1034 2.0 1.8 165
582 48 194 145 1212 2.0 1.8 165
632 0 0 158 1316 2.0 1.8 223
642 0 0 148 1185 2.0 1.8 158
653 201 0 151 1008 4.0 1.8 161
675 125 0 115 1179 0.0 2.0 180
679 48 97 145 1212 2.0 1.8 155
690 212 0 159 1061 3.0 1.8 191
692 0 0 148 1185 2.0 1.8 158
692 0 99 148 1333 2.0 1.8 134
703 151 0 151 1005 4.0 1.8 161
718 0 0 127 1352 2.0 1.8 152
736 0 0 156 1182 2.0 1.8 173
741 198 0 148 1185 2.0 1.8 158
750 125 0 115 1104 0.0 2.0 180
754 0 157 136 1047 3.0 1.8 209
763 191 0 106 1079 2.0 1.8 173
775 0 161 136 1072 2.0 1.8 193
776 48 0 145 1212 2.0 1.8 165
777 0 0 108 1079 2.0 1.8 173
790 0 105 158 1053 3.0 1.8 189
800 176 0 150 650 2.0 1.8 165
808 0 0 143 1189 2.0 2.0 175
811 0 0 143 1192 2.0 1.8 191
817 0 0 144 1202 2.0 1.8 180
820 0 107 145 1072 2.0 1.8 214
840 0 0 148 1185 2.0 1.8 158
847 0 0 150 997 4.0 1.8 179
850 176 0 150 650 2.0 1.8 165
857 0 0 151 1008 4.0 1.8 191
861 0 0 152 1125 2.0 1.8 202
865 0 54 153 1072 2.0 1.8 193
868 0 0 153 1021 3.0 2.0 183
870 0 0 154 1024 3.0 2.0 189
875 0 0 154 1144 2.0 1.8 206
890 0 0 157 1047 3.0 1.8 209
900 0 0 100 1350 0.4 2.5 170
903 0 0 159 1062 2.0 1.8 204

1000 0 0 0 1350 0.4 2.5 170

First, add cement, fly ash, mineral powder, silica fume, and machine-made sand to
the mixer after weighing the UHPC raw materials in accordance with the designed mix
ratio. Then, dry mix for 1 min to create a uniform dry mixture. The high-performance
water-reducing agent is added to the water, which is then slowly added to the dry mix-
ture while stirring for an additional three minutes. After that, stir the dry mixture for
another 4 min while continuing to distribute the steel fibers. For each mix ratio, three sets
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of 100 mm × 100 mm × 100 mm cube specimens are made after the slump flow of fresh
UHPC has been measured. One at a time, pour the mixture into the test mold. To remove
bubbles, place the test mold on a vibrating table and vibrate for 30 s. The test mold should
be covered with plastic film and left to stand for 24 h at 20 ◦C ± 2 ◦C. Finally, leave the
UHPC specimen in a standard curing room for 28 days at a temperature of 20 ◦C ± 2 ◦C
and 95% humidity.

The slump flow test is then conducted. Divided into three layers, the UHPC mixture
should be loaded into a slump cylinder after discharge. Use a vibrating rod to equally
insert the UHPC mixture 25 times from the edge to the center of each layer. The height
of the UHPC mixture sample in each layer after compaction makes up around one-third
of the cylinder height. The rod must pierce the whole depth of the slump cylinder while
adding the third layer. Once the tamping is finished, take the UHPC mixture out from the
cylinder. Vertically raise the slump cylinder. Measure the largest diameter of the mixture
expansion surface and its vertical diameter after the UHPC mixture stops diffusing or the
diffusion time reaches 50 s. Take the average of the two values as the slump flow when the
difference between the two diameter values is less than 50 mm. The slump flow should be
remeasured if there is a discrepancy between the two diameter values of more than 50 mm.

Compressive strength testing is carried out using a cube specimen having a dimension
of 100 mm by 100 mm by 100 mm. When testing compressive strength, a load rate of
12 kN/s is used. The test piece’s surface as well as the upper and lower pressure plates of
the testing apparatus should be thoroughly cleaned before the test. The pressure surface
should be the side of the UHPC test piece’s forming surface, and the test piece’s center
should be lined up with the center of the two plates. The preparation and testing process of
UHPC is illustrated in Figure 2.
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(d) membrane cover; (e) standard curing; (f) compressive strength tests.

4. Machine Learning Optimization
4.1. Database

First, a database for UHPC is built. The raw materials used by UHPC are diverse.
Except for the raw materials in the study, some UHPCs contain metakaolin, limestone
powder, steel slag powder, rice husk ash, coarse aggregates, and different types of fibers.
Considering that there should not be too many types of raw materials used in the production
of UHPC in the factory, the study takes into account the most fundamental raw materials.
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The 28 day compressive strength and slump flow data for UHPC in this study comes from
two sources: the first is existing literature [32–44], and the second is our experimental
data, with a total of 422 sets of data gathered. The data from the training group is used to
train the ANN, and the data from the testing group is used to test the model. The training
group has 261 samples, while the testing group has 160 samples. Together with other
experimental results from the literature, the experimental results in the study work as the
testing set to test the prediction capacity of the ML model. The mix proportions of each
group of specimens are different, and they are also different from those of specimens in
other literature. The purpose of adding new samples is to increase the coverage range of the
samples, in order to improve the prediction range and accuracy of the model. Meanwhile,
10-fold cross-validation is adopted in the research considering a low number of records.

Prior to analysis, the input data has to be normalized because the dataset contains
varying units and ranges. The collected data are normalized using MinMax to standardize
the input variables [45]:

xnorm = (x − xmin)/(xmax − xmin) (5)

where xmin and xmax indicate the minimum and maximum values of a certain class of
input values, respectively. xnorm indicates the normalized result of a particular class in
input values.

4.2. ANN Prediction Model

Next, a prediction model for the compressive strength and slump flow of UHPC
is developed using ANN. There are eight input layer neurons, which correspond to the
content of cement, fly ash, mineral powder, silica fume, fine aggregate, steel fiber, water-
reducing agent, and water. There are two output layer neurons which correspond to
the compressive strength and the fresh UHPC slump flow. The trial and error method
is used to calculate the number of hidden layer neurons. The ANN prediction model’s
prediction accuracy is substantially impacted by the number of hidden layer neurons. For
each network, networks with five to twenty hidden layer neurons are trained. Ten-fold CV
randomly divides the training set into ten parts, selecting one part as the verification set in
turn, and the remaining nine parts as the training set. The process is repeated ten times,
with different samples as a validation subset. Next, the error is averaged to evaluate the
prediction after ten-fold cross-validation is applied. The mean values of the correlation
coefficient R and mean square error MSE are then chosen for comparison. Figures 3 and 4
display the outcomes.
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The correlation coefficient R is taken to be 0.8804 when the number of hidden layer
neurons is equal to 15, based on the findings in Figures 3 and 4. When there are 15 hidden
layer neurons, the MSE likewise falls to its lowest value. Thus, the ANN model with
15 hidden layer neurons exhibits the highest correlation and the least error between the
predicted value and the experimental value. For the purposes of developing a prediction
model for compressive strength and slump flow, an ANN network with 15 hidden layer
neurons is chosen. Figure 5 depicts the structure of the ANN model.
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The data are trained multiple times after the ANN’s structure is determined, and the
network that performs the best in terms of prediction is chosen for constructing a prediction
model for the UHPC 28 day compressive strength and slump flow. Figure 6 exhibits the
correlation coefficient R. The compressive strength and slump flow prediction models have
R values of 0.94723 and 0.94414, respectively. Both are close to 1, showing that the network’s
learning effect is quite strong and that there is a significant connection between the model’s
predicted results and the experimental values. The compressive strength and slump flow
prediction models have MAE values of 0.7 and 5.79, respectively. The low MAE values also
prove the predictive accuracy of the ANN model.
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To predict the 28 day compressive strength and slump flow of UHPC, the trained ANN
model is employed. Figures 7 and 8 display the predicted results and contrast them with the
experimental values. The prediction error can be used for future samples. The experimental
results come from the experiments in Section 3.2. The predicted results are obtained using
the ANN model by providing the mix ratio in experiments. With the same mix ratio, the
predicted values are typically within 10% of the experimental values. The outcomes of
the ANN prediction are good. According to the results, ANN can accurately forecast the
compressive strength and slump flow of UHPC. If more pertinent data are gathered, the
prediction model’s accuracy will increase even more. Additionally, this demonstrates that
machine learning models may be utilized to produce UHPC without requiring numerous
trial mixes.
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4.3. GA Optimization Process
4.3.1. Calculation Method of Carbon Emissions

A life cycle assessment (LCA) is performed to quantify the environmental impacts
associated with each mixture design used in this study. The analysis is performed on a
declared unit of 1 m3 of UHPC for each mixture based on a cradle-to-gate scope. A number
of studies have been conducted on LCA calculations to assess the environmental impact of
different construction materials [46,47]. The LCA of UHPC is displayed in Figure 9.
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The product stage of concrete (the so-called “cradle to gate” for the product) is selected
as a convenient system boundary. UHPC production includes raw material extraction, the
transport of the raw materials, and production process. The total CO2 emissions can be
calculated as follows [48]:

CO2−e = CO2−eM + CO2−eT + CO2−eP (6)

where CO2−e, CO2−eM, CO2−eT, and CO2−eP represent total CO2 emissions, CO2 emissions
from raw materials, CO2 emissions from transport, and CO2 emissions from the mixing
operation of UHPC, respectively.
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Raw Material Stage

CO2 emission from concrete production is calculated as the sum of the quantity of each
ingredient used for producing 1 m3 of concrete and the CO2 emission base units. Equation
(7) is used for calculating CO2 emission during the production of the raw material required
for manufacturing 1 m3 of concrete [48]. Table 3 lists the CO2 emission reference of each
ingredient at the raw material stage. Due to the fact that the volume fraction of steel fibers
in the dataset is the ratio of their mass to the total mass of cementitious materials, the two
data have been converted.

CO2−eM = CO2−C·WC + CO2−Fl ·WFl + CO2−GGBS·WGGBS + CO2−Si·WSi + CO2−FA·WFA
+CO2−SF·WSF + CO2−SP·WSP + CO2−W ·WW

(7)

Table 3. Carbon emissions from raw materials.

Materials Carbon Emission (kg/ton) References

P.C 931 [48]
FA 19.6 [48]

GGBS 26.5 [49]
SF 14 [50]

Fine aggregate 1.3 [48]
Steel fiber 1496.5 [51]

Water-reducing agent 250 [48]
Water 0.196 [48]

Among them, CO2−C, CO2−Fl , CO2−GGBS, CO2−Si, CO2−FA, CO2−SF, CO2−SP, and
CO2−W are the unit mass carbon emissions of cement, fly ash, GGBS, silica fume, fine aggre-
gate, steel fiber, water-reducing agent, and water, respectively. WC, WFl , WGGBS, WSi, WFA,
WSF, WSP, and WW are the masses of cement, fly ash, GGBS, silica fume, fine aggregate,
steel fiber, water-reducing agent, and water in 1 m3 UHPC, respectively. CO2−eM is the
carbon emissions during the production stage of UHPC.

Transportation Stage

The total quantity consumed and the amount of fuel used for each component are
measured in order to determine the CO2 emissions at the transportation stage. The distance
and method of transport of UHPC ingredients to the manufacturing site are used to
determine the CO2 emissions. The CO2 emission amount for the transportation stage
is provided by Equation (8) [46]. The CO2 emission reference values for each mode of
transportation are listed in Table 4.

CO2−eT = ∑[(M(i)/Lt) × (d/e) × CO2 emission factor T] (8)

where CO2−eT is the CO2 emissions at the transportation stage for the production of 1 m3

UHPC (kg-CO2/m3); CO2 emission factor T is the CO2 emission factor of the energy resource
(kg-CO2/kg); M(i) is the amount of material used of concrete (kg/m3); Lt is the transporta-
tion load (tons); d is the transportation distance (km); and e is the fuel efficiency (km/L).

Table 4. Transportation types of concrete ingredients [52].

Type of Transport Emission Factor kg CO2−e t−1km−1

Road 0.071
Rail 0.0166
Sea 0.0146 - -

Considering that transportation emissions are highly dependent in all case stud-
ies [53,54], this study considers short-distance transportation. The distance of transport of
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UHPC ingredients to the manufacturing site is taken as 10 km [47,52], and the transport
method is by truck.

Manufacturing Stage

The amount of energy used by the equipment required to produce 1 m3 of concrete
and convert it to CO2 can be used to determine the CO2 emissions from the production
of concrete. The five steps of the concrete manufacturing process are as follows: loading,
storing, transporting, measuring for mixing, and mixing. After examining the necessary
equipment and data pertaining to power and fossil fuel energy consumed in each stage, the
energy required to manufacture 1 m3 of concrete can be calculated by calculating the ratio
between the capacity of each piece of equipment and the total amount of electricity used.
The CO2 emission amount for the manufacturing stage is provided by Equation (9) [46].

CO2−eP = ∑[(E(i)/R) × CO2 emission factor F] (9)

where CO2−eP is the CO2 emission at the manufacturing stage for the production of 1 m3

UHPC (kg-CO2/m3); CO2 emission factor F is the CO2 emission factor (kg-CO2/kwh, L, kg)] of
an energy resource; R denotes the annual UHPC production (m3/year)]; and E(i) denotes
the annual energy usage (unit/year). Here, the CO2−eP is taken as 7.7 kg-CO2/m3[47].

4.3.2. Optimization Objective Function

The ANN model is developed for further optimization using the GA method. The
compressive strength and slump flow are predicted together in the ANN model for the
sake of simplification when conducting the GA optimization process. The UHPC mix
proportion optimization can be linked to reducing carbon emissions while satisfying the
demands of strength and workability. In essence, the model for predicting compressive
strength and slump flow develops a nonlinear functional relationship between UHPC
mix proportion and performance. We also need to define an objective function for this
optimization, namely the carbon emissions function, which is a linear function, because
the optimization aim of this study is the UHPC’s carbon emissions. The carbon emissions
function CO2−e is illustrated in Section 4.3.1. The optimal UHPC mixtures show the lowest
embodied CO2. By adjusting the mix ratio of UHPC, the CO2 emissions can be minimized
when the strength and workability of UHPC are satisfied.

4.3.3. Constraint Condition

There are numerous restrictions on how the carbon emissions objective function can
be optimized. In this study, the following constraint conditions are taken into account:
strength, slump flow, component content, component ratio, and absolute volume.

(1) Compressive strength. The 28 day compressive strength estimated by the ANN model
for UHPC should be higher than the strength required. Equation (10) illustrates the
strength constraint:

fc(28) ≥ fcr(28) (10)

Among them, fc (28) is the ANN predicted value of the 28 day compressive strength
of UHPC. fcr (28) is the required value for the 28 day compressive strength of UHPC,
which needs to be selected according to the requirements in actual engineering. Con-
sidering the basic mechanical properties of UHPC, fcr (28) is taken as 120 MPa in this
study [55].

(2) Slump flow. The ANN prediction value of the slump flow of fresh UHPC should
be higher than the required slump flow. Equation (11) displays the slump flow
constraints:

Slump ≥ Slumpr (11)

where Slump is the ANN-predicted value of the workability of fresh UHPC. Slumpr is
the required workability of fresh UHPC, which needs to be selected according to the



Materials 2024, 17, 1670 15 of 19

requirements of actual engineering. Considering the basic working performance of
UHPC, Slumpr is taken as 600 mm in this study [56].

(3) Component content. The optimized UHPC component content should be within a
reasonable range, and this study uses the data range in the dataset as the component
content constraint. The component content constraint is shown in Equation (12), and
some statistical parameters of the dataset are illustrated in Table 5.

Lower ≤ Comp ≤ Upper (12)

where Comp represents the component content, including cement, fly ash, GGBS, silica
fume, fine aggregate, steel fiber, water-reducing agent, and water. Lower and Upper
are the lower and upper limits for each component content.

(4) Component proportion. Some components in UHPC are related, and the proportion
of some components should be constrained. This study has considered the water–
cement ratio, water–binder ratio, and cement–sand ratio. We still use the proportion
range in the dataset as a component proportion constraint. The detailed constraint
of composition ratio is shown in Equations (13)–(15). Some statistical parameters of
water–cement ratio, water–binder ratio, and cement–sand ratio in the data set are
provided in Table 6.

Rl
w/c ≤ Rw/c ≤ Ru

w/c (13)

Rl
w/b ≤ Rw/b ≤ Ru

w/b (14)

Rl
b/ f a ≤ Rb/ f a ≤ Ru

b/ f a (15)

where Rw/c, Rw/b, and Rb/fa are the water–cement ratio, water–binder ratio and cement–
sand ratio, respectively. Rl and Ru are the lower and upper limits of each composition
ratio, respectively.

(5) Absolute volume. The absolute volume of UHPC is calculated by Equation (16), which
means that the total volume of all components in a 1 m3 UHPC should equal 1 m3.

WC
ρC

+
WFl
ρFl

+
WGGBS
ρGGBS

+
WSi
ρFl

+
WFA
ρFA

+
WSF
ρSF

+
WSP
ρSP

+
WW
ρW

= 1 (16)

where WC, WFl, WGGBS, WSi, WFA, WSF, WSP, and WW represent the masses of cement,
fly ash, GGBS, silica fume, fine aggregate, steel fiber, water-reducing agent, and water
in 1 m3 UHPC, respectively. ρC, ρFl, ρGGBS, ρSi, ρFA, ρSF, ρSP, and ρW represent the
densities of cement, fly ash, GGBS, silica fume, fine aggregate, steel fiber, water-
reducing agent, and water, respectively. The densities of cementitious materials are
given in Table 1. The densities of fine aggregate, steel fiber, water-reducing agent, and
water are 2630 kg/m3, 7800 kg/m3, 1190 kg/m3, and 1000 kg/m3, respectively.

Table 5. Statistical parameters of the raw materials.

Min Max Average Range

Cement (kg/m3) 490 1000 754.3 510
FA (kg/m3) 0 275 156.8 275

GGBS (kg/m3) 0 275 144.6 275
SF (kg/m3) 30 210 150.2 180

Fine aggregate (kg/m3) 940 1408 1085.7 468
Steel fiber (%) 1 3.5 2.11 2.5

Water-reducing agent (%) 0.4 2.0 1.10 1.6
Water (kg/m3) 142 282 185.9 140

Slump flow (mm) 300 920 543.1 620
Compressive strength (MPa) 100.2 190.8 135.7 90.6
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Table 6. Statistical parameters of Rw/c, Rw/b, and Rb/fa.

Min Max Average Range

Rw/c 0.140 0.477 0.239 0.337
Rw/b 0.120 0.300 0.171 0.180
Rb/ f a 0.65 1.60 1.03 0.95

4.3.4. Implementation of Carbon Emission Optimization

The UHPC mix ratio can be optimized using GA once the optimization objective
function and constraint conditions have been established. The UHPC mix ratio works
as the basis for the optimization objective function and the five constraint conditions,
which are all applied to the optimization process. As a result, while UHPC progressively
lowers its carbon emission through GA, its performance can also satisfy the demands of
real-world engineering.

With population size NP = 450, maximum iteration count maxgen = 200, crossover
probability Pc = 0.8, and mutation Pm = 0.1, carbon emissions are optimized for UHPC by
GA. The UHPC carbon emission continuously decreases during the iteration process of the
genetic algorithm through initialization, fitness calculation, selection operation, crossover
operation, and mutation operation, ultimately obtaining the optimal UHPC mix ratio for
carbon emissions.

Due to optimization, the value of the optimization objective function, or the UHPC
carbon emission function, continues to drop as the population iterates. The carbon emission
function value appears to be mostly constant when the number of iterations approaches
140, demonstrating that the genetic algorithm has reached the convergence threshold. For
this investigation, a maximum of 200 iterations are appropriate. The optimized mix ratio
for UHPC with the lowest carbon emissions is obtained, and it is displayed in Table 7 as
the optimal mix ratio for carbon emissions. This mix ratio has a compressive strength
prediction value of 125.1 MPa and a slump flow prediction value of 630.2 mm. The carbon
emission CO2−e optimized by GA is 688 kg/m3. Compared with the UHPC without
ML optimization, the carbon emissions CO2−e of UHPC with a strength of 120 MPa are
798 kg/m3 based on our experiment in Section 3.2. Both results consider the cradle-to-gate
boundary and have raw materials with the same embodied carbon. Hence, the results are
comparable, and carbon emissions associated with the optimized UHPC mix proportion
through GA have significantly dropped.

Table 7. Mix proportion for UHPC before and after optimization.

P.C
(kg)

FA
(kg)

GGBS
(kg)

SF
(kg)

Sand
(kg)

Steel Fiber
(%)

Superplasticizer
(%)

Water
(kg)

CO2−eM
(kg)

CO2−e
(kg)

Before
optimization 582 145 97 145 1212 0.02 0.01 165 788 798

Optimized 512.4 216.8 180.3 165.5 923.8 1.57 1.65 222.3 678 688

Finally, the results are further experimentally validated. UHPC specimens are formed
according to the optimized low-carbon emission mix ratio and subjected to experimental
tests. The compressive strength of UHPC with the optimized mix ratio in Table 7 is
120.5 MPa, with a slump flow of 670 mm through experiments. The error between the
experimental values and the ML model is 3.7% and 6.3%, respectively. Meanwhile, the
strength and workability constraints are met. It proves that the ML optimization model is
suitable for the reduction in carbon emissions.

In this research, the reduction in the carbon footprint is due to the use of a large ratio of
by-products. In the concrete industry, the replacement of cement with high-volume SCMs
is the most practical and economical way to reduce CO2 emissions [57]. Many studies have
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reduced the CO2 emissions of concrete by incorporating mineral admixtures [58]. Our
results agree with previous research.

5. Conclusions

The goal of this research is to utilize ML techniques to optimize the UHPC mix ratio
and achieve the UHPC mix ratio with the lowest carbon emissions while taking into account
the workability and compressive strength of UHPC. The study has a significant impact on
encouraging UHPC’s use in engineering.

First, a database on the 28 day compressive strength and slump flow of UHPC is
obtained based on previously published research and experimental data on UHPC. Then,
utilizing the mix ratio parameters of UHPC as input variables, a prediction model for the
28 day compressive strength and workability of UHPC is developed using BPNN. The
strength, workability, component content, component ratio, and absolute volume of UHPC
are constraints on the optimization design, with the carbon emissions of UHPC serving as
the objective function. By optimizing the objective function through GA, the optimized
UHPC carbon emissions are 688 kg/m3. The accuracy of the predictions made by BPNN for
predicting UHPC performance can be continuously improved by extending the database.
Different constraint criteria can be specified using the GA optimization method depending
on the various demands for UHPC performance. Results for global optimization with
various constraint conditions can be obtained by GA.
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