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Abstract: The potential of bisphenol A (BPA)-binding peptides fused to magnetic beads is demon-
strated as novel adsorbents that are reusable and highly selective for BPA removal from aqueous
environments, in which various interfering substances coexist. Magnetic beads harboring peptides
(peptide beads) showed a higher BPA removal capacity (8.6 mg/g) than that of bare beads without
peptides (2.0 mg/g). The BPA adsorption capacity of peptide beads increased with the number of
peptides fused onto the beads, where monomeric, dimeric, or trimeric repeats of a BPA-binding
peptide were fused to magnetic beads. The BPA-adsorbing beads were regenerated using a methanol–
acetic acid mixture, and after six regeneration cycles, the adsorption capacity remained above 87% of
its initial capacity. The selective removal of BPA was confirmed in the presence of BPA analogs with
high structural similarity (bisphenol F and bisphenol S) or in synthetic wastewater. The present work
is a pioneering study that investigates the selective affinity of peptides to remove specific organics
with high selectivity from complex environmental matrices.
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1. Introduction

Bisphenol A (BPA) has been widely used in the production of polycarbonate and
epoxy resins [1,2]. It is a representative endocrine disruptor, which is principally released
into the environment through its manufacturing processes, wastewater treatment effluents,
and landfill leachates (e.g., hydrolysis of polycarbonate, recycled paper, etc.). Consequently,
BPA can affect humans through food and drinking water intake, so there is a need to
remove BPA from wastewater before it is discharged into the environment. These charac-
teristics of BPA have increased public concern regarding its potential environmental risks.
For example, the acute toxicity of BPA is in the range of 1–10 mg/L for several aquatic
organisms [3]. Additionally, exposure to BPA at low levels of <1 µg/m3 can adversely affect
human health. Human BPA exposure affects the male reproductive function and disrupts
the thyroid function, which is associated with metabolic diseases, including diabetes and
obesity, hypertension, and cardiovascular diseases [1]. To date, various methods have
been investigated to handle BPA pollution, including advanced oxidation, adsorption,
biodegradation, membrane separation, and photodegradation [4–10]. However, the effi-
ciency of BPA removal in chemical oxidation and conventional bioprocesses varies with
operating conditions [11,12]. Biodegradation and sludge adsorption have been reported
as the two main mechanisms contributing to BPA removal in bioprocesses, with sludge
adsorption achieving over 50% BPA removal efficiency [12]. However, large volumes
of BPA-containing sludge pose challenges for treatment facilities, thereby demanding
alternatives to fully address BPA contamination.

Adsorption is one of the preferred methods for treating water pollution because it
effectively removes pollutants while offering the advantages of low operating costs and
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less harmful byproduct generation [13]. Various adsorbents have been studied for the
adsorptive removal of BPA [4,14]. However, most adsorbents remove BPA in a nonselective
manner and are therefore hindered by pollutants that coexist with BPA, thereby reducing
their net BPA adsorption capacity and increasing the adsorbent’s cost. There are also
additional challenges in the disposal of adsorbent residues containing the adsorbed BPA.

These challenges can be addressed by developing easily separable adsorbents with
specific affinity for targeted contaminants. Peptides, which are oligomers of amino acids,
are known to have selective affinity for specific targets. Recently, the use of peptides in
environmental remediation has received great attention [15]. Although several peptide
sequences have demonstrated affinity for specific targets [16], only a few peptide molecules
can recognize low-molecular-weight organic compounds such as BPA. For instance, a
cysteine-flanked heptapeptide, Cys–Lys–Ser–Leu–Glu–Asn–Ser–Tyr–Cys (CKSLENSYC),
was screened through biopanning using a combinatorial constrained peptide library on the
surface of M13 phage, displaying an affinity for BPA [17]. Magnetic particles can be rapidly
collected under an external magnetic field, making them good candidates for reusable
adsorbents [18–21]. By binding functional ligands with affinity to target molecules to mag-
netic particles, target compounds can be selectively removed from complex environmental
matrices. There have been investigations on the adsorptive removal of BPA using magnetic
particles. Magnetic graphene oxide impregnated with polymers (polystyrene, chitosan,
and polyaniline) was applied for the adsorptive removal of BPA. This adsorbent showed
a relatively high BPA adsorption capacity of about 36.27–86.22 mg/g, but its selective
removal for BPA was not validated [20]. Magnetic graphene oxide-based molecularly
imprinted polymer was studied for the selective removal of BPA from aqueous solutions,
and the selectivity removal ratios of BPA over BPA structural analogs such as 2,4-DCP and
phenol were 1.77 and 2.40, respectively, but the degree of structural similarity between BPA
and 2,4-DCP or phenol was not sufficient enough to fully validate the selective removal
performance of adsorbent [21].

In this study, we investigated the adsorptive removal of BPA using magnetic beads
fused with selective BPA-binding peptides. The performance of the peptide-based adsorbent
was evaluated at different pH levels, BPA concentrations, and peptide concentrations on the
adsorbent surface. The selective removal of BPA by these peptide-based adsorbents was
ensured in the presence of BPA structural analogs (e.g., bisphenol S (BPS) and bisphenol F
(BPF)) or synthetic wastewater. To further increase the BPA removal capacity, adsorbents fused
with multimeric peptides, such as dimeric and trimeric peptide repeats, were tested. Finally,
the adsorption isotherm correlations were quantified to characterize the developed adsorbents.

2. Materials and Methods
2.1. Materials

Two forms of BPA-binding peptide (NH2–CKSLENSYC–COOH), a cyclic constrained
form through a disulfide bridge between the flanking cysteine residue and a linear form,
were custom-synthesized at Bio-FD&C (Lugen Sci., Bucheon, Republic of Korea). Linear
forms of dimeric and trimeric peptides (NH2–KSLENSYKSLENSY–COOH and NH2–
KSLENSYKSLENSYKSLENSY–COOH) were also synthesized. Peptides (100 mg/L) were
dissolved in 100 mM MES buffer and stored at 4 ◦C before use. AccuBeadTM COOH
magnetic beads with functional carboxyl groups (silica-coated magnetic beads, average
diameter 1.56 µm, zeta potential −39.8 mV, 2.74 × 108 COOH/bead) were purchased from
Bioneer Inc. (Daejeon, Republic of Korea). The 4-morpholineethanesulfonic acid (MES),
a buffer with a pKa value of 6.15, N-(3-dimethyl aminopropyl)-N′-ethylcarbodiimide
hydrochloride (EDC), N-hydroxy-succinimide (NHS), bovine serum albumin (BSA, A7906),
anhydrous acetonitrile (ACN), BPA, BPF, and BPS were obtained from Sigma-Aldrich
(St. Louis, MO, USA). A BPA stock solution (1000 mg/L) was prepared in methanol and
was diluted with water when used in the experiments.
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2.2. Construction of Peptide Bead

AccuBeadTM COOH magnetic beads were washed twice with a 25 mM MES buffer.
Then, the BPA-binding peptide was covalently linked to the bead surface via carbodiimide-
mediated amide bond formation (EDC/NHS activation) between the N-terminus of peptides
and the carboxylic acid groups on the bead surface according to the Thermo Fisher Scientific
protocol [22], with slight modifications. In detail, 3 mg of bare beads were incubated with
50 µL of EDC and 50 µL of NHS (each at 50 g/L in cold 25 mM MES) under slow tilt rotation
for 30 min. Then, the carbodiimide-activated beads were collected using a magnet and
washed with 25 mM MES. Next, 100 µL of the peptide (100 mg/L) was incubated with
carbodiimide beads for 1 h. The peptide-linked bead was magnetically collected, and the
peptide concentration in the supernatant was measured to determine the amount of peptide
bound to the beads. For comparison, carbodiimide beads without peptide binding and beads
coated with albumin protein were prepared using the same protocol.

2.3. Bisphenol A Adsorption

After 500 µL of BPA (20 mg/L) was incubated with 0.3 mg of beads under slow
tilt rotation for 1 h, the beads were collected through magnetic separation, and the BPA
concentration in the supernatant was measured to determine the amount of BPA adsorbed
on the beads. We investigated the change in BPA adsorption as a function of pH (2–10) and
the change in BPA adsorption on beads prepared at different peptide doses (50–1000 mg/L).
In bead reusability experiments, after adsorption, the beads were treated with a 500 µL
methanol–acetic acid mixture (8:2, v/v) for 30 min and then washed with the 25 mM MES
buffer. The amount of desorbed BPA was measured from the BPA concentration in the
methanol–acetic acid solution, and these restored beads were consecutively reused for the
subsequent adsorption rounds. The selective BPA-binding ability of peptide beads was
evaluated using BPA analogs, such as BPS and BPF. The first set of adsorption experiments
involved separate incubations of 0.3 mg of peptide beads with 500 µL of 15 mg/L BPA,
BPS, or BPF solutions. The second set involved the incubation of peptide beads with a
mixed solution composed of BPA, BPS, and BPF at equal concentrations (5 mg/L each,
resulting in a total concentration of 15 mg/L). Finally, synthetic wastewater [23] containing
BPA, BPS, and BPF was used to determine the BPA selectivity of peptides within a complex
environmental matrix.

2.4. Analysis

Peptide concentrations were determined using high-performance liquid chromatography
(HPLC, UV 220 nm, Agilent 1200, Santa Clara, CA, USA) with a C18 column (250 mm × 4.6 mm,
5 microns, Kromasil 100-5-C18, Kromasil, Göteborg, Sweden). A gradient elution of water
containing acetonitrile and 0.1% (v/v) trifluoroacetic acid was used, ranging from 0% to 70%
(v/v) acetonitrile at a flow rate of 1 mL/min. BPA concentrations were determined using
another C18 column (Phenomenex 250 mm × 4.6 mm, Torrance, CA, USA) and a mobile phase
of acetonitrile–water at a ratio of 57:43 (v/v) at a flow rate of 1 mL/min, monitored at 280 nm.
The amount of BPA adsorbed per unit mass of adsorbent (qt) was calculated using the mass
balance equation from the difference between the initial and final solute concentrations in
the solution before and after adsorption, i.e., (1) qt = (C0 − Ct)V/W, where C0 and Ct are the
initial and final BPA concentration in the solution (mg/L), respectively; V is the volume of BPA
solution (L); and W is the adsorbent dosage (g). All analyses were performed in triplicate, and
the obtained values were averaged.

3. Results
3.1. Preparation and Characterization of Peptide Beads

Peptide beads were constructed by linking the amine group of the peptide to the car-
boxylic group on the bead surface via an EDC/NHS reaction. NH2–CKSLENSYC–COOH,
a previously screened BPA-binding peptide [24], was custom-synthesized in two confor-
mations of the same sequence: a cyclic-constrained form (C-peptide) with a disulfide
bridge between cysteine residues and a linear form (L-peptide) without a disulfide bridge.
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This differentiation aimed to examine the effect of the spatial conformation of peptides on
their BPA-binding performance. Constraining a peptide via a disulfide bridge results in a
structure with higher conformational stability than that of L-peptide, thereby improving
affinity and selectivity for the target [25]. The amount of peptide bound to the beads was
determined by measuring the peptide concentration in the supernatant after the EDC/NHS
reaction between the peptide and beads. For instance, incubating 3 mg of EDC/NHS-
activated beads with 100 µL of peptide (100 mg/L) resulted in slightly higher peptide
binding in the C-peptide beads (1.73 × 108 peptides/bead) than in the L-peptide beads
(1.56 × 108 peptides/bead). The manufacturer of the magnetic beads (AccuBeadTM COOH
Magnetic Bead, Bioneer Inc., Daejeon, Republic of Korea) reported the number of carboxyl
groups on the bead surface as 2.74 × 108 –COOH/bead. Based on this value, the peptide
linking efficiency to the bead was found to be at 56.9% (L-peptide) and 63.1% (C-peptide).

Figure 1a displays a comparative analysis of Fourier transform infrared (FT–IR) spec-
tra of bare, carbodiimide-activated, and peptide beads. The strong IR band observed at
580 cm−1 is a characteristic of Fe–O vibrations associated with the magnetic core, while
the band centered at 1030 cm−1 corresponds to Si–O–Si or Si–O–Fe stretching vibrations
of the silica shell. The strong IR bands located at 1553 and 1633 cm−1 are characteristic of
amide bonds in peptide beads [26]. The strong C=O band observed at 1732 cm−1 clearly
distinguishes bare beads from peptide beads, representing the C=O stretching vibrations of
carboxylic acid. After peptide binding, a shift is observed, which is associated with covalent
bonding between the peptide and the carboxyl group of the bead. The peaks centered
at 1658 and 1546 cm−1 demonstrate coupling between N–H in-plane bending vibrations
and C–N stretching vibrations of the peptide backbone, respectively, aligning well with
previous reports [25,27,28]. The peaks located at 3305.8 and 1458.6 cm−1 are attributed to
the stretching and in-plane bending vibrations of O–H in carboxylic groups. Moreover, char-
acteristic absorption bands for –OH (–NH), –C=O, –CH2–/–CH3, and C–O ester/ether are
located at 3458, 1732, 2974, and 1161–1259 cm−1, respectively. BET analysis was performed
to evaluate the changes in bead surface area and pore volume before and after peptide
adsorption. The adsorption–desorption results confirmed that the adsorbent follows a
type IV adsorption isotherm with a characteristic hysteresis loop, as shown in Figure 1b,
and the pores of the beads are in the mesoporous range. Compared to the bare beads, the
peptide-bound beads exhibited an increase in surface area from 65.345 to 71.970 m2/g and
an increase in pore volume from 0.101 to 0.118 cm3/g. This increase in surface area and
pore volume is likely due to the attachment of peptide molecules to the bead surface. In the
SEM-EDS analysis of the beads shown in Figure 1c,d, the bare bead surface was relatively
smooth, but after peptide binding, the surface became rough. The changes upon peptide
binding were also confirmed by EDS elemental analysis, where the presence of carbon and
nitrogen increased from 20.86% to 24.08% and 1.45% to 1.85% atomic weight, respectively.

3.2. Bisphenol A Adsorption on Peptide Beads

BPA adsorption is related to pH, as the pH of the solution influences the degree of
BPA ionization, surface charge, and the extent of the dissociation of functional groups on
the adsorbent [29]. The degree of the dissociation of BPA and peptides in the solution
can be affected by the pH owing to the hydroxyl groups in BPA and amine and carboxyl
groups in peptide beads. Figure 2a,b show a comparison of the BPA adsorption on bare
beads, albumin-coated beads, L-peptide beads, and C-peptide beads at various pH values.
No substantial differences in adsorption efficiency were observed between the four bead
types at pH 2 and 10. However, the L-peptide and C-peptide beads showed considerably
higher BPA adsorption capacities at pH 6 than the other two beads. The adsorption
capacities of L-peptide bead, C-peptide bead, bare bead, and albumin-coated bead were
7.74, 8.93, 1.80, and 2.11 mg/g, respectively. Since C-peptide showed better adsorption
capacity than others, C-peptide beads were used in subsequent experiments.
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The surface charge of a protein is positively charged when the pH is below the isoelectric
point (pI) of the protein and negatively charged at a pH above the pI value [30]. The pI value
of the peptide used in this study was calculated to be 6.1, rendering it positively charged
at pH 2 and negatively charged at pH 10. Furthermore, BPA has a pKa of 9.9, from which
the percentage of molecular BPA (nonionized form) can be calculated. BPA usually exists in
molecular form below pH 7 and becomes negatively ionized at other pH levels [31,32]. Thus,
electrostatic repulsion is expected to exist between the negatively charged peptide and BPA
at pH 10, while minimal electrostatic repulsion is expected between the positively charged
peptide and neutral BPA at pH 2. Consequently, the lower BPA adsorption efficiencies at both
pH levels indicate an insignificant influence of electrostatic interactions on BPA adsorption.
Similarly, the BPA adsorption efficiency on polymer adsorbent is improved when BPA exists
in its molecular form [33,34]. Herein, to find the optimal pH condition, experiments were
further conducted in the pH range of 5–7 (Figure 2b), thereby achieving slightly higher BPA
adsorption capacity using the peptide bead adsorbent at pH 6. Around pH 6 (close to the pI
value of the peptide), the electrostatic forces between the peptide and BPA weaken, allowing
other interactions, such as π–π dispersion and hydrogen bonding, to facilitate BPA adsorption
on peptide beads [13]. Hydrogen bonding can occur between the hydroxyl groups of BPA
and the hydrophilic groups (carboxyl and hydroxyl) of the peptide, while π–π dispersions
may exist between the benzene ring of BPA and the phenolic rings of the peptide. We also
performed zeta potential analysis of the peptide beads, as shown in Figure 2c. The pH at which
the peptide beads maintained zero net charge (pH-PZC) was calculated to be 6.2. This indicates
that the adsorbent is negatively charged above pH 6.2 and positively charged below pH 6.2.
The high adsorption near pH 6–7 is likely due to the stable electrostatic attraction between the
positively charged BPA and negatively charged peptide beads. Additionally, previous studies
on the ability of peptides to recognize specific targets reported that several factors, such as the
sequence and local conformation of peptides and their coordination, are jointly involved in the
binding of the peptides to specific targets [35–38]. Therefore, more independent studies are
needed to address the interaction mechanism between BPA and peptides.

Considering the correlation between the number of peptides on the bead surface and
BPA adsorption capacity, the EDC/NHS reaction was conducted with different peptide
doses (initial peptide concentration ranging from 50 to 1000 mg/L) to construct peptide
beads. Figure 3 shows the moles of peptide bound to beads per unit bead mass in peptide
beads, the moles of BPA adsorbed per unit bead mass, and finally, the moles of BPA
adsorbed per unit peptide mole calculated using these two values. Upon increasing the
peptide dose to 500 mg/L, the amount of peptide bound to the beads increases, but it
becomes evident that peptide binding to the bead saturates within the 500 and 1000 mg
peptide/L range. The total amount of BPA adsorbed to a bead saturates at ~500 mg/L, and
eventually, the amount of BPA adsorption per mole of peptide decreases as the peptide
dose increases to 1000 mg/L. Consequently, BPA adsorption is related to the number of
peptides acting as BPA-binding sites. The decrease in BPA adsorption efficiency per mole
of the peptide can be attributed to steric hindrance associated with the increased peptide
density on the bead surface.

To quantitatively analyze BPA adsorption by peptide beads, adsorption isotherm ex-
periments were conducted while varying the initial BPA concentrations from 2 to 20 mg/L.
The L-shaped adsorption isotherm for peptide beads in Figure 4a shows that the Langmuir
adsorption model (Equation (1)), which describes uniform adsorbate distribution (BPA)
on the uniform adsorbent surface (peptide beads), fits better than the Freundlich model
(Equation (2)), which describes multilayer adsorption on heterogeneous adsorbent surfaces.
Conversely, in the case of bare beads, the isotherm data fit the Freundlich model better
than the Langmuir model. To calculate the model parameters, we applied the linearized
Langmuir model (Equation (3)), as depicted in Figure 4b, and the linearized Freundlich
model (Equation (4)), as illustrated in Figure 4c.
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qe =
qmaxKLCe

1 + KLCe
, (1)

qe = k f C1/n
e , (2)

Ce

qe
=

1
qmax

Ce +
1

qmaxKL
, (3)

lnqe = lnk f +
1
n

lnCe, (4)

where qe (µmol/g of adsorbent) is the equilibrium BPA adsorption capacity of beads,
Ce (µmol/L) is the equilibrium BPA concentration in the solution after adsorption, kf is
the Freundlich constant, and 1/n is the heterogeneity factor. The empirical parameters
qmax (µmol/g) and KL (L/µmol) denote the theoretical maximum adsorption capacity of
the adsorbent and the affinity constant, respectively [39].
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Linear regression analysis showed that the Langmuir model (R2 = 0.930) provided
a better fit for the peptide beads than the Freundlich model (R2 = 0.767). In contrast, the
Freundlich model (R2 = 0.974) was a better fit for bare beads than the Langmuir model
(R2 = 0.845). This is because BPA adsorption onto peptide beads occurs in a monolayer
form through selective peptide binding, whereas BPA adsorption onto bare beads occurs
through a nonselective, randomized, and multilayer binding approach. The Langmuir
parameters for the peptide beads were determined as a qmax of 13.0 mg/g bead and KL of
0.64 L/mg, while the Freundlich parameters for the bare beads were determined as a kf of
1.20 mg/g bead and n of 5.04.

3.3. Reusability of Peptide Bead

The reusability of the adsorbent is an important property in terms of cost reduction.
Considering previous studies [40,41], a methanol solution was first tested as a desorbent
for BPA from the beads, but the BPA desorption efficiency was unsatisfactory. In contrast,
Bayramoglu et al. reported a high BPA desorption ratio (up to 98%) from molecularly
imprinted polymers [42], prompting us to explore a methanol–acetic acid mixture for
elution after various trials. During six adsorption–desorption cycles, we monitored the
regeneration of the peptide beads used for BPA adsorption. Figure 5 illustrates that
an accurate mass balance between the adsorbed and desorbed BPA was not achieved
owing to an incomplete desorption process. The amount of adsorbed and desorbed BPA
gradually decreased during the successive use of the beads. The adsorption capacity of the
regenerated beads in the sixth cycle (8.22 mg/g) remained over 87% of the initial adsorption
capacity compared to that in the first operation. Although much research is needed to find
better eluents and conditions to minimize the loss of adsorption capacity, limited studies
have reported the optimal BPA adsorption–desorption conditions.
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3.4. Selective Bisphenol A Adsorption

BPA has several structural analogs, including bisphenol E (BPE), BPF, and BPS. A pre-
vious analysis of the removal characteristics of these bisphenols in a full-scale wastewater
treatment plant [12] found that the average concentration of BPA (2.031 µg/L) in municipal
untreated wastewater was much higher than that of BPA analogs (0.077 µg/L). The estro-
genic potency of BPA is similar to or higher than BPA analogs, suggesting that focus should
be primarily directed toward BPA compared to other BPA analogs. Adsorption studies
were conducted with bisphenol analogs to evaluate whether the selectivity of peptide
toward BPA, previously demonstrated on microbial surfaces [43], would be maintained in
the context of a magnetic bead-based adsorbent. BPS and BPF were tested as interferences
against BPA binding in single and mixed contaminant solutions. As shown in Figure 6,
the constructed peptide beads exhibited the highest affinity for BPA, with markedly low
adsorption of BPS and BPF in single-pollutant systems. Similar hydrogen bonds also could
be formed between BPA analogs and the peptide owing to the structural resemblance
(–OH) of BPS and BPF with BPA. Compared to BPS, BPF showed relatively higher binding
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capacity onto peptide beads in all experimental conditions, which is similar to a previous
study involving a microorganism-based peptide adsorbent [43]. The selective affinity of
a peptide for a particular target is determined by a complex interplay of factors related
to the peptide’s amino acid composition, coordination chemistry, electrostatic properties,
and pH [36]. The mechanism by which peptides interact with specific targets is not yet
fully understood, and quantitative binding experiments and modeling can provide some
clues as to how this is possible. Previous studies have assumed that the binding of BPA
onto peptides occurs due to the interaction of BPA with the Ser 333 and Asn 336 residues of
the peptide sequence. Hydrophobic interactions by polar aliphatic residues and H-bond
interactions, especially by Asn, are important in the binding chemistry of the peptide with
BPA [43]. Compared to the bare bead without peptide, relatively more BPA adsorption
onto wild-type microorganisms (not possessing peptide) was observed, which is attributed
to nonspecific binding to some surface peptides/proteins on the microorganism. To date,
magnetic adsorbents for BPA removal have been developed using complexes of iron and
other materials (activated carbon, cellulose, biochar, etc.), but only a few cases have been
reported regarding the selective removal of trace organic pollutants [29,44–46].
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To further evaluate the selectivity of peptide beads toward BPA, batch experiments
were conducted by preparing a mixture of BPA, BPS, and BPF. Furthermore, peptide beads
showed good selectivity for BPA in the mixture system. The adsorption capacities of peptide
beads toward BPA, BPS, and BPF were 3.46, 0.76, and 1.50 mg/g, respectively, indicating
that the BPA selectivity of peptide beads was maintained. Finally, to simulate real water
environments, synthetic wastewater containing a mixture of the above three analogs was
tested. Compared with the solutions above, the peptide bead retained its highest affinity
for BPA; however, its BPA removal capacity slightly diminished when operating in the
simulated wastewater. This reduction may be due to the presence of various organic and
inorganic contaminants in the wastewater solution, which may bind to the beads and reduce
the BPA adsorption capacity of the peptide beads. Nevertheless, the selectivity of BPA over
BPS remained at 2.9, suggesting the versatility of the peptide beads as selective adsorbents
in various environments. Molecularly imprinted polymers (MIPs) have commonly been
investigated as selective BPA adsorbents. For example, photoresponsive MIPs based
on mesoporous carriers, palygorskite-supported surface MIPs, and water-soluble MIPs
showed excellent affinity and selectivity for BPA in aqueous solutions, but some MIPs
required rather complicated synthesis processes [47–49].

3.5. Bisphenol A Adsorption Using Different Lengths of Peptide Repeats

In a previous study of BPA adsorption on recombinant cells, a dimeric display of the
BPA-binding peptide on the cell surface was employed to improve BPA adsorption [50].
The dimeric strain exhibited a BPA adsorption rate of 230.4 µmol BPA/g DCW at a BPA
concentration of 15 ppm, which was threefold higher than the monomeric strain. To see
if the magnetic bead-based adsorbent could exhibit similar performance, we constructed
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beads linked to dimeric and trimeric repeats of the linear peptide to further enhance the BPA
removal capacity of peptide beads. Although the C-peptide demonstrated higher binding
to the beads, resulting in higher BPA removal efficiency than the L-peptide (Figure 2),
for this experiment, the beads were constructed using the L-peptide. This is because the
C-peptide could not be synthesized in the repeated cyclic forms. As shown in Figure 7,
BPA adsorptions of bare, C-peptides, L-peptide, dimeric L-peptide, and trimeric L-peptide
beads were 2.32, 9.22, 8.84, 14.24, 16.66 mg/g, respectively. As shown in Figure 7, the mass
ratio of bound peptide to bead (mg/g) also increased with the increase in peptide length in
the order of monomeric, dimeric, and trimeric L-peptide beads, but the number of bound
peptides per bead decreased as the molecular weight of dimeric and trimeric peptides
increased by a factor of two and three, respectively. Therefore, the ratio of adsorbed BPA
to monomeric, dimeric, and trimeric peptide beads was determined as 4.34, 8.22, and
12.42 µmol BPA/µmol peptide, respectively. This observation means that the amount of
BPA adsorbed on peptide beads is proportional to the number of monomeric peptides
that have an affinity for BPA, eventually confirming that BPA adsorption is mainly caused
by the binding affinity between BPA and BPA-binding peptide. In future studies, it is
necessary to investigate methods for increasing the number of peptides on the bead surface
to further improve the BPA removal capacity.
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4. Conclusions

The selective affinity of peptides has been well studied, but their practical application
has been limited to binding to metals and metal oxides, with little application to organics
such as BPA. This work is a pioneering study in the application of peptides with high
selective affinity for organics to the removal of specific organic pollutants. Molecularly
imprinted polymers have also been studied for the selective removal of BPA and have
the advantage of large adsorption capacity. However, their selective affinity for BPA in
the presence of BPA analogs with high structural similarity (bisphenol F and bisphenol
S) has not been fully validated. We created a reusable adsorbent with a peptide with a
specific affinity for BPA linked to magnetic beads. The adsorption capacity (8.6 mg/g) of
this peptide bead adsorbent occurred at pH 6 and fit well with the Langmuir isotherm
model. This peptide adsorbent exhibited remarkable selectivity for BPA compared to its
analogs. We also compared BPA adsorption for monomeric, dimeric, and trimeric repeats
of the BPA-binding peptide and found that BPA adsorption was proportional to the number
of each monomeric BPA-binding peptide. In a reusability study, the BPA adsorption
capacity after six cycles retained more than 87% of the initial adsorption capacity. These
validations demonstrated that the developed peptide-based magnetic adsorbent has actual
potential for selective BPA removal from complex environmental matrices, especially in
environments where excessive amounts of adsorbent are required to remove BPA coexisting
with interfering pollutants.
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